A Controlled Convergence Theorem for the C-Pettis Integral

Da Fang ZHAO*, Bi Wen LI

School of Mathematics and Statistics, Hubei Normal University, Hubei 435002, P. R. China

Abstract In this paper, we give the Riemann-type extensions of Dunford integral and Pettis integral, C-Dunford integral and C-Pettis integral. We discuss the relationship between the C-Pettis integral and Pettis integral, and prove a controlled convergence theorem for the C-Pettis integral.

Keywords C-integral; C-Pettis integral; controlled convergence.

Document code A MR(2000) Subject Classification 26A39; 46G10 Chinese Library Classification 0174.1

1. Introduction

In 1996, Bongiorno provided a new solution to the problem of recovering a function from its derivative by integration by introducing a constructive minimal integration process of Riemann type, called C-integral, which includes the Lebesgue integral and also integrates the derivatives of differentiable function. Bongiorno and Piazza [1–3] discussed some properties of the C-integral of real-valued functions. In [8–10], we studied the Banach-valued C-integral.

The Dunford integral and the Pettis integral are generalizations of Lebegue integral to the Banach-valued functions. In this paper, we give the Riemann-type extensions of Dunford integral and Pettis integral, C-Dunford integral and C-Pettis integral. We discuss the relationship between the C-Pettis integral and Pettis integral. If a function f is C-integrable on [a, b], then f is C-Pettis integrable on [a, b], but an example shows that the converse is not true. Finally, we prove a controlled convergence theorem for the C-Pettis integral.

2. Definitions and basic properties

Throughout this paper, [a, b] is a compact interval in R. X will denote a real Banach space with norm $\|\cdot\|$ and its dual X^* . A partition D is a finite collection of interval-point pairs $\{([u_i, v_i], \xi_i)\}_{i=1}^n$, where $\{[u_i, v_i]\}_{i=1}^n$ are non-overlapping subintervals of [a, b]. $\delta(\xi)$ is a positive function on [a, b], i.e., $\delta(\xi) : [a, b] \to \mathbb{R}^+$. We say that $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ is

Received June 4, 2008; Accepted January 5, 2009

* Corresponding author

Supported by the Natural Science Foundation of Hubei Province (Grant No. 2007ABA124) and the Science Foundation of Hubei Normal University (Grant No. 2007D41).

E-mail address: dafangzhao@163.com (D. F. ZHAO)

A controlled convergence theorem for the C-Pettis integral

1) a partition of [a, b] if $\bigcup_{i=1}^{n} [u_i, v_i] = [a, b]$,

2) δ -fine McShane partition of [a, b] if $[u_i, v_i] \subset B(\xi_i, \delta(\xi_i)) = (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$ and $\xi_i \in [a, b]$ for all i = 1, 2, ..., n,

3) δ -fine C-partition of [a, b] if it is a δ -fine McShane partition of [a, b], satisfying the condition $\sum_{i=1}^{n} \text{dist}(\xi_i, [u_i, v_i]) < \frac{1}{\varepsilon}$, here $\text{dist}(\xi_i, [u_i, v_i]) = \inf\{|t_i - \xi_i| : t_i \in [u_i, v_i]\}$.

Given a δ -fine C-partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$, we write $S(f, D) = \sum_{i=1}^n f(\xi_i)(v_i - u_i)$ for integral sums over D, whenever $f : [a, b] \to X$.

Definition 1 A function $f : [a, b] \to X$ is C-integrable if there exists a vector $A \in X$ such that for each $\varepsilon > 0$ there is a positive function $\delta(\xi) : [a, b] \to R^+$ such that

$$\|S(f,D) - A\| < \epsilon$$

for each δ -fine C-partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b]. A is called the C-integral of f on [a, b], and we write $A = \int_a^b f$ or $A = (C) \int_a^b f$.

The basic properties of the C-integral, say, linearity and additivity with respect to intervals, can be found in [9]. We do not present them here. We refer to [9] for the details.

