A Note on the Nullity of Unicyclic Graphs

Wei ZHU, Ting Zeng WU, Sheng Biao HU*
Department of Mathematics, Qinghai Nationalities University, Qinghai 810007, P. R. China

Abstract

The number of zero eigenvalues in the spectrum of the graph G is called its nullity and is denoted by $\eta(G)$. In this paper, we determine the all extremal unicyclic graphs achieving the fifth upper bound $n-6$ and the sixth upperbound $n-7$.

Keywords eigenvalues; nullity; unicyclic graphs.
Document code A
MR(2000) Subject Classification 05C50
Chinese Library Classification O175.5

1. Introduction

Let $G=(V, E)$ be a simple undirected graph, having vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A(G)$ of a graph G is the $n \times n$ symmetric matrix $\left[a_{i j}\right]$, such that $a_{i j}=1$ if v_{i} and v_{j} are adjacent and 0 , otherwise. The eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of $A(G)$ are said to be the eigenvalues of the graph G, and to form the spectrum of this graph, denoted by $\operatorname{Spec}(G)$. The number of zero eigenvalues in the spectrum of the graph G is called its nullity and is denoted by $\eta(G)$.

For any $v \in V$, denote by $N(v)$ the neighborhood of v. The disjoint union of two graph G_{1} and G_{2} is denoted by $G_{1} \cup G_{2}$. As usual, the star, cycle and the complete graph of order n are denoted by S_{n}, C_{n}, and K_{n}, respectively. An isolated vertex is sometimes denoted by K_{1}. We shall use $K_{s, t}$ and $K_{r, s, t}$ to denote the complete bipartite and the complete tripartite graph, respectively.

A connected simple graph with n vertices is said to be acyclic if it has $n-1$ edges, unicyclic if it has n edges. Denote by $\mathscr{T}_{n}, \mathscr{U}_{n}$ the set of all n-vertex trees and unicyclic graphs, respectively. Let \mathscr{G}_{n} be the set of all n-vertex graphs. A subset N of $\{0,1,2, \ldots, n\}$ is said to be the nullity set \mathscr{G}_{n} of provided that for any $k \in N$, there exists at least one graph $G \in \mathscr{G}_{n}$ such that $\eta(G)=k$.

Collatz and Sinogowitz [3] first posed the problem of characterizing all graphs which satisfy $\eta(G)>0$. This question is of great interest in chemistry, because, as has been shown in [11], for a bipartite graph G (corresponding to an alternated hydrocorbon), if $\eta(G)>0$, the molecule is unstable. In addition, the nullity of a graph is related to the singularity of $A(G)$. However, the problem has not yet been solved completely. Some results on trees and bipartite graphs

[^0]are known $[2,9,10]$. Some nullity results on acyclic, unicyclic, bicyclic and tricyclic graphs are known [1, 2, 6-10, 12].

Cheng and Liu [2] characterized the extremal graphs attaining the upper bound $n-2$ and the second upper bound $n-3$. Li [8] characterized the extremal graphs with pendent vertices achieving the third upper bound $n-4$ and the forth upper bound $n-5$.

In this paper, as the continuance of them, we determine the all extremal unicyclic graphs achieving the fifth upper bound $n-6$ and the sixth upper bound $n-7$.

In Section 2, we list some known results needed in this paper. In Section 3, we improve Li's Theorems. In Section 4, we characterize the extremal unicyclic graphs achieving the fifth upper bound $n-6$ and the sixth upper bound $n-7$.

2. Some Lemmas

In this section, we will present some lemmas which are required in the proof of the main results.

Lemma 1 ([4]) Let v be a pendent vertex of a graph G and u be its neighbor. Then $\eta(G)=$ $\eta(G-\{u, v\})$, where $G-\{u, v\}$ is the induced subgraph of G obtains by deleting u and v.

