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1. Introduction

Let G = (V, E) be a simple undirected graph, having vertex set V (G) = {v1, v2, . . . , vn}. The

adjacency matrix A(G) of a graph G is the n× n symmetric matrix [aij ], such that aij = 1 if vi

and vj are adjacent and 0, otherwise. The eigenvalues λ1, λ2, . . . , λn of A(G) are said to be the

eigenvalues of the graph G, and to form the spectrum of this graph, denoted by Spec(G). The

number of zero eigenvalues in the spectrum of the graph G is called its nullity and is denoted by

η(G).

For any v ∈ V , denote by N(v) the neighborhood of v. The disjoint union of two graph G1

and G2 is denoted by G1 ∪ G2. As usual, the star, cycle and the complete graph of order n

are denoted by Sn, Cn, and Kn, respectively. An isolated vertex is sometimes denoted by K1.

We shall use Ks,t and Kr,s,t to denote the complete bipartite and the complete tripartite graph,

respectively.

A connected simple graph with n vertices is said to be acyclic if it has n−1 edges, unicyclic if

it has n edges. Denote by Tn, Un the set of all n-vertex trees and unicyclic graphs, respectively.

Let Gn be the set of all n-vertex graphs. A subset N of {0, 1, 2, . . . , n} is said to be the nullity set

Gn of provided that for any k ∈ N , there exists at least one graph G ∈ Gn such that η(G) = k.

Collatz and Sinogowitz [3] first posed the problem of characterizing all graphs which satisfy

η(G) > 0. This question is of great interest in chemistry, because, as has been shown in [11],

for a bipartite graph G (corresponding to an alternated hydrocorbon), if η(G) > 0, the molecule

is unstable. In addition, the nullity of a graph is related to the singularity of A(G). However,

the problem has not yet been solved completely. Some results on trees and bipartite graphs
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are known [2, 9, 10]. Some nullity results on acyclic, unicyclic, bicyclic and tricyclic graphs are

known [1, 2, 6–10, 12].

Cheng and Liu [2] characterized the extremal graphs attaining the upper bound n − 2 and

the second upper bound n − 3. Li [8] characterized the extremal graphs with pendent vertices

achieving the third upper bound n − 4 and the forth upper bound n − 5.

In this paper, as the continuance of them, we determine the all extremal unicyclic graphs

achieving the fifth upper bound n − 6 and the sixth upper bound n − 7.

In Section 2, we list some known results needed in this paper. In Section 3, we improve Li’s

Theorems. In Section 4, we characterize the extremal unicyclic graphs achieving the fifth upper

bound n − 6 and the sixth upper bound n − 7.

2. Some Lemmas

In this section, we will present some lemmas which are required in the proof of the main

results.

Lemma 1 ([4]) Let v be a pendent vertex of a graph G and u be its neighbor. Then η(G) =

η(G − {u, v}), where G − {u, v} is the induced subgraph of G obtains by deleting u and v.

Lemma 2 ([7]) Let G = G1 ∪ G2 ∪ · · · ∪ Gt, then

η(G) =

t∑

i=1

η(Gi),

where G1, G2, . . . , Gt is connected components of G.

Lemma 3 ([7]) Let G be a graph on n vertices. Then η(G) = n iff G is a null graph.

Lemma 4 ([12]) If n ≡ 0 (mod 4), then η(Cn) = 2; otherwise, η(Cn) = 0.

Lemma 5 ([12]) The nullity set of Un (n ≥ 5) is {0, 1, . . . , n − 4}.

Note that if U ∈ Un and |V (U)| = 3, then U = C3. If U ∈ Un and |V (U)| = 4, then U = C4

or U = C′, where C′ is obtained by appending a cycle C3 to a vertex of a path P2.

Lemma 6 ([5]) Let T ∈ Tn, then η(T ) ≤ n − 2, the equality holds iff T ∼= Sn.

