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Abstract In this paper, we consider Newton’s method for a class of entire functions with infinite
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1. Introduction

Newton’s method is a classical way to approximate roots of differentiable functions by an

iterative procedure. We can investigate the procedure in view of complex dynamical systems.

(See [1] for general references on this subject.)

Newton’s method for a complex polynomial P (z) is the iteration of a rational function NP =

z− P (z)
P ′(z) on the Riemann sphere. Such dynamical systems have been extensively studied in recent

years. Przytycki [2] has shown that all immediate basins (Definition 3.1) are simply connected

and unbounded. Shishikura [3] has shown more generally that if a rational map has a multiply

connected Fatou component, then it must have two weakly repelling fixed points. Tan [4] gave

a complete classification of the Newton maps of cubic polynomials.

If f(z) is a transcendental entire function, then the associated Newton map Nf will generally

be transcendental meromorphic, except in the special case f(z) = p(z)eq(z) with polynomials

p(z) and q(z) which was studied by Haruta [5]. Bergweiler [6] proved a no-wandering-domains

theorem for transcendental Newton maps that satisfy several finiteness assumptions. Mayer

and Schleicher [7] have shown that immediate basins for the Newton maps of entire functions

are simply connected and unbounded, extending a result of Przytycki [2] in the polynomial

case. They have also shown that the Newton maps of transcendental functions may exhibit a

type of Fatou component that does not appear for the Newton maps of polynomials, so called

virtual immediate basins (Definition 3.2) in which the dynamics converges to infinity. The thesis
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[8] investigated the Newton map of the transcendental function f(z) = zeez

and proved that

it exhibits virtual immediate basins. While immediate basins (Definition 3.1) of roots are by

definition related to zeroes of f , a virtual immediate basin often contains an asymptotic path of

an asymptotic value at 0 for f (see [9]).

In this paper, we investigate the Newton maps Nf (z) for a class of entire functions f(z) =

(ez − 1)ee−zP (ez), where P (z) is a real coefficient polynomial with deg(P ) ≥ 2 and P (0) 6= 0. In

the Fatou set F (Nf ) of Nf(z), we find that there are some series of simply connected invariant

Baker domains, which are virtual immediate basin; and that there are a series of supper-attracting

immediate basins. We also show each supper-attracting immediate basin has finite area while

each is unbounded. Moreover, in case of deg(P ) = 1 and P (0) = 0, we find the immediate basin

may have infinite area (see Remark 1).

Throughout this paper, ln z denotes the principal branch of the logarithm function log z =

ln |z| + arg z + 2kπi, k ∈ Z.

2. Dynamics of functions meromorphic outside a small set

To investigate the dynamics of the meromorphic function Nf(z), we need to analyse the

dynamics of function in the following class M .

M = {f : there is a compact totally disconnected set E = E(f) such that f is meromorphic

in Ec and C(f,Ec, z0) = Ĉ for all z0 ∈ E. If E = ∅ we make the further assumption that f is

neither constant nor univalent in Ĉ}, where the cluster set C(f,Ec, z0) = {w : w = limn→∞ f(zn)

for some zn ∈ Ec with zn → z0}.

The class M was studied in [10]–[15]. In [13] and [14], where the basic concepts such as

the Fatou set and the Julia set and the basic properties of dynamics of functions in M were

established. It was proved in [13] that the class M is closed under composition and if f, g ∈M ,

then E(f ◦ g) = E(g)
⋃

g−1(E(f)). For f ∈ M , we define f0 to be the identity function with

E0 = ∅, fn = f ◦ fn−1, then fn ∈M , n ∈ N, and En = E(fn) =
⋃n−1

j=0 f
−j(E) = { singularities

of f−n}. Let J1(f) =
⋃+∞

n=0En and F1(f) = Ĉ \ J1(f). Then F1(f) is the largest open set in

which all fn are defined and f(F1(f)) ⊂ F1(f). As in [13], for f ∈M , we define the Fatou set of

f , denoted by F (f), to be the largest open set in which (i) all composition fn are meromorphic

and (ii) the family {fn} is a normal family; and the Julia set of f , denoted by J(f), to be the

complement of F (f). If the set J1(f) is either empty or contains one point or two points, then

f is conjugate to a rational map or entire function or an analytic map of the punctured plane

