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Abstract In this paper, we give the Riemann-type extensions of Dunford integral and Pettis

integral, C-Dunford integral and C-Pettis integral. We discuss the relationship between the C-

Pettis integral and Pettis integral, and prove a controlled convergence theorem for the C-Pettis

integral.
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1. Introduction

In 1996, Bongiorno provided a new solution to the problem of recovering a function from its

derivative by integration by introducing a constructive minimal integration process of Riemann

type, called C-integral, which includes the Lebesgue integral and also integrates the derivatives

of differentiable function. Bongiorno and Piazza [1–3] discussed some properties of the C-integral

of real-valued functions. In [8–10], we studied the Banach-valued C-integral.

The Dunford integral and the Pettis integral are generalizations of Lebegue integral to the

Banach-valued functions. In this paper, we give the Riemann-type extensions of Dunford inte-

gral and Pettis integral, C-Dunford integral and C-Pettis integral. We discuss the relationship

between the C-Pettis integral and Pettis integral. If a function f is C-integrable on [a, b], then f

is C-Pettis integrable on [a, b], but an example shows that the converse is not true. Finally, we

prove a controlled convergence theorem for the C-Pettis integral.

2. Definitions and basic properties

Throughout this paper, [a, b] is a compact interval in R. X will denote a real Banach space

with norm ‖ · ‖ and its dual X∗. A partition D is a finite collection of interval-point pairs

{([ui, vi], ξi)}
n

i=1, where {[ui, vi]}
n
i=1 are non-overlapping subintervals of [a, b]. δ(ξ) is a positive

function on [a, b], i.e., δ(ξ) : [a, b] →R+. We say that D = {([ui, vi], ξi)}
n

i=1 is
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1) a partition of [a, b] if
⋃n

i=1[ui, vi] = [a, b],

2) δ-fine McShane partition of [a, b] if [ui, vi] ⊂ B(ξi, δ(ξi)) = (ξi − δ(ξi), ξi + δ(ξi)) and

ξi ∈ [a, b] for all i = 1, 2, . . . , n,

3) δ-fine C-partition of [a, b] if it is a δ-fine McShane partition of [a, b], satisfying the condition
∑n

i=1 dist(ξi, [ui, vi]) < 1
ε
, here dist(ξi, [ui, vi]) = inf{|ti − ξi| : ti ∈ [ui, vi]}.

Given a δ-fine C-partition D = {([ui, vi], ξi)}
n

i=1, we write S(f, D) =
∑n

i=1 f(ξi)(vi − ui) for

integral sums over D, whenever f : [a, b] → X .

Definition 1 A function f : [a, b] → X is C-integrable if there exists a vector A ∈ X such that

for each ε > 0 there is a positive function δ(ξ) : [a, b] → R+ such that

‖S(f, D) − A‖ < ǫ

for each δ-fine C-partition D = {([ui, vi], ξi)}
n

i=1 of [a, b]. A is called the C-integral of f on [a, b],

and we write A =
∫ b

a
f or A = (C)

∫ b

a
f .

The basic properties of the C-integral, say, linearity and additivity with respect to intervals,

can be found in [9]. We do not present them here. We refer to [9] for the details.

Definition 2 A function f : [a, b] → X is C-Dunford integrable on [a, b] if x∗f is C-integrable

on [a, b] for each x∗ ∈ X∗ and if for every subinterval [c, d] ⊂ [a, b] there exists an element

x∗∗

[c,d] ∈ X∗∗ such that
∫ d

c
x∗f = x∗∗

[c,d](x
∗) for each x∗ ∈ X∗. We write (CD)

∫ d

c
f = x∗∗

[c,d] ∈ x∗∗

.

Definition 3 A function f : [a, b] → X is C-Pettis integrable on [a, b] if f is C-Dunford integrable

on [a, b] and (CD)
∫ d

c
f ∈ X for every interval [c, d] ⊂ [a, b]. We write (CP )

∫ d

c
f = (CD)

∫ d

c
f ∈

X.