Lemma $2([7])$ Let $G=G_{1} \cup G_{2} \cup \cdots \cup G_{t}$, then

$$
\eta(G)=\sum_{i=1}^{t} \eta\left(G_{i}\right)
$$

where $G_{1}, G_{2}, \ldots, G_{t}$ is connected components of G.
Lemma 3 ([7]) Let G be a graph on n vertices. Then $\eta(G)=n$ iff G is a null graph.
Lemma $4([12])$ If $n \equiv 0(\bmod 4)$, then $\eta\left(C_{n}\right)=2$; otherwise, $\eta\left(C_{n}\right)=0$.
Lemma 5 ([12]) The nullity set of $\mathscr{U}_{n}(n \geq 5)$ is $\{0,1, \ldots, n-4\}$.
Note that if $U \in \mathscr{U}_{n}$ and $|V(U)|=3$, then $U=C_{3}$. If $U \in \mathscr{U}_{n}$ and $|V(U)|=4$, then $U=C_{4}$ or $U=C^{\prime}$, where C^{\prime} is obtained by appending a cycle C_{3} to a vertex of a path P_{2}.

Lemma $6([5])$ Let $T \in \mathscr{T}_{n}$, then $\eta(T) \leq n-2$, the equality holds iff $T \cong S_{n}$.
Lemma $7([8])$ Let $T \in \mathscr{T}_{n}$, then $\eta(T)=n-4$, iff $T \cong T_{1}^{*}$ or $T \cong T_{2}^{*}$, where T_{1}^{*} and T_{2}^{*} are shown in Figure 1.

Figure $1 \quad \eta(T)=n-4$
Lemma 8 ([8]) The nullity set of \mathscr{T}_{n} is $\{0,2,4, \ldots, n-4, n-2\}$ if n is even, otherwise is
$\{1,3,5, \ldots, n-4, n-2\}$.
Lemma 9 ([12]) Let $U \in \mathscr{U}_{n}(n \geq 5)$. Then $\eta(U)=n-4$ iff $U \cong U_{1}^{*}$ or $U \cong U_{2}^{*}$ or $U \cong U_{3}^{*}$, where U_{1}^{*}, U_{2}^{*} and U_{3}^{*} are depicted in Figure 2.

Lemma $10([8])$ Let $U \in \mathscr{U}_{n}(n \geq 5)$. Then $\eta(U)=n-5$ iff $U \cong U_{4}^{*}$, where U_{4}^{*} are depicted in Figure 2.

Figure $2 \quad \eta(U)=n-4$ and $\eta(U)=n-5$

3. Improved results for Li's Theorems

Let G_{2}^{*} be an n-vertex graph obtained from a complete bipartite graph $K_{r, s}$ and a star $K_{1, t}$ by identifying a vertex of $K_{r, s}$ with the center of $K_{1, t}$, where $r, s, t \geq 1$ and $r+s+t=n$. Let $K_{1, l, m}$ be a complete tripartite graph with the maximal degree vertex v, where $l, m>0$. Then let G_{1} be an n-vertex graph created from $K_{1, l, m}$ and a star $K_{1, p}$ by identifying the vertex v with the center of $K_{1, p}$, where $l, m, p \geq 1$ and $l+m+p+1=n . G_{1}$ and G_{2}^{*} are depicted in Figure 3.

Let G_{4}^{*} be an n-vertex graph obtained from a complete tripartite graph $K_{r, s, t}$ and a star $K_{1, q}$ by identifying a vertex of $K_{r, s, t}$ with the center of $K_{1, q}$, where $r, s, t, q>0$ and $r+s+t+q=n$. Let $K_{1, l, m, p}$ be a tetrapartite graph with the maximal degree vertex v, where $l, m, p>0$. Then let G_{3} be an n-vertex graph created from $K_{1, l, m, p}$ and a star $K_{1, d}$ by identifying the vertex v and the center of $K_{1, d}$, where $l, m, p, d>0$ and $l+m+p+d+1=n . G_{3}$ and G_{4}^{*} are depicted in Figure 3.

Li [8] obtains Theorem A and Theorem B, they are described in the following:
Theorem A ([8]) Let G be a connected n-vertex graph with pendent vertices. Then $\eta(G)=n-4$ iff $G \cong G_{1}^{*}$ or $G \cong G_{2}^{*}$, where G_{1}^{*} is a connected spanning subgraph of G_{1} (see Figure 3) and contains $K_{l, m}$ as its subgraph, G_{2}^{*} is depicted in Figure 3.