C
∗, respectively. In these cases the condition (i) is trivial and the Fatou sets are determined by

(ii). In all other cases, by Montel’s theorem, F (f) = F1(f) and J(f) = J1(f). It is clear that

for f ∈ M , F (f) is open and completely invariant. Let U be a connected component of F (f).

Then fn(U) is contained in a component Un of F (f). If for any pair of m 6= n, Um 6= Un, then

U is called a wandering domain of f . Otherwise, U is said to be preperiodic. If for some n ∈ N ,

Un = U , namely, fn(U) ⊂ U , then U is said to be periodic, and the smallest positive n ∈ N is

called the period of U . For a periodic component of F (f) we have the following classification
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theorem:

Therorem A ([13]) Let U be a periodic component of the Fatou set of period p. Then precisely

one of the following is true:

(i) U is a (super)attracting domain of a (super)attracting periodic point a of f of period p

such that fnp|U → a as n→ +∞ and a ∈ U .

(ii) U is a parabolic domain of a rational neutral periodic point a of f of period p such that

fnp|U → a as n→ +∞ and a ∈ ∂U .

(iii) U is a Siegel disk of period p such that there exists an analytic homeomorphism ϕ :

U → △, where △ = {z : |z| < 1}, satisfying ϕ(fp(ϕ−1(z))) = e2παiz for some irrational number

α and ϕ−1(0) ∈ U is an irrational neutral periodic point of f of period p.

(iv) U is a Herman ring of period p such that there exists an analytic homeomorphism

ϕ : U → A, where A = {z : 1 < |z| < r}, satisfying ϕ(fp(ϕ−1(z))) = e2παiz for some irrational

number α.

(v) U is a Baker domain of period p such that fnp|U → a ∈ J(f) as n→ +∞ but fp is not

meromorphic at a. If p = 1, then a ∈ E(f).

As to the local structure of rationally indifferent periodic point, with similar discussion as

that of §6.5 in [1], or §3.1.6 in [16], we have the following Theorem B and C.

Theorem B Suppose that the map f ∈M has the Taylor expansion

f(z) = z − zp+1 +O(z2p+1)

at the origin. Then for sufficiently small t, f has p petals

Πk(t) = {reiθ : rp < t(1 + cos(pθ)); |
2kπ

p
− θ| <

π

p
}, k = 0, 1, . . . , p− 1

lying in distinct parabolic domains at the origin, such that:

(i) f maps each petal Πk(t) into itself, and f : Πk(t) 7→ Πk(t) is conjugate to T (z) = z + 1;

(ii) fn(z) 7→ 0 uniformly on each petal as n 7→ ∞;

(iii) arg(fn(z)) 7→ 2kπ
p

locally uniformly on Πk as n 7→ ∞;

(iv) |f(z)| < |z| on a neighborhood of the axis of each petal.

Theorem C Suppose that the map f ∈M has the Taylor expansion

f(z) = z + azp+1 +O(zp+2)

at the origin with a 6= 0. Then there is a function F (z) = z− zp+1 +O(z2p+1) and a polynomial

ϕ(z) = e
ln a

p z + βz2 + · · · + γzp!, such that F ◦ ϕ = ϕ ◦ f .

As for the relation between the dynamics of two commutable functions in M , we have:

Theorem D ([16, Theorem 3.1.14]) Let f, g ∈M , ϕ be a meromorphic function and ϕ(f(z)) =

g(ϕ(z)). If J(f) = J1(f) and either ∞ ∈ E(f) or f(∞) 6= ∞, then J(f) = ϕ−1(J(g)) and

F (f) = ϕ−1(F (g)).