The function f is C-Pettis integrable on the set E ⊂ [a, b] if the function fχE is C-Pettis

integrable on [a, b]. We write (CP )
∫

E
f = (CP )

∫ b

a
fχE.

Lemma 1 If a function f : [a, b] → X is C-integrable on [a, b], then f is C-Pettis integrable on

[a, b].

Proof f is C-integrable on [a, b], then x∗f is C-integrable on [a, b] for each x∗ ∈ X∗ and

(C)
∫ b

a
x∗f = x∗((C)

∫ b

a
f) from [8,Theorem 2.7]. For each subinterval [c, d] ⊂ [a, b], we have

(C)
∫ d

c
f ∈ X . Then f is C-Pettis integrable on [a, b] and (CP )

∫ b

a
f = (C)

∫ b

a
f.

Remark The following example shows that the converse of Lemma 1 is not true. In other

words, there exists a function which is C-Pettis integrable but is not C-integrable.

Example (a) Define a function f : [0, 1] −→ l∞(ω1) by

f(t)(α) =

{

1, if t ∈ Nα\Cα,

0, otherwise,
(1)

where ω1 is the first uncountable ordinal, and {Nα}α∈ω1
and {Cα}α∈ω1

are two collection of

subsets of [0, 1] satisfying the following properties:

1) For each α ∈ ω1, Nα is a set of zero Lebesgue measure;
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2) Nα ⊂ Nβ, if α < β;

3) Every subset of [0, 1] of zero Lebesgue measure is contained in some set Nα;

4) For each α ∈ ω1, Cα is a countable set;

5) Cα ⊂ Cβ , if α < β;

6) Every countable subset of [0, 1] is contained in some set Cα.

In [5, Example(CH)], Di Piazza and Preiss proved that f is Pettis integrable but is not

McShane integrable on [0, 1]. It is easy to know that f is C-Pettis integrable on [0, 1] from

Lemma 1. In [8,Theorem 3.4], we proved that f is McShane integrable if and only if f is C-

integrable and Pettis integrable. Suppose that f is C-integrable on [0, 1], then f is McShane

integrable on [0, 1]. This is a contradiction, so f is not C-integrable on [0, 1].

3. Main results

Definition 4 Let Fn, F : [a, b] → R and let E be a subset of [a, b].

(a) F is said to be ACc on E if for each ε > 0 there is a constant η > 0 and a positive function

δ(ξ) : E → R+ such that
∑

i |F ([ui, vi])| < ǫ for each δ-fine partial C-partition D = {([ui, vi], ξi)}

of [a, b] satisfying ξi ∈ E for each i and
∑

i(vi − ui) < η.

(b) Fn is said to be UACc on E if for each ε > 0 there is a constant η > 0 and a positive

function δ(ξ) : E → R+ such that
∑

i |Fn([ui, vi])| < ǫ for all n and for each δ-fine partial

C-partition D = {([ui, vi], ξi)} of [a, b] satisfying ξi ∈ E for each i and
∑

i(vi − ui) < η.

(c) F is said to be ACGc on E if F is continuous on E and E can be expressed as a countable

union of sets on each of which F is ACc.

(d) F is said to be UACGc on E if F is continuous on E and E can be expressed as a

countable union of sets on each of which F is UACc.

Lemma 2 Let f : [a, b] → X and assume that {fn} is a sequence of C-integrable functions.

Assume that the following conditions are satisfied:

1) fn → f almost everywhere on [a, b];

2) Fn are UACGc on [a, b].

Then f is C-integrable on [a, b] and limn→∞(C)
∫ b

a
fn = (C)

∫ b

a
f.

Proof The proof is standard and similar to [7, Theorem 5.5.2].

Theorem 1 (Controlled Convergence Theorem) Let f : [a, b] → X and assume that {fn} is a

sequence of C-Pettis integrable functions. Assume that the following conditions are satisfied:

1) For each x∗ ∈ X∗, x∗fn → x∗f almost everywhere on [a, b];

2) The family {x∗Fn : x∗ ∈ X∗, n ∈ N} is UACGc on [a, b].