Theorem B ([8]) Let G be a connected n-vertex graph with pendent vertices and G has no isolated vertex, Then $\eta(G)=n-5$ iff $G \cong G_{3}^{*}$ or $G \cong G_{4}^{*}$, where is G_{3}^{*} is a connected spanning subgraph of G_{3} (see Figure 3) and contains $K_{l, m, p}$ as its subgraph, G_{3}^{*} is depicted in Figure 3.

However, they can be briefly described Theorem A^{\prime} and Theorem B^{\prime} in the following. Because if the maximal degree vertex v is not adjacent to the second partita vertices in G_{1} (see Figure 3), then we can obtain G_{2}^{*}, where G_{2}^{*} is a connected spanning subgraph of G_{1} (see Figure 3) and contains $K_{l, m}$ as its subgraph. So is Theorem B.

Theorem \mathbf{A}^{\prime} Let G be a connected n-vertex graph with pendent vertices. Then $\eta(G)=n-4$
iff $G \cong G_{1}^{*}$, where G_{1}^{*} is a connected spanning subgraph of G_{1} (see Figure 3) and contains $K_{l, m}$ as its subgraph.

Theorem \mathbf{B}^{\prime} Let G be a connected n-vertex graph with pendent vertices and G has no isolated vertex. Then $\eta(G)=n-5$ iff $G \cong G_{3}^{*}$, where G_{3}^{*} is a connected spanning subgraph of G_{3} (see Figure 3) and contains as $K_{l, m, p}$ its subgraph.

G_{1}

Figure $3 \quad \eta(G)=n-4$ and $\eta(G)=n-5$

Meanwhile, Li [8] thinks that he obtains U_{3}^{\prime} and $T_{G_{11}}$ where U_{3}^{\prime} (see Figure 4) is a extremal unicyclic graph with $\eta\left(U_{3}^{\prime}\right)=n-4$ and $T_{G_{11}}$ (see Figure 4) is a extremal tricyclic graph with $\eta\left(T_{G_{11}}\right)=n-5$. Actually, he makes a mistake. We can directly calculate by Lemmas 1,2 , and 3 that $\eta\left(U_{3}^{\prime}\right)=n-6, \eta\left(U_{3}^{\prime \prime}\right)=n-4$ and $\eta\left(T_{G_{11}}^{\prime}\right)=n-5$. However, $T_{G_{11}}$ is a bicyclic graph. Thus, U_{3}^{\prime} and $T_{G_{11}}$ should be replaced by $U_{3}^{\prime \prime}$ and $T_{G_{11}}^{\prime}$, respectively.

Figure 4 Two graphs should be replaced

4. Main results

Theorem 1 Let $U \in \mathscr{U}_{n}(n \geq 6)$ be a unicyclic graph. Then $\eta(U)=n-6$ iff $U \cong C_{6}, U \cong C_{8}$ or $U \cong U_{i}(i=1,2, \ldots, 15)$, where U_{i} are shown in Figure 5 .

Figure $5 \quad \eta(U)=n-6$
Proof " \Longleftarrow ". If $U \cong C_{6}, U \cong C_{8}$ and $U \cong U_{i}^{*}(i=1,2, \ldots, 15)$, it is easy to check directly by Lemmas 1-4 that $\eta(U)=n-6$.
$" \Longrightarrow "$. Assume that $\eta(U)=n-6$. If there is no pendent vertex in U, by Lemma 4 , then $U \cong C_{6}$ or $U \cong C_{8}$. Otherwise, we can find a pendent vertex, say x, in U. Let $N(x)=y$. Delete x, y from U, let the resultant graph be $G_{1}=U-\{x, y\}=G_{11} \cup G_{12} \cup \cdots \cup G_{1 p}$, where $G_{11}, G_{12}, \ldots, G_{1 p}$ are connected components of G_{1}. Some of these components may be trivial, that is, K_{1}. But not all components are trivial, otherwise, adding x, y to G_{1} gives a star, a contradiction to Lemma 6.