Theorem E ([16, Theorem 3.1.17]) Let f, g ∈ M , and exp f(z) = g(ez). If ∞ ∈ E(f) or
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f(∞) 6= ∞, then expJ(f) = J(g) \ {0} and expF (f) = F (g) \ {0}.

3. Immediate basins and virtual Immediate basins

Let f : C 7→ C be an entire function. Newton’s method of finding the zero of f consists of

iterating the meromorphic function Nf(z) defined by Nf (z) = z − f(z)
f ′(z) . In fact, zeroes of f

are attracting fixed points of Nf(z), and vice versa. The simple zeroes of f are super-attracting

fixed points of Nf(z).

Definition 3.1 Let ξ be an attracting fixed point of Nf (z). The basin of attraction of ξ is the

open set of all points z such that (Nm
f (z)) converges to ξ as m→ ∞. The connected component

containing ξ of the basin is called the immediate basin of ξ.

Definition 3.2 An unbounded domain U ⊂ C is called virtual immediate basin of Nf (z) if it

is maximal (among domains in C) with respect to the following properties:

(i) limn→∞N◦n
f (z) = ∞ for all z ∈ U ;

(ii) There is a connected and simply connected subdomain S0 ⊂ U such that Nf (S0) ⊂ S0

and for all z ∈ U there is an m ∈ N such that N◦n
f (z) ∈ S0. We call the domain S0 an absorbing

set for U .

If f is a transcendental entire function, then the associated Newton map Nf will generally

be transcendental meromorphic, except in the special case f(z) = p(z)eq(z) with polynomials

p(z) and q(z). Mayer and Schleicher [7] have shown that the Newton maps of transcendental

functions may exhibit virtual immediate basin that does not appear for the Newton maps of

polynomials.

Now let entire function f(z) = (ez − 1)ee−zP (ez), and Nf (z) be the corresponding Newton

map, where P (z) is a real coefficient polynomial with deg(P ) = d ≥ 2 and P (0) 6= 0. Then

Nf (z) = z+R(ez), whereR(z) = − z(z−1)
z2+(z−1)[zP ′(z)−P (z)] . Let g(z) = zeR(z). Then eNf(z) = g(ez).

According to the nature of logarithmic function and eNf(z) = g(ez), Theorem E implies that the

dynamics of Nf in horizontal strip regions {z : (2m− 1)π < Im z < (2m+ 1)π} are the same for

different m ∈ Z. So, we just need to consider dynamics of Nf in the horizontal strip region

Ξ = {z : −π < Im z < π}.

Without loss of generality, let P (z) = adz
d + ad−1z

d−1 + · · ·+ a1z + a0 with ada0 6= 0. Then

Nf (z) =
w − w2

(d− 1)adwd+1 + ((d− 2)ad−1 − (d− 1)ad)wd + · · · − a0w + a0
◦ ez + z,

and

g(z) = z exp
z − z2

(d− 1)adzd+1 + ((d− 2)ad−1 − (d− 1)ad)zd + · · · − a0z + a0
.

Theorem 3.3 In Fatou set of g(z), there are one super-attracting component V1 containing 1,

one parabolic domain V0 such that gn|V0 → 0 as n→ +∞ and d− 1 invariant parabolic domains

V k
∞ (k = 0, 1, . . . , d− 2) such that gn|V k

∞

→ 0 as n→ +∞.

Proof It is easy to see g(z) ∈ M . In view of deg(P ) = d ≥ 2, R(z) → 0 as z → ∞, g(z) only
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has the pole at infinity. g(z) has two fixed points 0 and 1, moreover g′(0) = 1 and g′(1) = 0. So

by Theorem A, in the Fatou set F (g) of g(z), there is an invariant immediate super-attracting

basin V1 containing 1.

