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Abstract This paper studies approximation capability to L2(Rd) functions of incremental

constructive feedforward neural networks (FNN) with random hidden units. Two kinds of there-

layered feedforward neural networks are considered: radial basis function (RBF) neural networks

and translation and dilation invariant (TDI) neural networks. In comparison with conventional

methods that existence approach is mainly used in approximation theories for neural networks,

we follow a constructive approach to prove that one may simply randomly choose parameters of

hidden units and then adjust the weights between the hidden units and the output unit to make

the neural network approximate any function in L2(Rd) to any accuracy. Our result shows given

any non-zero activation function g : R+ → R and g(‖x‖
Rd) ∈ L2(Rd) for RBF hidden units, or

any non-zero activation function g(x) ∈ L2(Rd) for TDI hidden units, the incremental network

function fn with randomly generated hidden units converges to any target function in L2(Rd)

with probability one as the number of hidden units n → ∞, if one only properly adjusts the

weights between the hidden units and output unit.
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TDI neural networks; random hidden units.
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1. Introduction

There have been many methods for multivariate function approximation: polynomials, Fourier

series, tensor products, wavelets, radial basis functions, ridge functions, etc. In this respect, a

current trend is to use artificial neural networks to approximate multivariate functions by com-

puting superpositions and linear combinations of simple univariate functions. It is natural to

raise the approximation capability problem: whether, or under what conditions, is a family of

neural network functions dense in a space of multivariate functions? From the viewpoint of net-
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work architectures, the multi-layer perceptron neural networks (MLPNN) [1–6] and radial basis

function neural networks (RBFNN) [7–14] are thoroughly investigated.

A three-layered MLPNN with linear output can be represented by a sum of n additive hidden

units:

f(x) =

n
∑

i=1

βig (ai · x + bi) , ai ∈ Rd, bi, βi ∈ R, (1)

where ai is the weight vector between the input layer and the i-th hidden unit, βi is the weight

between i-th hidden unit and the output unit, g is the activation function, ai · x denotes the

inner product of vector ai and the input vector x in Euclidean space Rd.

RBFNN calculates a linear combination of n radial basis function (RBF) hidden units:

f(x) =

n
∑

i=1

βig
(‖x − ai‖Rd

bi

)

, ai ∈ Rd, bi ∈ R+, βi ∈ R, x ∈ Rd, (2)

where ai is the center of the i-th hidden unit, bi is the width factor of the radial basis function,

βi is the weight between i-th hidden unit and the output unit, ‖ · ‖Rd denotes the Euclidean

norm in Rd.

Pinkus [15] discussed translation and dilation invariant subspace (TDI subspace) in C(Rd)

and its density problems, i.e., suppose g ∈ C(Rd), whether µg = span {g(Ax − b)}, where A

is a d-order nonsingular diagonal matrix, b ∈ Rd, is dense in C(Rd) under the convergence on

compact sets, where S denotes the closure of the set S defined by corresponding convergence.

µg is called the smallest TDI subspace generated by g. Let Ad be the set of d-order nonsingular

diagonal matrices. Accordingly, we also consider another feedforward network architecture with

n TDI hidden units:

f(x) =

n
∑

i=1

βig(Aix − Θi), Ai ∈ Ad, Θi ∈ Rd, βi ∈ R, x ∈ Rd. (3)

From now on, we represent a three-layered feedforward neural network with n hidden units in a

general form:

fn(x) =

n
∑

i=1

βigi(x), βi ∈ R, x ∈ Rd, (4)

where gi(x) denotes the output function of the i-th hidden unit.

Many papers on the topic of approximation problem of the neural networks appeared in the

past two decades, probably because they recognized the importance of the approximation theo-

rems in neural computation theory. But we notice that almost all existing results use existence

approaches, and Huang et al. [18] presented a constructive approach to prove the approxima-

tion capacity of MLPNN and RBFNN with random hidden nodes. They showed that given any

bounded nonconstant piecewise continuous activation function g : R → R for additive nodes

or any integrable piecewise continuous activation function g : R → R and
∫

R
g(x)dx 6= 0 for

RBF nodes, the network sequence {fn} with randomly generated hidden nodes can converge to

any continuous target function in L2-norm on X by only properly adjusting the output weights,

where X is a compact set in Rd. We will continue their talk and discuss the case that the target
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function space is L2(Rd), which is different from the result in [18] for continuous functions in

L2(X).