Lemma 7 ([8]) Let T ∈ Tn, then η(T ) = n − 4, iff T ∼= T ∗

1 or T ∼= T ∗

2 , where T ∗

1 and T ∗

2 are

shown in Figure 1.
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Lemma 8 ([8]) The nullity set of Tn is {0, 2, 4, . . . , n − 4, n − 2} if n is even, otherwise is
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{1, 3, 5, . . . , n − 4, n− 2}.

Lemma 9 ([12]) Let U ∈ Un (n ≥ 5). Then η(U) = n − 4 iff U ∼= U∗

1
or U ∼= U∗

2
or U ∼= U∗

3
,

where U∗

1 , U∗

2 and U∗

3 are depicted in Figure 2.

Lemma 10 ([8]) Let U ∈ Un (n ≥ 5). Then η(U) = n − 5 iff U ∼= U∗

4 , where U∗

4 are depicted

in Figure 2.
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Figure 2 η(U) = n − 4 and η(U) = n − 5

�
�

�
�

A
A

��
HH ����

Z
Z r

r

p

p

p

r

r

r

r

r

r

r

p

p

p

r

U∗

2

XX
�

��
�

XX
�

��
� ��

Z
Z@
@

r

r

r

r r

r

r

p

p

p

r

U∗

3

����
Z

Z

r

r

p

p

p

r

r

r r r

U∗

4



�
JJ

@
@

3. Improved results for Li’s Theorems

Let G∗

2
be an n-vertex graph obtained from a complete bipartite graph Kr,s and a star K1,t

by identifying a vertex of Kr,s with the center of K1,t, where r, s, t ≥ 1 and r + s + t = n. Let

K1,l,m be a complete tripartite graph with the maximal degree vertex v, where l, m > 0. Then

let G1 be an n-vertex graph created from K1,l,m and a star K1,p by identifying the vertex v with

the center of K1,p, where l, m, p ≥ 1 and l + m + p + 1 = n. G1 and G∗

2
are depicted in Figure 3.

Let G∗

4 be an n-vertex graph obtained from a complete tripartite graph Kr,s,t and a star K1,q

by identifying a vertex of Kr,s,t with the center of K1,q, where r, s, t, q > 0 and r + s + t + q = n.

Let K1,l,m,p be a tetrapartite graph with the maximal degree vertex v, where l, m, p > 0. Then

let G3 be an n-vertex graph created from K1,l,m,p and a star K1,d by identifying the vertex v

and the center of K1,d, where l, m, p, d > 0 and l + m + p + d + 1 = n. G3 and G∗

4 are depicted

in Figure 3.

Li [8] obtains Theorem A and Theorem B, they are described in the following:

Theorem A ([8]) Let G be a connected n-vertex graph with pendent vertices. Then η(G) = n−4

iff G ∼= G∗

1
or G ∼= G∗

2
, where G∗

1
is a connected spanning subgraph of G1 (see Figure 3) and

contains Kl,m as its subgraph, G∗

2 is depicted in Figure 3.

Theorem B ([8]) Let G be a connected n-vertex graph with pendent vertices and G has no

isolated vertex, Then η(G) = n − 5 iff G ∼= G∗

3
or G ∼= G∗

4
, where is G∗

3
is a connected spanning

subgraph of G3 (see Figure 3) and contains Kl,m,p as its subgraph, G∗

3 is depicted in Figure 3.

However, they can be briefly described Theorem A′ and Theorem B′ in the following. Because

if the maximal degree vertex v is not adjacent to the second partita vertices in G1 (see Figure

3), then we can obtain G∗

2
, where G∗

2
is a connected spanning subgraph of G1 (see Figure 3) and

contains Kl,m as its subgraph. So is Theorem B.

Theorem A′ Let G be a connected n-vertex graph with pendent vertices. Then η(G) = n − 4
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iff G ∼= G∗

1
, where G∗

1
is a connected spanning subgraph of G1 (see Figure 3) and contains Kl,m

as its subgraph.