By assumption a0 = P (0) 6= 0, g(z) has the Taylor expansion g(z) = z + 1
a0
z2 + O(z3) at

the origin. Theorem B and A imply that there is an invariant parabolic domain V0 such that

gn|V0 → 0 as n→ +∞.

Let σ(z) = 1
z
, and h(z) = z exp (1−z)zd−1

(d−1)ad+((d−2)ad−1−(d−1)ad)z+···−a0zd+a0zd+1 . Then σ ◦ g(z) =

h◦σ(z). h(z) has the Taylor expansion h(z) = z+ 1
(d−1)ad

zd+O(zd+1) at the origin. By Theorem

B and A, there are d−1 invariant parabolic domains Bk (k = 0, 1, . . . , d−2) such that hn|Bk → 0

as n → +∞. So there are d − 1 invariant parabolic domains V k
∞ = σ(Bk) (k = 0, 1, . . . , d − 2)

such that gn|V k
∞

→ 0 as n→ +∞. The proof of Theorem 3.3 is completed. 2

Theorem 3.4 In the Fatou set of Nf (z), there are one simply connected invariant super-

attracting basin and d invariant Baker domains in Ξ.

Proof Since eNf(z) = g(ez) and Nf (z), g(z) ∈ M , based on Theorem 3.3 and E, there is an

invariant immediate super-attracting basin U1 = ln(V1) in the Fatou set F (Nf ) of Nf (z), and

the corresponding super-attracting fixed point is 0. According to Theorem 2.7 in [7], U1 is simply

connected.

On the other hand, by Theorem 3.3 and B, g(z) has a parabolic domain V0 such that gn|V0 → 0

as n → +∞, and for positive number t small enough, V0 contains an absorbing petal with an

absorbing axis l = {reθi : θ = π + arg(a0), 0 < r < t}. Consequently, Theorem E implies

Nf (z) has a component U0 = ln(V0) such that Nn
f |U0 → ∞ as n → +∞. Considering that

P (z) is a real coefficient polynomial, R(z) = − z(z−1)
z2+(z−1)[zP ′(z)−P (z)] is a real coefficient rational

function, then the Newton map Nf (z) = z + R(ez) maps Lk = {x + iy : −∞ < x < ln t, y =

π + arg(a0) + 2kπ} (k ∈ Z) to itself, where Lk is the image of l of a branch of the logarithmic

function log z, and L0 = ln l lies in U0. So U0 is not a wandering domain but a Baker domain.

Proceeding with similar discussion, we can show Nf (z) has other d− 1 Baker domains Uk
∞ =

ln(V k
∞) (k = 0, 1, . . . , d− 2). The proof of Theorem 3.4 is completed. 2

Theorem 3.5 In the Fatou set of Nf (z), each Baker domain is virtual immediate basin.

Proof From the proof of Theorem 3.4, each Baker domain in the Fatou set F (Nf (z)) comes

from parabolic domain of g(z).

On the other hand, from the proof of Theorem 3.3, in a neighborhood of the origin, g(z) =

z + 1
a0
z2 + O(z3), h(z) = z + 1

(d−1)ad
zd + O(zd+1). Theorem C implies g(z) is conjugate to a

function F1(z) = z − z2 + O(z3) via ϕ(z) = −1
a0
z and h(z) is conjugate to a function F2(z) =

z − zd + O(z2d−1) via a polynomial ψ(z) = λz + βz2 + · · · + γz(d−1)! near the origin, where

λ = ((d− 1) |ad|)
− 1

d−1 e−
arg(ad)

d−1 i.