This paper is organized as follows. Some definitions and lemmas are given in Section 2.

In Section 3, the main result of this paper is presented and proved. Section 4 is devoted to a

summary of our result.

2. Definitions and lemmas

Let Lp(Rd) be the space of functions f on the d-dimensional Euclidean space Rd such that
∫

Rd |f |
p
dx < ∞. The norm in Lp(Rd) space will be denoted by ‖ · ‖Lp(Rd), and the norm in

L2(Rd) space will be denoted by ‖ · ‖ for simplicity. ‖ · ‖Rd denotes the usual Euclidean norm in

Rd.

For u, v ∈ L2(Rd), their inner product 〈u, v〉 in L2(Rd) is defined by

〈u, v〉 =

∫

Rd

u(x)v(x)dx. (5)

The distance between the network output function fn and the target function f in L2(Rd) is

measured in L2-norm

‖fn − f‖ =
[

∫

Rd

|fn(x) − f(x)|
2
dx

]
1
2

. (6)

Definition 2.1 The function sequence {gn = g(an · x + bn)}, or {gn = g(
‖x−an‖

Rd

bn
)}, or {g(Anx

+Θn)} is randomly generated if its parameters are randomly generated from Rd×R, or Rd×R+,

or Ad × Rd based on a continuous sampling distribution probability.

Definition 2.2 A unit of a neural network is called a random unit if its parameters (a, b) ∈

Rd ×R, or (a, b) ∈ Rd ×R+, or (A, Θ) ∈ Ad ×Rd are randomly generated based on a continuous

sampling distribution probability.

Lemma 2.3 ([19]) L2 space is a complete normed linear space.

Lemma 2.4 ([20]) Suppose f ∈ Lp(E) (1 ≤ p < ∞), then for any ε > 0, there exists compactly

supported continuous function h(x), such that
∫

E
|f(x) − h(x)|

p
dx < ε, where E is a Lebesgue

measurable set.

Lemma 2.5 ([16]) Suppose that g : R+ → R, (1 + |t|)
d−1

2 g ∈ L2(R+), g 6= 0. Then the set of

linear combinations {
∑N

i=1 cig(λi ‖x − θi‖Rd)} is dense in L2(Rd), where λi > 0, ci ∈ R, θi ∈ Rd,

i = 1, . . . , N , N ∈ N.

Remark 2.6 The assumption made in Lemma 2.5 is equivalent to g(‖x‖Rd) ∈ L2(Rd), which

is also necessary for the validity of Lemma 2.5.

Lemma 2.7 Suppose that g(x) ∈ Lp(Rd), 1 < p < ∞, and g 6= 0. Then for any f(x) ∈ Lp(Rd)

and any ε > 0, there exist a positive integer N , nonsingular diagonal matrix Ai, Θi ∈ Rd, and

constant ci ∈ R, i = 1, . . . , N , which all depend on f , such that ‖f(x) −
∑N

i=1 ci(f)g(Aix +
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Θi)‖Lp(Rd) < ε.

Remark 2.8 We claim that if g ∈ L2(R) and g 6= 0, then for any non-zero vector a in Rd,

g(a · x) /∈ L2(Rd), where x ∈ Rd, d ≥ 2. As we know, if g ∈ L2(R), g 6= 0, then there exists a

closed interval [c1, c2] ⊆ R+, such that m
({

t : c1 ≤ g2(t) ≤ c2

})

> 0, where m(E) denotes the

Lebesgue measure of E. Set Ẽ =
{

x : c1 ≤ g2(a · x) ≤ c2

}

, it is obviously that m(Ẽ) = +∞.