Definition 2 A function $f:[a,b] \to X$ is C-Dunford integrable on [a,b] if x^*f is C-integrable on [a,b] for each $x^* \in X^*$ and if for every subinterval $[c,d] \subset [a,b]$ there exists an element $x_{[c,d]}^{**} \in X^{**}$ such that $\int_c^d x^*f = x_{[c,d]}^{**}(x^*)$ for each $x^* \in X^*$. We write $(CD) \int_c^d f = x_{[c,d]}^{**} \in x_{[c,d]}^{**}$

Definition 3 A function $f : [a, b] \to X$ is C-Pettis integrable on [a, b] if f is C-Dunford integrable on [a, b] and $(CD) \int_c^d f \in X$ for every interval $[c, d] \subset [a, b]$. We write $(CP) \int_c^d f = (CD) \int_c^d f \in X$.

The function f is C-Pettis integrable on the set $E \subset [a, b]$ if the function $f\chi_E$ is C-Pettis integrable on [a, b]. We write $(CP) \int_E f = (CP) \int_a^b f\chi_E$.

Lemma 1 If a function $f : [a, b] \to X$ is C-integrable on [a, b], then f is C-Pettis integrable on [a, b].

Proof f is C-integrable on [a, b], then x^*f is C-integrable on [a, b] for each $x^* \in X^*$ and $(C) \int_a^b x^*f = x^*((C) \int_a^b f)$ from [8,Theorem 2.7]. For each subinterval $[c, d] \subset [a, b]$, we have $(C) \int_c^d f \in X$. Then f is C-Pettis integrable on [a, b] and $(CP) \int_a^b f = (C) \int_a^b f$.

Remark The following example shows that the converse of Lemma 1 is not true. In other words, there exists a function which is C-Pettis integrable but is not C-integrable.

Example (a) Define a function $f: [0,1] \longrightarrow l_{\infty}(\omega_1)$ by

$$f(t)(\alpha) = \begin{cases} 1, & \text{if } t \in N_{\alpha} \backslash C_{\alpha}, \\ 0, & \text{otherwise,} \end{cases}$$
(1)

where ω_1 is the first uncountable ordinal, and $\{N_\alpha\}_{\alpha\in\omega_1}$ and $\{C_\alpha\}_{\alpha\in\omega_1}$ are two collection of subsets of [0, 1] satisfying the following properties:

1) For each $\alpha \in \omega_1$, N_{α} is a set of zero Lebesgue measure;

- 2) $N_{\alpha} \subset N_{\beta}$, if $\alpha < \beta$;
- 3) Every subset of [0, 1] of zero Lebesgue measure is contained in some set N_{α} ;
- 4) For each $\alpha \in \omega_1$, C_{α} is a countable set;
- 5) $C_{\alpha} \subset C_{\beta}$, if $\alpha < \beta$;
- 6) Every countable subset of [0, 1] is contained in some set C_{α} .

In [5, Example(CH)], Di Piazza and Preiss proved that f is Pettis integrable but is not McShane integrable on [0, 1]. It is easy to know that f is C-Pettis integrable on [0, 1] from Lemma 1. In [8,Theorem 3.4], we proved that f is McShane integrable if and only if f is Cintegrable and Pettis integrable. Suppose that f is C-integrable on [0, 1], then f is McShane integrable on [0, 1]. This is a contradiction, so f is not C-integrable on [0, 1].

3. Main results

Definition 4 Let $F_n, F : [a, b] \to R$ and let E be a subset of [a, b].

(a) F is said to be AC_c on E if for each $\varepsilon > 0$ there is a constant $\eta > 0$ and a positive function $\delta(\xi) : E \to R^+$ such that $\sum_i |F([u_i, v_i])| < \epsilon$ for each δ -fine partial C-partition $D = \{([u_i, v_i], \xi_i)\}$ of [a, b] satisfying $\xi_i \in E$ for each i and $\sum_i (v_i - u_i) < \eta$.