Theorem B′ Let G be a connected n-vertex graph with pendent vertices and G has no isolated

vertex. Then η(G) = n − 5 iff G ∼= G∗

3
, where G∗

3
is a connected spanning subgraph of G3 (see

Figure 3) and contains as Kl,m,p its subgraph.
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Figure 3 η(G) = n − 4 and η(G) = n − 5
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Meanwhile, Li [8] thinks that he obtains U ′

3
and TG11

where U ′

3
(see Figure 4) is a extremal

unicyclic graph with η(U ′

3) = n − 4 and TG11
(see Figure 4) is a extremal tricyclic graph with

η(TG11
) = n − 5. Actually, he makes a mistake. We can directly calculate by Lemmas 1, 2, and

3 that η(U ′

3) = n − 6, η(U ′′

3 ) = n − 4 and η(T ′

G11
) = n − 5. However, TG11

is a bicyclic graph.

Thus, U ′

3
and TG11

should be replaced by U ′′

3
and T ′

G11
, respectively.
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Figure 4 Two graphs should be replaced
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4. Main results

Theorem 1 Let U ∈ Un (n ≥ 6) be a unicyclic graph. Then η(U) = n − 6 iff U ∼= C6, U ∼= C8

or U ∼= Ui (i = 1, 2, . . . , 15), where Ui are shown in Figure 5.
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Proof “⇐=”. If U ∼= C6, U ∼= C8 and U ∼= U∗

i (i = 1, 2, . . . , 15), it is easy to check directly by

Lemmas 1-4 that η(U) = n − 6.

“=⇒”. Assume that η(U) = n − 6. If there is no pendent vertex in U , by Lemma 4, then

U ∼= C6 or U ∼= C8. Otherwise, we can find a pendent vertex, say x, in U . Let N(x) = y.

Delete x, y from U , let the resultant graph be G1 = U − {x, y} = G11 ∪ G12 ∪ · · · ∪ G1p, where

G11, G12, . . . , G1p are connected components of G1. Some of these components may be trivial,

that is, K1. But not all components are trivial, otherwise, adding x, y to G1 gives a star, a

contradiction to Lemma 6.

Obviously, there is at most a connected unicyclic component of G1. Meanwhile, other con-

nected components are trees except for trivial component in G1. Actually, there is a unique

nontrivial connected unicyclic component or two nontrivial tree components except for trivial

component in G1. Thus, G1 = U0 ∪ T1 ∪ T2 ∪ · · · ∪ Tp1
∪ sK1 or G1 = T1 ∪ T2 ∪ · · · ∪ Tq1

∪ s′K1.

We consider the following cases:

Case 1 G1 = U0 ∪ T1 ∪ T2 ∪ · · · ∪ Tp1
∪ sK1.

Subcase 1.1 If |V (U0)| ≥ 5, then by Lemmas 1–5,

η(U) = η(U0) +

p1∑

i=1

η(Ti) + sη(K1) ≤ (|V (U0)| − 4) + (

p1∑

i=1

|V (Ti)| − 2p1) + s

= (|V (U0)| +

p1∑

i=1

|V (Ti)| + s) − 4 − 2p1 = n − 6 − 2p1

where s is the number of isolated vertices in G1 and the above equality holds iff U0 is unicyclic

graph and all of T1, T2, . . . , Tp1
are stars. If p1 ≥ 1, then η(U) ≤ n − 6 − 2p1 ≤ n − 8, a
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contradiction. So G1 = U0 ∪ sK1 (|V (U0)| ≥ 5).

Subcase 1.2 If |V (U0)| = 4, then U0 = C4 or U0 = C′.