Thus, we have
∫

Rd

g2(a · x)dx ≥

∫

Ẽ

g2(a · x)dx ≥ c1m(Ẽ) = +∞,

which shows that g(a · x) /∈ L2(Rd). Our claim follows. So we can not get the density theorem

in L2(Rd) for MLPNN.

Lemma 2.9 (i) Suppose that g : R+ → R, g(‖x‖Rd) ∈ L2(Rd). Then we have

lim
(a, b)→(a0, b0)

∥

∥

∥
g(

‖x − a‖Rd

b
) − g(

‖x − a0‖Rd

b0
)
∥

∥

∥
= 0, ∀(a0, b0) ∈ Rd × R+. (7)

(ii) If g(x) ∈ L2(Rd), then we have

lim
(A, Θ)→(A0, Θ0)

‖g(Ax + Θ) − g(A0x + Θ0)‖ = 0, ∀A0 ∈ Ad, Θ0 ∈ Rd. (8)

Proof We first prove (i).

Let σ(x) = g(‖x‖Rd), then σ(x) ∈ L2(Rd). By Lemma 2.4, for any ε > 0, we can decompose

σ(x) as follows, σ(x) = σ1(x) + σ2(x). σ1(x) is a continuous function with compact support in

Rd, and σ2(x) satisfies

‖σ2(x)‖ <
2

d
2 ε

2(2
d
2 + 3

d
2 )b

d
2

0

. (9)

Since σ1(x) is compactly supported and uniformly continuous, there exists δ > 0, for ‖(a, b) −

(a0, b0)‖Rd+1 < δ, such that

|b − b0| <
b0

2
, (10)

and
∥

∥

∥
σ1(

x − a

b
) − σ1(

x − a0

b0
)
∥

∥

∥
<

ε

2
. (11)

From Equation (10), we have b0
2 < b < 3b0

2 . It follows from Equations (9) and (11) that

∥

∥

∥
g(

‖x − a‖Rd

b
) − g(

‖x − a0‖Rd

b0
)
∥

∥

∥
=

∥

∥

∥
σ(

x − a

b
) − σ(

x − a0

b0
)
∥

∥

∥

≤
∥

∥

∥
σ1(

x − a

b
) − σ1(

x − a0

b0
)
∥

∥

∥
+

∥

∥

∥
σ2(

x − a

b
)
∥

∥

∥
+

∥

∥

∥
σ2(

x − a0

b0
)
∥

∥

∥

<
ε

2
+

∥

∥

∥
σ2(

x

b
)
∥

∥

∥
+

∥

∥

∥
σ2(

x

b0
)
∥

∥

∥
=

ε

2
+ b

d
2 ‖σ1(x)‖ + b

d
2

0 ‖σ2(x)‖

<
ε

2
+

( (3b0)
d
2

2
d
2

+ b
d
2

0

)

‖σ2(x)‖ < ε, (12)

which completes the proof of case (i).

It is easy to see that the proof of case (ii) is similar to that of case (i), so we omit it here. 2
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Lemma 2.10 For RBF hidden units, given g : R+ → R, g 6= 0, and g(‖x‖Rd) ∈ L2(Rd) or

for TDI hidden units, given g(x) ∈ L2(Rd), and g 6= 0. Then for the above two types of hidden

units, we respectively have the conclusion: any given positive number θ̂ < π
2 and any given

g0 ∈ L2(Rd), for any randomly generated function sequence {gn}, there exists M ∈ N such that

for any continuous segment G(n, M) = {gn, gn+1, . . . , gn+M−1} (n = 1, 2, . . .), with probability as

close to one as desired, there exists gi ∈ G(n, M) satisfying θ(gi, g0) < θ̂, where θ(gi, g0) denotes the

angle formed by gi and g0 in L2(Rd), g0 = g(
‖x−a0‖Rd

b0
) for RBF hidden units, g0 = g(A0x+Θ0)

for TDI hidden units.

Proof We first prove the result for RBF hidden units.