(b) F_n is said to be UAC_c on E if for each $\varepsilon > 0$ there is a constant $\eta > 0$ and a positive function $\delta(\xi) : E \to R^+$ such that $\sum_i |F_n([u_i, v_i])| < \epsilon$ for all n and for each δ -fine partial C-partition $D = \{([u_i, v_i], \xi_i)\}$ of [a, b] satisfying $\xi_i \in E$ for each i and $\sum_i (v_i - u_i) < \eta$.

(c) F is said to be ACG_c on E if F is continuous on E and E can be expressed as a countable union of sets on each of which F is AC_c .

(d) F is said to be $UACG_c$ on E if F is continuous on E and E can be expressed as a countable union of sets on each of which F is UAC_c .

Lemma 2 Let $f : [a,b] \to X$ and assume that $\{f_n\}$ is a sequence of C-integrable functions. Assume that the following conditions are satisfied:

- 1) $f_n \to f$ almost everywhere on [a, b];
- 2) F_n are $UACG_c$ on [a, b].

Then f is C-integrable on [a, b] and $\lim_{n \to \infty} (C) \int_a^b f_n = (C) \int_a^b f$.

Proof The proof is standard and similar to [7, Theorem 5.5.2].

Theorem 1 (Controlled Convergence Theorem) Let $f : [a, b] \to X$ and assume that $\{f_n\}$ is a sequence of C-Pettis integrable functions. Assume that the following conditions are satisfied:

- 1) For each $x^* \in X^*$, $x^* f_n \to x^* f$ almost everywhere on [a, b];
- 2) The family $\{x^*F_n : x^* \in X^*, n \in \mathbb{N}\}$ is $UACG_c$ on [a, b].

Then f is C-Pettis integrable on [a, b] and

$$\lim_{n \to \infty} (CP) \int_a^b f_n = (CP) \int_a^b f \quad (\text{weakly}).$$

Proof We will prove the Theorem in two steps.

Step 1. The sequence $\{f_n\}$ is C-Pettis integrable on [a, b], then for each $x^* \in X^*$, $x^* f_n$ is C-integrable on [a, b]. From Lemma 2 we have that $x^* f$ is C-integrable on [a, b] and

$$\lim_{n \to \infty} (C) \int_a^b x^* f_n = (C) \int_a^b x^* f.$$

Step 2. Assume [c, d] is an arbitrary subinterval of [a, b]. Let \mathcal{C} denote the weak closure of $\{(CP)\int_c^d f_n : n \in \mathbb{N}\}$. It is easy to see that \mathcal{C} is bounded and that $\mathcal{C}\setminus\{(CP)\int_c^d f_n : n \in \mathbb{N}\}$ contains at most one point. We claim that \mathcal{C} is weakly compact.

Suppose \mathcal{C} is not weakly compact, then there exists a bounded sequence $(x_{k}^{*}) \subset X^{*}$, a sequence $(x_n) \subset \mathcal{C}$ and $\epsilon > 0$ such that

$$\begin{cases} x_k^*(x_n) = 0, & \text{if } k > n, \\ x_k^*(x_n) > \epsilon, & \text{if } k \le n. \end{cases}$$

$$(2)$$

We can take subsequence $(g_n) \subset (f_n)$ and a sequence $(y_k^*) \subset x_k^*$ such that

$$\begin{cases} (C) \int_{c}^{d} y_{k}^{*}g_{n} = 0, & \text{if } k > n, \\ (C) \int_{c}^{d} y_{k}^{*}g_{n} > \epsilon, & \text{if } k \le n, \\ \lim_{n \to \infty} (C) \int_{c}^{d} x^{*}g_{n} = (C) \int_{c}^{d} x^{*}f, & \text{for each } x^{*} \in X^{*}. \end{cases}$$
(3)