Then f is C-Pettis integrable on [a, b] and

lim
n→∞

(CP )

∫ b

a

fn = (CP )

∫ b

a

f (weakly).

Proof We will prove the Theorem in two steps.
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Step 1. The sequence {fn} is C-Pettis integrable on [a, b], then for each x∗ ∈ X∗, x∗fn is

C-integrable on [a, b]. From Lemma 2 we have that x∗f is C-integrable on [a, b] and

lim
n→∞

(C)

∫ b

a

x∗fn = (C)

∫ b

a

x∗f.

Step 2. Assume [c, d] is an arbitrary subinterval of [a, b]. Let C denote the weak closure of

{(CP )
∫ d

c
fn : n ∈ N}. It is easy to see that C is bounded and that C\{(CP )

∫ d

c
fn : n ∈ N}

contains at most one point. We claim that C is weakly compact.

Suppose C is not weakly compact, then there exists a bounded sequence (x∗

k) ⊂ X∗, a sequence

(xn) ⊂ C and ǫ > 0 such that
{

x∗

k(xn) = 0, if k > n,

x∗

k(xn) > ǫ, if k ≤ n.
(2)

We can take subsequence (gn) ⊂ (fn) and a sequence (y∗

k) ⊂ x∗

k such that










































(C)

∫ d

c

y∗

kgn = 0, if k > n,

(C)

∫ d

c

y∗

kgn > ǫ, if k ≤ n,

lim
n→∞

(C)

∫ d

c

x∗gn = (C)

∫ d

c

x∗f, for each x∗ ∈ X∗.

(3)

From [4, Lemma 1], we can find a subsequence (y∗

kj
) ⊂ (y∗

k) such that limj→∞ y∗

kj
f ex-

ists almost everywhere. Assume y∗

0 is a weak∗ cluster point of (y∗

kj
) ⊂ (y∗

k), then we have

limj→∞ y∗

kj
f = y∗

0f almost everywhere on [a, b]. It is not difficult to get that limj→∞(C)
∫ d

c
y∗

kj
f =

(C)
∫ d

c
y∗

0f. To force a contradiction, note that for each j, we have that

lim
n→∞

(C)

∫ d

c

y∗

kj
gn = (C)

∫ d

c

y∗

kj
f.

When n ≥ kj , from (3) we have that (C)
∫ d

c
y∗

kj
gn > ǫ and (C)

∫ d

c
y∗

kj
f ≥ ǫ. Therefore

lim
j→∞

(C)

∫ d

c

y∗

kj
f = (C)

∫ d

c

y∗

0f ≥ ǫ.

On the other hand, gn is C-Pettis integrable for each n, the functional x∗ −→ (C)
∫ d

c
x∗gn is

weak∗-continuous. Then if (y∗

α) is a subset of (y∗

kj
) weak∗ converging to y∗

0 , by (3) and passing

to the limit with n → ∞ we have that

lim
n→∞

lim
α

(C)

∫ d

c

y∗

αgn = lim
n→∞

lim
α

y∗

α(CP )

∫ d

c

gn = lim
n→∞

y∗

0(CP )

∫ d

c

gn

= lim
n→∞

(C)

∫ d

c

y∗

0gn = (C)

∫ d

c

y∗

0f = 0

which contradicts the inequality (C)
∫ d

c
y∗

0f ≥ ǫ. Therefore, the set C is weakly compact.

Since limn→∞(C)
∫ d

c
x∗fn = (C)

∫ d

c
x∗f , the sequence {(CP )

∫ d

c
fn} is weak Cauchy. It

follows from the weak compactness of C that limn→∞(CP )
∫ d

c
fn exists weakly in X . Moreover
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[c, d] is an arbitrary subinterval of [a, b], then f is C-Pettis integrable on [a, b] and

lim
n→∞

(CP )

∫ b

a

fn = (CP )

∫ b

a

f (weakly).
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