From Lemma 2.9, we have for any given positive number θ̂ < π
2 , there exists δ > 0, such that

∥

∥

∥
g(

‖x − a‖Rd

b
) − g0

∥

∥

∥
< ‖g0‖ sin(θ̂) (13)

holds for any (a, b) ∈ Q0 = {(a, b) : ‖(a, b) − (a0, b0)‖ < δ}.

Assume that the continuous sampling distribution probability density function in Rd × R is

p(x), and
∫

Rd×R
p(x)dx = 1. Thus, the probability that some parameter (a, b) among the M

elements is sampled from Q0 is
∫

Q0
p(x)dx > 0 for any continuous segment G(n, M). This implies

that the probability that there exists gi ∈ G(n, M) such that

‖gi − g0‖ < ‖g0‖ sin(θ̂) (14)

is equal to or greater than
∑M−1

i=0 (1 −
∫

Q0
p(x)dx)i

∫

Q0
p(x)dx.

Now we can choose sufficient large M , such that
∑M−1

i=0 (1 −
∫

Q0
p(x)dx)i

∫

Q0
p(x)dx ap-

proaches to 1. Thus, for any continuous segment G(n, M) (n = 1, 2, . . .), at least there exists one

element gi ∈ G(n, M) whose parameters (ai, bi) belong to Q0.

By the Sine Rule and Equation (14), we have

sin(θ(gi, g0)) ≤
‖gi − g0‖

‖g0‖
< sin(θ̂). (15)

In other words, there exists M ∈ N, such that for any n, there exists gi ∈ G(n, M) such that

Equation (15) holds.

It is easy to see θ(gi, g0) < π
2 . Otherwise, θ(gi, g0) ≥

π
2 , then ‖gi−g0‖

‖g0‖
≥ 1, which is contradictory

to Equation (15).

Equation (15) and the fact θ(gi, g0) < π
2 imply θ(gi, g0) < θ̂. This completes the proof of the

result for RBF hidden units.

The conclusion for TDI hidden units can be similarly proved. 2

3. Main results and proof

Let en ≡ f − fn, where fn =
∑n

i=1 βigi(x) is the network function, f is a target function in

L2(Rd). We can have that

en = f − (fn−1 + βngn) = en−1 − βngn. (16)
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In the following, we will give our main result and prove it.

Theorem 3.1 For RBF hidden units, given g : R+ → R, g 6= 0, and g(‖x‖Rd) ∈ L2(Rd) or for

TDI hidden units, given g(x) ∈ L2(Rd), and g(x) 6= 0. Then for any f(x) ∈ L2(Rd) and any

randomly generated function sequence {gn}, if βn = 〈en−1, gn〉
‖gn‖2 , then limn→∞ ‖f − fn‖ = 0 holds

with probability one.

Proof First, we prove that ‖en‖ achieves its minimum if and only if βn = 〈en−1, gn〉
‖gn‖2 and {‖en‖}

converges.

By Lemma 2.3, we can see gn, en ∈ L2(Rd). From the hypotheses, we know ‖gn‖ 6= 0. Let

△n = ‖en−1‖
2 − ‖en‖

2, then we have

△n =〈en−1, en−1〉 − 〈en−1 − βngn, en−1 − βngn〉 = 2βn〈en−1, gn〉 − β2
n‖gn‖

2

=‖gn‖
2
[ 〈en−1, gn〉

2

‖gn‖4
− (βn −

〈en−1, gn〉

‖gn‖2
)2

]

. (17)

It follows from Equation (17) that △n achieves its maximum if and only if βn = 〈en−1, gn〉
‖gn‖2 . This

means ‖en‖ achieves its minimum if and only if βn = 〈en−1, gn〉
‖gn‖2 .

In fact, when βn = 〈en−1, gn〉
‖gn‖2 , we have

〈en, gn〉 = 〈en−1 − βngn, gn〉 = 〈en−1, gn〉 − βn〈gn, gn〉 = 0, (18)

which is consistent with the observation from the function space point of view that en⊥gn when

‖en‖ achieves its minimum.