Using Theorem B, at the origin, for sufficiently small positive numbers t1, t2, s1 and s2, F1(z)

has a petal

Π(t1) = {reiθ : r < t1(1 + cos θ); |θ| < π}
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with repelling axis L = {reiθ : 0 < r < s1, θ = π}, and F2(z) has d− 1 petals

Πk(t2) = {reiθ : rd−1 < t2(1 + cos(d− 1)θ); |
2kπ

d− 1
− θ| <

π

d− 1
}

with repelling axis Lk = {reiθ : 0 < r < s2, θ = 2k+1
d−1 π} (k = 0, 1, . . . , d − 2). Consequently,

the Baker domain U0 = ln(V0) has an absorbing set ln ◦ϕ−1(Π(t)), and the Baker domain Uk
∞ =

ln(V k
∞) has an absorbing set ln ◦σ ◦ ψ−1(Πk(t)) (k = 0, 1, . . . , d− 2). So each Baker domain is a

virtual immediate basin. The proof of Theorem 3.5 is completed. 2

Theorem 3.6 In Ξ, complement of the union of all virtual immediate basins of Nf(z) has finite

area.

Proof Theorem 3.5 implies each Baker domain of Nf (z) has an absorbing set, therefore, the

complement of the union of all virtual immediate basins of Nf (z) is a subset of the complement

of union of these absorbing sets. To complete this proof, we need only to show: in Ξ, the

complement of union of these absorbing sets has finite area.

Following the Proof of Theorem 3.5.

Let 0 < t < min{t1, t2},
3
4π < θ1 < π, 3

4(d−1)π < θ2 <
1

d−1π,

γ1 = {reiθ : r = t(1 + cos θ); θ1 < θ < π},

γ2 = {reiθ : r = t(1 + cos θ);−θ1 > θ > −π},

γk
1 = {reiθ : rd−1 = t(1 + cos(d− 1)θ),

2kπ

d− 1
+ θ2 < θ <

2kπ

d− 1
+

π

d− 1
},

γk
2 = {reiθ : rd−1 = t(1 + cos(d− 1)θ),

2kπ

d− 1
− θ2 > θ >

2kπ

d− 1
−

π

d− 1
}

(k = 0, 1, . . . , d−2). Then γ1 and γ2 are two simple curves in Π(t1) and γk
1 and γk

2 are two simple

curves in Πk(t2). Accordingly, Γ1 = ϕ−1(γ1) and Γ2 = ϕ−1(γ2) are two simple curves in the

parabolic domain in the Fatou set F (g(z)). Choose ψ−1 the branch of the inverse function of ψ

which fixes 0, namely, ψ−1(z) = 1
λ
z+α1z

2 +α2z
3 + · · · . Then Γk

1 = ψ−1(γk
1 ) and Γk

2 = ψ−1(γk
2 )

are two simple curves in the parabolic domain in the Fatou set F (h(z)).

Since eNf (z) = g(ez) and σ ◦ g(z) = h ◦ σ(z), Γ̃1 = ln ◦ϕ−1(γ1), Γ̃2 = ln ◦ϕ−1(γ2), Γ̃k
1 =

ln ◦σ ◦ ψ−1(γk
1 ) and Γ̃k

2 = ln ◦σ ◦ ψ−1(γk
2 ) are simple curves in above-mentioned Baker domains

in the Fatou set F (Nf (z)).

For ϕ−1(z) = |a0| ei arg(−a0)z, we have

Γ̃1 =

{

X(θ) + iY (θ) :
X(θ) = ln(|a0| t(1 + cos θ)), Y (θ) = θ + arg(−a0),

θ1 < θ < π

}

,

Γ̃2 =

{

X(θ) + iY (θ) :
X(θ) = ln(|a0| t(1 + cos θ)), Y (θ) = θ + arg(−a0),

−θ1 > θ > −π

}

.

Furthermore, the curve Γ̃1 is monotonously decreasing, and has an asymptote Y = π+arg(−a0)

as θ → π, Γ̃2 is monotonously increasing, and has an asymptote Y = −π+ arg(−a0) as θ → −π.
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Write ψ−1(z) = rve
iθvz, where rv = | 1

λ
+α1z+α2z

2+ · · · | and θv = arg( 1
λ

+α1z+α2z
2+ · · · )

are continuous functions. Then

Γ̃k
1 =







X(θ) + iY (θ) :
X(θ) = − ln(rv(t+ t cos(d− 1)θ)

1
d−1 ), Y (θ) = −θ − θv,

2k

d− 1
π + θ2 < θ <

2k + 1

d− 1
π







,

Γ̃k
2 =







X(θ) + iY (θ) :
X(θ) = − ln(rv(t+ t cos(d− 1)θ)

1
d−1 ), Y (θ) = −θ − θv,

2k

d− 1
π − θ2 > θ >

2k − 1

d− 1
π







.