Obviously, there is at most a connected unicyclic component of G_{1}. Meanwhile, other connected components are trees except for trivial component in G_{1}. Actually, there is a unique nontrivial connected unicyclic component or two nontrivial tree components except for trivial component in G_{1}. Thus, $G_{1}=U_{0} \cup T_{1} \cup T_{2} \cup \cdots \cup T_{p_{1}} \cup s K_{1}$ or $G_{1}=T_{1} \cup T_{2} \cup \cdots \cup T_{q_{1}} \cup s^{\prime} K_{1}$. We consider the following cases:

Case $1 \quad G_{1}=U_{0} \cup T_{1} \cup T_{2} \cup \cdots \cup T_{p_{1}} \cup s K_{1}$.
Subcase 1.1 If $\left|V\left(U_{0}\right)\right| \geq 5$, then by Lemmas $1-5$,

$$
\begin{aligned}
\eta(U) & =\eta\left(U_{0}\right)+\sum_{i=1}^{p_{1}} \eta\left(T_{i}\right)+s \eta\left(K_{1}\right) \leq\left(\left|V\left(U_{0}\right)\right|-4\right)+\left(\sum_{i=1}^{p_{1}}\left|V\left(T_{i}\right)\right|-2 p_{1}\right)+s \\
& =\left(\left|V\left(U_{0}\right)\right|+\sum_{i=1}^{p_{1}}\left|V\left(T_{i}\right)\right|+s\right)-4-2 p_{1}=n-6-2 p_{1}
\end{aligned}
$$

where s is the number of isolated vertices in G_{1} and the above equality holds iff U_{0} is unicyclic graph and all of $T_{1}, T_{2}, \ldots, T_{p_{1}}$ are stars. If $p_{1} \geq 1$, then $\eta(U) \leq n-6-2 p_{1} \leq n-8$, a
contradiction. So $G_{1}=U_{0} \cup s K_{1}\left(\left|V\left(U_{0}\right)\right| \geq 5\right)$.
Subcase 1.2 If $\left|V\left(U_{0}\right)\right|=4$, then $U_{0}=C_{4}$ or $U_{0}=C^{\prime}$.
(a) $U_{0}=C^{\prime}$. That is to say, $G_{1}=C^{\prime} \cup T_{1} \cup T_{2} \cup \cdots \cup T_{p_{1}} \cup t K_{1}$. Then

$$
\begin{aligned}
\eta(U) & =\eta\left(C^{\prime}\right)+\sum_{i=1}^{p_{1}} \eta\left(T_{i}\right)+t \eta\left(K_{1}\right) \leq\left(\left|V\left(C^{\prime}\right)\right|-4\right)+\left(\sum_{i=1}^{p_{1}}\left|V\left(T_{i}\right)\right|-2 p_{1}\right)+t \\
& =\left(\left|V\left(C^{\prime}\right)\right|+\sum_{i=1}^{p_{1}}\left|V\left(T_{i}\right)\right|+t\right)-4-2 p_{1}=n-6-2 p_{1}
\end{aligned}
$$

where t is the number of isolated vertices in G_{1}, and the above equality holds iff all of $T_{1}, T_{2}, \ldots, T_{p_{1}}$ are stars. If $p_{1} \geq 1$, then $\eta(U) \leq n-6-2 p_{1} \leq n-8$, a contradiction. So $G_{1}=C^{\prime} \cup t K_{1}$.
(b) $U_{0}=C_{4}$. That is to say, $G_{1}=C_{4} \cup T_{1} \cup T_{2} \cup \cdots \cup T_{p_{1}} \cup r K_{1}$. Then

$$
\begin{aligned}
\eta(U) & =\eta\left(C_{4}\right)+\sum_{i=1}^{p_{1}} \eta\left(T_{i}\right)+r \eta\left(K_{1}\right) \leq\left(\left|V\left(C_{4}\right)\right|-2\right)+\left(\sum_{i=1}^{p_{1}}\left|V\left(T_{i}\right)\right|-2 p_{1}\right)+r \\
& =\left(\left|V\left(C_{4}\right)\right|+\sum_{i=1}^{p_{1}}\left|V\left(T_{i}\right)\right|+r\right)-2-2 p_{1}=n-4-2 p_{1},
\end{aligned}
$$

where r is the number of isolated vertices in G_{1}, and the above equality holds iff all of $T_{1}, T_{2}, \ldots, T_{p_{1}}$ are stars. If $p_{1} \geq 2$, then $\eta(U) \leq n-6-2 p_{1} \leq n-8$, a contradiction. So $p_{1}=0$ or $p_{1}=1$, that is to say, $G_{1}=C_{4} \cup r K_{1}$ or $G_{1}=C_{4} \cup T_{1} \cup r^{\prime} K_{1}$.