We also notice that if βn = 〈en−1, gn〉
‖gn‖2 , then △n = maxβn

△n = 〈en−1, gn〉2

‖gn‖2 ≥ 0, which implies

{‖en‖} is decreasing. Since {‖en‖} is bounded below by zero, we have {‖en‖} converges.

Next, we will prove limn→∞ ‖en‖ = 0 by contradiction.

Since the sequence {‖en‖} converges, there exists r ≥ 0, such that limn→∞ ‖en‖ = r. Suppose

that r > 0. For any δ > 0, there exists a positive integer J , such that when n > J , r + δ >

‖en‖ ≥ r holds. This implies that an infinite number of en(∀n > J) is covered by a compact set.

Thus, there exists a subsequence {enk
} of {en} which converges to a limit e∗. Then, we have

‖e∗‖ = lim
k→∞

‖enk
‖ = r > 0. (19)

As we know, enk
∈ L2, L2 is complete, it follows from Lemma 2.3 that e∗ ∈ L2(Rd).

We then claim that there exists g(
‖x−a

∗‖
Rd

b∗
) (or g(A∗x+ θ∗)), such that g∗ is not orthogonal

to e∗ and the angle formed by g∗ and e∗, θ(g∗, e∗) is an acute angle. Otherwise, e∗ is orthogonal

to span{g(
‖x−a‖

Rd

b
)} (or span{g(Ax+ θ)}). By Lemma 2.5 (2.7), we have span{g(

‖x−a‖
Rd

b
)} (or

span{g(Ax + θ)}) is dense in L2(Rd). Hence, no other vector than zero in L2(Rd) is orthogonal

to span{g(
‖x−a‖

Rd

b
)} (or span{g(Ax + θ)}), which is contradictory to the fact that e∗ 6= 0. Our

claim follows.

Let θ(en, e∗) be the angle formed by en and e∗. We can choose η, such that 0 < η <

1 − sin(θ(g∗, e∗)). It follows from Equation (19) that there exists N1 > J , such that for k > N1,

‖enk
‖ <

r

1 − η
, θ(enk

, e∗) < arcsin
(1 − η − sin(θ(g∗, e∗))

2

)

. (20)
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According to Equation (16) and the fact that en⊥gn for all n ∈ N, we get en⊥(en−1−en). Then,

it follows that

‖βngn‖
2 = ‖en−1 − en‖

2 = ‖en−1‖
2 + ‖en‖

2 − 2〈en−1, en〉

= ‖en−1‖
2 + ‖en‖

2 − 2(〈en−1, en〉 − 〈en−1 − en, en〉) = ‖en−1‖
2 − ‖en‖

2. (21)

Hence we have

lim
n→∞

‖βngn‖
2 = lim

n→∞
(‖en−1‖

2 − ‖en‖
2) = 0. (22)

From Equation (22), it is easy to see that limn→∞

∑n+p
i=n+1 ‖βigi‖ = 0 for any given positive

integer p. By the triangle inequality, we have ‖enk+p−enk
‖ = ‖

∑nk+p

i=nk+1 βigi‖ ≤
∑nk+p

i=nk+1 ‖βigi‖.

Therefore

lim
k→∞

‖enk+p − enk
‖ = 0 (23)

for any given positive integer p. It can be further shown that

‖enk+p − e∗‖ ≤ ‖enk+p − enk
‖ + ‖enk

− e∗‖, (24)

then we have limk→∞ ‖enk+p − e∗‖ = 0, where enk+p need not be an element of {enk
}.

According to Equations (20) and (24), we know there exists N2 > N1, such that for k > N2,

‖enk+p‖ <
r

1 − η
, θ(enk+p, e∗) < arcsin

(1 − η − sin(θ(g∗, e∗))

2

)

, 0 ≤ p ≤ L(nk), (25)

where L(nk) is a function of k:

L(nk) = max
{

m : ‖enk+p‖ <
r

1 − η
and

θ(enk+p, e∗) < arcsin(
1 − η − sin(θ(g∗, e∗))

2
), 0 ≤ p ≤ m

}

. (26)

Since limk→∞

∑nk+p

i=nk+1 ‖βigi‖ = 0 for any given finite integer p, it should be observed that L(nk)

can be a very large integer number. Obviously, for any positive integer M , there exists k > N2,

such that L(nk) > M .