In view of rv(z) →
∣

∣

1
λ

∣

∣ and θv(z) → arg 1
λ

as z → 0, the curve Γ̃k
1 is monotonously decreasing,

and has an asymptote Y = − 2k+1
d−1 π − arg 1

λ
as θ → 2k+1

d−1 π, while the curve Γ̃k
2 is monotonously

increasing, and has an asymptote Y = − 2k−1
d−1 π − arg 1

λ
as θ → 2k−1

d−1 π.

In the same way, repelling axis L = {reiθ : 0 < r < s1, θ = π} and Lk = {reiθ : 0 < r <

s2, θ = 2k+1
d−1 π} respectively produce repelling axis of Nf (z) as follows:

ln ◦ϕ−1(L) =

{

X(r) + iY (r) :
X(r) = ln(|a0| r),

Y (r) = π + arg(−a0),
0 < r < s1

}

,

ln ◦σ ◦ ψ−1(Lk) =







X(r) + iY (r) :
X(r) = − ln(rvr),

Y (r) = −
2k + 1

d− 1
π − arg

1

λ
,

0 < r < s2







.

It is easy to see that the asymptote of Γ̃1 or Γ̃2 is the horizontal line in which ln ◦ϕ−1(L) lies

and the asymptote of Γ̃k
1 or Γ̃k

2 is the horizontal line in which ln ◦σ ◦ ψ−1(Lk) lies.

Next we show that the area of each unbounded wedge sharped region between above curve

and the corresponding asymptote is finite.

The area of unbounded wedge sharped region W1 between Γ̃1 and the corresponding asymp-

tote Y = π + arg(−a0) is the following integration:
∫ θ1

π

(π + arg(−a0) − Y (θ))dX(θ) =

∫ θ1

π

(π − θ)d(ln(|a0| t(1 + cos θ))

=

∫ θ1

π

−(π − θ) sin θ

1 + cos θ
dθ =

∫ π−θ1

0

θ sin θ

1 − cos θ
dθ = 4

∫

π−θ1
2

0

θ

tan θ
dθ < 2(π − θ1),

where X(θ) = ln(|a0| t(1 + cos θ)), Y (θ) = θ + arg(−a0). So the area of W1 is finite.

To analyse the area of unbounded wedge sharped region W k
1 between Γ̃k

1 and the correspond-

ing asymptote Y = − 2k+1
d−1 π−arg 1

λ
, we construct another unbounded wedge sharped region W̄ k

1 .

For positive numbers δ1 and δ2, we define W̄ k
1 to be the region between curve

Γ̄k
1 = ln ◦σ ◦ ψ̄(γk

1 ) =































X(θ) + iY (θ) :

X(θ) = − ln(
δ1

|λ|
(t(1 + cos(d− 1)θ))

1
d−1 ),

Y (θ) = −θ − (arg
1

λ
− δ2(

2k + 1

d− 1
π − θ)),

2k

d− 1
π + θ2 < θ <

2k + 1

d− 1
π































and its asymptote Y = − 2k+1
d−1 π − arg 1

λ
, where ψ̄(z) = z δ1

|λ|e
i(arg 1

λ
−δ2(

2k+1
d−1 π−θ)). For some

appropriate small positive numbers δ1 and δ2, and z ∈ γk
1 , the Euclidian distance from the point
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ln ◦σ ◦ ψ̄(z) to the line Y = − 2k+1
d−1 π − arg 1