(a) U0 = C′. That is to say, G1 = C′ ∪ T1 ∪ T2 ∪ · · · ∪ Tp1
∪ tK1. Then

η(U) = η(C′) +

p1∑

i=1

η(Ti) + tη(K1) ≤ (|V (C′)| − 4) + (

p1∑

i=1

|V (Ti)| − 2p1) + t

= (|V (C′)| +

p1∑

i=1

|V (Ti)| + t) − 4 − 2p1 = n − 6 − 2p1

where t is the number of isolated vertices in G1, and the above equality holds iff all of T1, T2, . . . , Tp1

are stars. If p1 ≥ 1, then η(U) ≤ n − 6 − 2p1 ≤ n − 8, a contradiction. So G1 = C′ ∪ tK1.

(b) U0 = C4. That is to say, G1 = C4 ∪ T1 ∪ T2 ∪ · · · ∪ Tp1
∪ rK1. Then

η(U) = η(C4) +

p1∑

i=1

η(Ti) + rη(K1) ≤ (|V (C4)| − 2) + (

p1∑

i=1

|V (Ti)| − 2p1) + r

= (|V (C4)| +

p1∑

i=1

|V (Ti)| + r) − 2 − 2p1 = n − 4 − 2p1,

where r is the number of isolated vertices in G1, and the above equality holds iff all of T1, T2, . . . , Tp1

are stars. If p1 ≥ 2, then η(U) ≤ n− 6− 2p1 ≤ n− 8, a contradiction. So p1 = 0 or p1 = 1, that

is to say, G1 = C4 ∪ rK1 or G1 = C4 ∪ T1 ∪ r′K1.

Subcase 1.3 If |V (U1)| = 3, then U = C3. That is to say, G1 = C3 ∪ T1 ∪ T2 ∪ · · · ∪ Tp1
∪ uK1.

Then

η(U) = η(C3) +

p1∑

i=1

η(Ti) + uη(K1) ≤ (|V (C3)| − 3) + (

p1∑

i=1

|V (Ti)| − 2p1) + u

= (|V (C4)| +

p1∑

i=1

|V (Ti)| + u) − 3 − 2p1 = n − 5 − 2p1

where u is the number of isolated vertices in G1, and the above equality holds iff all of T1, T2, . . . , Tp1

are stars. If p1 ≥ 1, then η(U) ≤ n − 5 − 2p1 ≤ n − 7, a contradiction. So G1 = C3 ∪ uK1.

Case 2 G1 = T1 ∪ T2 ∪ · · · ∪ Tq1
∪ s′K1. Then by Lemmas 1–3, 5 and 6,

η(U) =

q1∑

i=1

η(Ti) + s′η(K1) ≤ (

q1∑

i=1

|V (Ti)| − 2q1) + s′ = n − 2 − 2q1,

where s′ is the number of isolated vertices in G1 and the above equality holds iff all of T1, T2, . . . , Tq1

are stars. If q1 ≥ 3, then η(U) ≤ n − 6 − 2p1 ≤ n− 8, a contradiction. So q1 = 1 or q2 = 2, that

is to say, G1 = T1 ∪ s′K1 or G1 = T1 ∪ T2 ∪ s′′K1.

Combining above discussion, we obtain G1 = U0 ∪ sK1 (|V (U0)| ≥ 5) or G1 = T1 ∪ s′K1 or

G1 = T1∪T2∪s′′K1 or G1 = C′∪tK1 or G1 = C4∪rK1 or G1 = C4∪T1∪r′K1 or G = C3∪uK1.

Now, we consider the following cases for G1:
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Case i If G1 = U0 ∪ sK1 (|V (U0)| ≥ 5), then

η(U) = η(U0) + sη(K1) ≤ (|V (U0)| − 4) + s = n − 6

the above equality holds iff U0 is unicyclic graph and η(U0) = n1 − 4, where U0 has n1 vertices,

by Lemma 9, that is, U0
∼= U∗

1 or U0
∼= U∗

2 or U0
∼= U∗

3 .