Subcase 1.3 If $\left|V\left(U_{1}\right)\right|=3$, then $U=C_{3}$. That is to say, $G_{1}=C_{3} \cup T_{1} \cup T_{2} \cup \cdots \cup T_{p_{1}} \cup u K_{1}$. Then

$$
\begin{aligned}
\eta(U) & =\eta\left(C_{3}\right)+\sum_{i=1}^{p_{1}} \eta\left(T_{i}\right)+u \eta\left(K_{1}\right) \leq\left(\left|V\left(C_{3}\right)\right|-3\right)+\left(\sum_{i=1}^{p_{1}}\left|V\left(T_{i}\right)\right|-2 p_{1}\right)+u \\
& =\left(\left|V\left(C_{4}\right)\right|+\sum_{i=1}^{p_{1}}\left|V\left(T_{i}\right)\right|+u\right)-3-2 p_{1}=n-5-2 p_{1}
\end{aligned}
$$

where u is the number of isolated vertices in G_{1}, and the above equality holds iff all of $T_{1}, T_{2}, \ldots, T_{p_{1}}$ are stars. If $p_{1} \geq 1$, then $\eta(U) \leq n-5-2 p_{1} \leq n-7$, a contradiction. So $G_{1}=C_{3} \cup u K_{1}$.

Case $2 G_{1}=T_{1} \cup T_{2} \cup \cdots \cup T_{q_{1}} \cup s^{\prime} K_{1}$. Then by Lemmas $1-3,5$ and 6 ,

$$
\eta(U)=\sum_{i=1}^{q_{1}} \eta\left(T_{i}\right)+s^{\prime} \eta\left(K_{1}\right) \leq\left(\sum_{i=1}^{q_{1}}\left|V\left(T_{i}\right)\right|-2 q_{1}\right)+s^{\prime}=n-2-2 q_{1}
$$

where s^{\prime} is the number of isolated vertices in G_{1} and the above equality holds iff all of $T_{1}, T_{2}, \ldots, T_{q_{1}}$ are stars. If $q_{1} \geq 3$, then $\eta(U) \leq n-6-2 p_{1} \leq n-8$, a contradiction. So $q_{1}=1$ or $q_{2}=2$, that is to say, $G_{1}=T_{1} \cup s^{\prime} K_{1}$ or $G_{1}=T_{1} \cup T_{2} \cup s^{\prime \prime} K_{1}$.

Combining above discussion, we obtain $G_{1}=U_{0} \cup s K_{1}\left(\left|V\left(U_{0}\right)\right| \geq 5\right)$ or $G_{1}=T_{1} \cup s^{\prime} K_{1}$ or $G_{1}=T_{1} \cup T_{2} \cup s^{\prime \prime} K_{1}$ or $G_{1}=C^{\prime} \cup t K_{1}$ or $G_{1}=C_{4} \cup r K_{1}$ or $G_{1}=C_{4} \cup T_{1} \cup r^{\prime} K_{1}$ or $G=C_{3} \cup u K_{1}$. Now, we consider the following cases for G_{1} :

Case i If $G_{1}=U_{0} \cup s K_{1}\left(\left|V\left(U_{0}\right)\right| \geq 5\right)$, then

$$
\eta(U)=\eta\left(U_{0}\right)+s \eta\left(K_{1}\right) \leq\left(\left|V\left(U_{0}\right)\right|-4\right)+s=n-6
$$

the above equality holds iff U_{0} is unicyclic graph and $\eta\left(U_{0}\right)=n_{1}-4$, where U_{0} has n_{1} vertices, by Lemma 9 , that is, $U_{0} \cong U_{1}^{*}$ or $U_{0} \cong U_{2}^{*}$ or $U_{0} \cong U_{3}^{*}$.