From [4, Lemma 1], we can find a subsequence $(y_{k_j}^*) \subset (y_k^*)$ such that $\lim_{j\to\infty} y_{k_j}^* f$ exists almost everywhere. Assume y_0^* is a weak^{*} cluster point of $(y_{k_j}^*) \subset (y_k^*)$, then we have $\lim_{j\to\infty} y_{k_j}^* f = y_0^* f$ almost everywhere on [a, b]. It is not difficult to get that $\lim_{j\to\infty} (C) \int_c^d y_{k_j}^* f =$ $(C) \int_{c}^{d} y_{0}^{*} f$. To force a contradiction, note that for each j, we have that

$$\lim_{n \to \infty} (C) \int_c^d y_{k_j}^* g_n = (C) \int_c^d y_{k_j}^* f.$$

When $n \ge k_j$, from (3) we have that $(C) \int_c^d y_{k_j}^* g_n > \epsilon$ and $(C) \int_c^d y_{k_j}^* f \ge \epsilon$. Therefore

$$\lim_{j \to \infty} (C) \int_c^d y_{k_j}^* f = (C) \int_c^d y_0^* f \ge \epsilon.$$

On the other hand, g_n is C-Pettis integrable for each n, the functional $x^* \longrightarrow (C) \int_c^d x^* g_n$ is weak*-continuous. Then if (y_{α}^*) is a subset of $(y_{k_i}^*)$ weak* converging to y_0^* , by (3) and passing to the limit with $n \to \infty$ we have that

$$\lim_{n \to \infty} \lim_{\alpha} (C) \int_c^d y_{\alpha}^* g_n = \lim_{n \to \infty} \lim_{\alpha} y_{\alpha}^* (CP) \int_c^d g_n = \lim_{n \to \infty} y_0^* (CP) \int_c^d g_n$$
$$= \lim_{n \to \infty} (C) \int_c^d y_0^* g_n = (C) \int_c^d y_0^* f = 0$$

which contradicts the inequality $(C) \int_c^d y_0^* f \ge \epsilon$. Therefore, the set C is weakly compact. Since $\lim_{n\to\infty} (C) \int_c^d x^* f_n = (C) \int_c^d x^* f$, the sequence $\{(CP) \int_c^d f_n\}$ is weak Cauchy. It follows from the weak compactness of C that $\lim_{n\to\infty} (CP) \int_c^d f_n$ exists weakly in X. Moreover

[c, d] is an arbitrary subinterval of [a, b], then f is C-Pettis integrable on [a, b] and

$$\lim_{n \to \infty} (CP) \int_{a}^{b} f_{n} = (CP) \int_{a}^{b} f \quad \text{(weakly)}.$$

Acknowledgement The authors are grateful to the referee for his or her careful reading of the manuscript and for valuable and helpful suggestions.

References

- BONGIORNO B. On the minimal solution of the problem of primitives [J]. J. Math. Anal. Appl., 2000, 251(2): 479–487.
- [2] BONGIORNO B, DI PIAZZA L, PREISS D. A constructive minimal integral which includes Lebesgue integrable functions and derivatives [J]. J. London Math. Soc. (2), 2000, 62(1): 117–126.
- [3] DI PIAZZA L. A Riemann-type minimal integral for the classical problem of primitives [J]. Rend. Istit. Mat. Univ. Trieste, 2002, 34(1-2): 143–153.
- [4] GEITZ R F. Pettis integration [J]. Proc. Amer. Math. Soc., 1981, 82(1): 81-86.
- [5] DI PIAZZA L, PREISS D. When do McShane and Pettis integrals coincide? [J]. Illinois J. Math., 2003, 47(4): 1177–1187.
- [6] YE Guoju, AN Tianqing. On Henstock-Dunford and Henstock-Pettis integrals [J]. Int. J. Math. Math. Sci., 2001, 25(7): 467–478.
- [7] LEE P Y, VÝBORNÝ R. Integral: An Easy Approach After Kurzweil and Henstock [M]. Cambridge University Press, Cambridge, 2000.
- [8] ZHAO Dafang, YE Guoju. C-integral and Denjoy-C integral [J]. Commun. Korean Math. Soc., 2007, 22(1): 27–39.
- [9] ZHAO Dafang, YE Guoju. On C-integral of Banach-valued functions [J]. Kangweon-Kyungki J. Math., 2006, 14(2): 169–183.
- [10] ZHAO Dafang, YE Guoju. On strong C-integral of Banach-valued functions [J]. J. Chungcheong Math. Soc., 2007, 20(1): 1–10.