Let θ(gn, g∗) be the angle formed by gn and g∗. According to the assumption on {gn} and

Lemma 2.10, there exists a positive integer M , such that for any continuous segment, G(n, M) (n =

1, 2, . . .), there exists gn+p ∈ G(n, M) satisfying

θ(gn+p, g∗) < arcsin
(1 − η − sin(θ(g∗, e∗))

2

)

. (27)

As we know, there exists k > N2, such that L(nk) + 1 > M . Then, for continuous segment

G(nk+1, L(nk)+1) =
{

gnk+1, . . . , gnk+L(nk)+1

}

,

there exists p, 0 ≤ p ≤ L(nk), such that

θ(gnk+p+1, g∗) < arcsin
(1 − η − sin(θ(g∗, e∗))

2

)

. (28)

Let θ(enk+p, gnk+p+1) be the angle formed by enk+p and gnk+p+1. It is easy to see that

θ(enk+p, gnk+p+1) ≤ θ(enk+p, e∗) + θ(e∗, gnk+p+1) (29)
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and

θ(e∗, gnk+p+1) ≤ θ(g∗, e∗) + θ(g∗, gnk+p+1), (30)

where θ(e∗, gnk+p+1) is the angle formed by e∗ and gnk+p+1. Combining Equations (29) and (30),

we get

θ(enk+p, gnk+p+1) ≤ θ(g∗, e∗) + θ(enk+p, e∗) + θ(g∗, gnk+p+1). (31)

Taking advantages of Equations (25), (28) and (31), it follows that

sin(θ(enk+p, gnk+p+1)) ≤ sin(θ(e∗, g∗)) + sin(θ(enk+p, e∗)) + sin(θ(g∗, gnk+p+1)) < 1 − η. (32)

According to Equation (32) and the fact that ‖enk+p‖ < r
1−η

in Equation (25), we have

‖enk+p+1‖ = ‖enk+p‖ sin(θ(enk+p, gnk+p+1)) < r, (33)

which is contradictory to the fact that ‖en‖ ≥ r for all n ∈ N. Hence r = 0, i.e., limn→∞ ‖en‖ = 0.

This completes our proof. 2

Remark 3.2 Theorem 3.1 implies that when we use three-layered RBF and TDI neural networks

to approximate a function in L2(Rd), we do not need to care much about the network size. If

the error of the network is not satisfied, we just add random hidden node one by one to reduce

the error function until the error is small enough as desired. The weights of old hidden nodes are

randomly generated according to any continuous sampling distribution and fixed instead of being

tuned. The weight between random hidden node newly added and the output unit is calculated

directly: 〈en−1, gn〉
‖gn‖2 .

4. Conclusion

This paper mainly proves in theory that three-layered feedforward neural networks with

randomly generated RBF hidden units or TDI hidden units can approximate any target function

in L2(Rd). We follow a constructive approach to prove that given any non-zero activation

function g : R+ → R and g(‖x‖Rd) ∈ L2(Rd) for RBF hidden units, or any non-zero activation

function g(x) ∈ L2(Rd) for TDI hidden units, the incremental network output function fn with

randomly generated hidden units converges to any target function in L2(Rd) with probability 1

as the number of hidden units n grows incrementally to infinity, if one only properly adjusts the

weights between the hidden units and output unit. It is shown that one may simply randomly

choose parameters of the hidden newly added unit and then analytically calculate the weights

between the hidden unit and the output unit, the incremental neural network can approximate

any function in L2(Rd) to any accuracy. The result we obtained also presents an automatic and

efficient way to construct an incremental three-layered feedforward network for approximation.
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