Case ii If $G_{1}=T_{1} \cup s^{\prime} K_{1}$, then

$$
\eta(U)=\eta\left(T_{1}\right)+s^{\prime} \eta\left(K_{1}\right) \leq\left(\left|V\left(T_{1}\right)\right|-4\right)+s^{\prime}=n-6
$$

the above equality holds iff T_{1} is tree and $\eta\left(T_{1}\right)=n_{1}-4$, where T_{1} has n_{1} vertices, by Lemma 7 , that is, $T_{1} \cong T_{1}^{*}$ or $T_{1} \cong T_{2}^{*}$.

Case iii If $G_{1}=T_{1} \cup T_{2} \cup s^{\prime \prime} K_{1}$, then

$$
\eta(U)=\eta\left(T_{1}\right)+\eta\left(T_{2}\right)+s^{\prime \prime} \eta\left(K_{1}\right) \leq\left(\left|V\left(T_{1}\right)\right|-2\right)+\left(\left|V\left(T_{2}\right)\right|-2\right)+s^{\prime \prime}=n-6
$$

the above equality holds iff both T_{1} and T_{2} are stars, by Lemma 6 , that is, $T_{1} \cong S_{n_{1}}$ or $T_{1} \cong S_{n_{2}}$.
Case iv If $G_{1}=C^{\prime} \cup t K_{1}$, then

$$
\eta(U)=\eta\left(C^{\prime}\right)+t \eta\left(K_{1}\right)=\left(\left|V\left(T_{1}\right)\right|-4\right)+t=n-6 .
$$

Case v If $G_{1}=C_{4} \cup r K_{1}$, then

$$
\eta(U)=\eta\left(C_{4}\right)+r \eta\left(K_{1}\right)=\left(\left|V\left(C_{4}\right)\right|-2\right)+r=n-4
$$

this is a contradiction to $\eta(U)=n-6$.
Case vi If $G_{1}=C_{4} \cup T_{1} \cup r^{\prime} K_{1}$, then

$$
\eta(U)=\eta\left(C_{4}\right)+T_{1}+r^{\prime} \eta\left(K_{1}\right) \leq\left(\left|V\left(C_{4}\right)\right|-2\right)+\left(\left|V\left(T_{1}\right)\right|-2\right)+r^{\prime}=n-6
$$

the above equality holds iff T_{1} is star, by Lemma 6 , that is, $T_{1} \cong S_{n_{1}}$.
Case vii If $G_{1}=C_{3} \cup u K_{1}$, then

$$
\eta(U)=\eta\left(C_{3}\right)+u \eta\left(K_{1}\right) \leq\left(\left|V\left(C_{3}\right)\right|-3\right)+u=n-5
$$

this is a contradiction to $\eta(U)=n-6$.
In order to recover U, to add x, y to G_{1}, we need to insert edges from y to each of $n-n_{1}-2$ isolated vertices of G_{1} and the vertex x, where $n_{1}=s$ or $n_{1}=s^{\prime}$ or $n_{1}=s^{\prime \prime}$. This gives a star $S_{n_{2}}$, where $n_{2}=n-n_{1}$. If $G_{1}=U_{1}^{*} \cup n_{1} K_{1}$ or $G_{1}=U_{2}^{*} \cup n_{1} K_{1}$ or $G_{1}=U_{3}^{*} \cup n_{1} K_{1}$, where U_{1}^{*}, U_{2}^{*} and U_{3}^{*} are depicted in Figure 2, then the resultant graphs are isomorphic to $U_{1}-U_{3}, U_{6}-U_{10}$, $U_{12}-U_{14}$, where $U_{i}(i=1-3,6-10,12-14)$ are depicted in Figure 5 . If $T_{1} \cong T_{1}^{*}$ or $T_{1} \cong T_{2}^{*}$, where T_{1}^{*} and T_{2}^{*} are depicted in Figure 1, then the resultant graphs are isomorphic to $U_{4}-U_{8}, U_{11}-U_{15}$, where $U_{i}(i=4-8,11-15)$ are depicted in Figure 5 . If $T_{1} \cong S_{n_{1}^{\prime}}$ or $T_{1} \cong S_{n_{2}^{\prime}}$, where both $S_{n_{1}^{\prime}}$ and $S_{n_{2}^{\prime}}$ are the stars with order n_{1}^{\prime} and n_{2}^{\prime}, respectively, then the resultant graphs are isomorphic to $U_{7}, U_{8}, U_{12}, U_{13}$, where $U_{i}(i=7,8,12,13)$ are depicted in Figure 5. If $G_{1}=C^{\prime} \cup t K_{1}$, then the resultant graphs are isomorphic to U_{11}^{\prime} or U_{12}^{\prime}, where U_{11}^{\prime} and U_{12}^{\prime} are subgraph of U_{11} and U_{12},
respectively. If $G_{1}=C_{4} \cup S_{n_{1}^{\prime \prime}} \cup r^{\prime} K_{1}$, where $S_{n_{1}^{\prime \prime}}$ is the star with order $n_{1}^{\prime \prime}$, then the resultant graphs are isomorphic to U_{1} or U_{3}, where both U_{1} and U_{3} are depicted in Figure 5 .