λ
is greater than that from the point ln(σ ◦ ψ−1(z))

to the same line, namely, Γ̄k
1 lies above Γ̃k

1 . Moreover, the difference between areas of W̄ k
1 and

W k
1 is finite. The area of W̄ k

1 is the following integration:

∫
2k+1
d−1 π

2k
d−1π+θ2

(Y (θ) +
2k + 1

d− 1
π + arg

1

λ
)dX(θ) =

∫
2k+1
d−1 π

2kπ
d−1+θ2

(δ2 + 1)(2k+1
d−1 π − θ) sin(d− 1)θ

1 + cos(d− 1)θ
dθ

=

∫ π
d−1−θ2

0

(δ2 + 1)θ sin(d− 1)θ

1 − cos(d− 1)θ
dθ <

2(δ2 + 1)(π − (d− 1)θ2)

(d− 1)2
,

where X(θ) = − ln( δ1

|λ| (t(1+ cos(d− 1)θ))
1

d−1 ), Y (θ) = −θ− (arg 1
λ
− δ2(

2k+1
d−1 π− θ)). So W̄ k

1 and

then W k
1 has finite area.

The symmetry implies that the area of the wedge sharped region W2 between Γ̃2 and the

corresponding asymptote Y = π+arg(−a0) takes the same value as the area of W1, and the area

of wedge sharped region W k
2 between Γ̃k

2 and the corresponding asymptote Y = − 2k+1
d−1 π− arg 1

λ

takes the same value as the area of W k
1 .

Denote union of these wedge sharped regions by W and ln ◦ϕ−1(Π(t)) ∪ (
⋃d−2

k=0(ln ◦σ ◦

ψ−1(Πk(t)))) by Π. In view of that ln ◦ϕ−1(Π(t)) and ln ◦σ ◦ ψ−1(Πk(t)) are also absorbing

sets of those Baker domains respectively, and that those asymptotes alternately exist with alter-

nation as 2π and 2π
d−1 respectively, Ξ\ (W ∪Π) is bounded domain, and Ξ\Π = W ∪ (Ξ\W ∪Π)

has finite area. So the complement of the union of all virtual immediate basins of Nf (z), a subset

of Ξ \ Π, has finite area. The proof is completed. 2

Corollary 3.7 Each immediate basin of Nf (z) has finite area.

Remark 3.8 In the case deg(P ) = 1, i.e., P (z) = a1z + a0 with (a1 6= 0), f(z) = (ez −

1)ea1+a0e−z

, Nf (z) = z − e2z−ez

e2z−a0ez+a0
and g(z) = ze

z−z2

z2
−a0z+a0 . Then 1 is super attracting fixed

point of g(z), and zero is either rational indifferent fixed point or essential singularity of g(z). For

example, P (z) = a1z, then g(z) = ze
1−z

z , zero is essential singularity of g(z), and the attracting

basin of 1 contains region Θ = {reiθ : 1 < r, |θ| < π
3 }.

In fact, if z ∈ Θ, g(z) = z(1+
∑+∞

m=1
1

m! (
1−z

z
)m), and

∣

∣

1−z
z

∣

∣ = (1−2r cos θ+r2

r2 )
1
2 < 1. Therefore,

|
g(z) − 1

z − 1
| = |

z − 1 + z
∑+∞

m=1
1

m!(
1−z

z
)m

z − 1
| = |

+∞
∑

m=2

1

m!
(
1 − z

z
)m−1|

≤
+∞
∑

m=2

1

m!
|
1 − z

z
|m−1 <

+∞
∑

m=2

1

m!
< 1.

This implies that the attracting basin of 1 contains region Θ, hence, in Ξ, the immediate basin

U1 of Nf (z) has infinite area.

Remark 3.9 Let Mf (z) = Nf (z)+2πi. Then U0, U1 and Uk
∞ (k = 0, 1, . . . , n−2) are wandering

domains of Mf (z).
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