Case ii If G1 = T1 ∪ s′K1, then

η(U) = η(T1) + s′η(K1) ≤ (|V (T1)| − 4) + s′ = n − 6

the above equality holds iff T1 is tree and η(T1) = n1 − 4, where T1 has n1 vertices, by Lemma

7, that is, T1
∼= T ∗

1
or T1

∼= T ∗

2
.

Case iii If G1 = T1 ∪ T2 ∪ s′′K1, then

η(U) = η(T1) + η(T2) + s′′η(K1) ≤ (|V (T1)| − 2) + (|V (T2)| − 2) + s′′ = n − 6

the above equality holds iff both T1 and T2 are stars, by Lemma 6, that is, T1
∼= Sn1

or T1
∼= Sn2

.

Case iv If G1 = C′ ∪ tK1, then

η(U) = η(C′) + tη(K1) = (|V (T1)| − 4) + t = n − 6.

Case v If G1 = C4 ∪ rK1, then

η(U) = η(C4) + rη(K1) = (|V (C4)| − 2) + r = n − 4

this is a contradiction to η(U) = n − 6.

Case vi If G1 = C4 ∪ T1 ∪ r′K1, then

η(U) = η(C4) + T1 + r′η(K1) ≤ (|V (C4)| − 2) + (|V (T1)| − 2) + r′ = n − 6

the above equality holds iff T1 is star, by Lemma 6, that is, T1
∼= Sn1

.

Case vii If G1 = C3 ∪ uK1, then

η(U) = η(C3) + uη(K1) ≤ (|V (C3)| − 3) + u = n − 5

this is a contradiction to η(U) = n − 6.

In order to recover U , to add x, y to G1, we need to insert edges from y to each of n−n1 − 2

isolated vertices of G1 and the vertex x, where n1 = s or n1 = s′ or n1 = s′′. This gives a star

Sn2
, where n2 = n− n1. If G1 = U∗

1
∪ n1K1 or G1 = U∗

2
∪ n1K1 or G1 = U∗

3
∪ n1K1, where U∗

1
,

U∗

2 and U∗

3 are depicted in Figure 2, then the resultant graphs are isomorphic to U1-U3, U6-U10,

U12-U14, where Ui (i = 1-3, 6-10, 12-14) are depicted in Figure 5. If T1
∼= T ∗

1
or T1

∼= T ∗

2
, where

T ∗

1 and T ∗

2 are depicted in Figure 1, then the resultant graphs are isomorphic to U4-U8, U11-U15,

where Ui (i = 4-8, 11-15) are depicted in Figure 5. If T1
∼= Sn′

1
or T1

∼= Sn′

2
, where both Sn′

1
and

Sn′

2
are the stars with order n′

1 and n′

2, respectively, then the resultant graphs are isomorphic to

U7, U8, U12, U13, where Ui (i = 7, 8, 12, 13) are depicted in Figure 5. If G1 = C′ ∪ tK1, then the

resultant graphs are isomorphic to U ′

11 or U ′

12, where U ′

11 and U ′

12 are subgraph of U11 and U12,
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respectively. If G1 = C4 ∪ Sn′′

1
∪ r′K1, where Sn′′

1
is the star with order n′′

1
, then the resultant

graphs are isomorphic to U1 or U3, where both U1 and U3 are depicted in Figure 5.

This completes the proof of Theorem 1. 2

Theorem 2 Let U ∈ Un (n ≥ 7) be a unicyclic graph. Then η(U) = n − 7 iff U ∼= C7 or

U ∼= Ui (i = 16, 17, 18, 19, 20), where Ui are shown in Figure 6.
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Figure 6 η(U) = n − 7
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Proof This Theorem is similar to the pervious Theorem by Lemmas 1–5, 8 and 10. Thus, the

resultant graphs are isomorphic to C7 or U16-U20, where Ui (i = 16-20) are depicted in Figure

6. 2
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