This completes the proof of Theorem 1.

Theorem 2 Let $U \in \mathscr{U}_{n}(n \geq 7)$ be a unicyclic graph. Then $\eta(U)=n-7$ iff $U \cong C_{7}$ or $U \cong U_{i}(i=16,17,18,19,20)$, where U_{i} are shown in Figure 6 .

Figure $6 \quad \eta(U)=n-7$
Proof This Theorem is similar to the pervious Theorem by Lemmas 1-5, 8 and 10. Thus, the resultant graphs are isomorphic to C_{7} or $U_{16}-U_{20}$, where $U_{i}(i=16-20)$ are depicted in Figure 6.

References

[1] ASHRAF F, BAMDAD H. A note on graphs with zero nullity [J]. MATCH Commun. Math. Comput. Chem., 2008, 60(1): 15-19.
[2] CHENG Bo, LIU Bolian. On the nullity of graphs [J]. Electron. J. Linear Algebra, 2007, 16: 60-67.
[3] COLLATZ L, SINGOWITZ U. Spektren endlicher Grafen [J]. Abh. Math. Sem. Univ. Hamburg, 1957, 21: 63-77. (in German)
[4] CVETKOVIĆ D M, DOOB M, SACHS H. Spectra of Graphs-Theory and Application [M]. Academic Press, New York, 1980.
[5] ELLINGHAM M N. Basic subgraphs and graph spectra [J]. Australas. J. Combin., 1993, 8: 247-265.
[6] FIORINI S, GUTMAN I, SCIRIHA I. Trees with maximum nullity [J]. Linear Algebra Appl., 2005, 397: 245-251.
[7] HU Shengbiao, TAN Xuezhong, LIU Bolian. On the nullity of bicyclic graphs [J]. Linear Algebra Appl., 2008, 429(7): 1387-1391.
[8] LI Shuchao. On the nullity of graphs with pendent vertices [J]. Linear Algebra Appl., 2008, 429(7): 16191628.
[9] LI Wei, CHANG An. On the trees with maximum nullity [J]. MATCH Commun. Math. Comput. Chem., 2006, 56(3): 501-508.
[10] LI Shuchao, LI Xuechao, ZHU Zhongxun. On tricyclic graphs with minimal energy [J]. MATCH Commun. Math. Comput. Chem., 2008, 59(2): 397-419.
[11] LONGUET-HIGGINS H C. Resonance structures and MO in unsaturated hydrocarbons [J]. J. Chem. Phys., 1950, 18: 265-273.
[12] TAN Xuezhong, LIU Bolian. On the nullity of unicyclic graphs [J]. Linear Algebra Appl., 2005, 408: 212-220.

[^0]: Received December 15, 2008; Accepted September 18, 2009
 Supported by the National Natural Science Foundation of China (Grant No. 10861009).

 * Corresponding author

 E-mail: shengbiaohu@yahoo.com.cn (S. B. HU)

