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Abstract We investigate the dynamics of two extensive classes of recursive sequences:
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We prove that their unique positive equilibrium T = 1 is globally asymptotically stable. And a
new access is presented to study the theory of recursive sequences.
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1. Introduction

Our aim in this paper is to study the following two extensive classes of recursive sequences:
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and
k
c Z Z x’ﬂ—ioxn—il te xn—i2j71 + c + f(‘rn—i07 x’ﬂ—i17 AR 7xn—i2k)
J=1(i0,i1,...,025—1)EA2j 1
Tp+1 = & )
¢ E E Tn—igTn—i ** " Tn—isy + f(xnfiovxnfip ) znfi%)
J=0 (i0,%1,...,025 ) EAzj

n=0,1,..., (2)

where ¢ € (0,00), k € {1,2,...} and the initial conditions z_;,, , Z_i,,+1,...,%0 € (0,00), f €

C((0,00)%+1[0,00)), A; = {(i0,i1,-..,;)|i0 < i1 < -+ <ij,{io,01,-.-,0;} C {to,t1,--- t2r}},
0<tg<t; <---<to, and {tj}?io are constants.

Our research is motivated by [1-5], where the dynamics of some recursive sequences was
studied.

Hamza and Khalaf-Allah [1] investigated the global asymptotic stability of the following

rational recursive sequence:

=l o
— = =01, (E1)
B+ C][ @n-2:

i=l

k
ATl zp—2i—1

Tn+1 =

where A, B, C' are nonnegative real numbers and [, k are nonnegative integers, [ < k.
Nesemann [2] utilized the strong negative feedback property of [6] to study the following

recursive sequence:
Tn—1+ TpTn—2

. n=0,1,..., (E2)
TpTn—1 + Tp—2

Tn+1 =

where the initial values z_o,z_1,z9 € (0, 00).
Papaschinopoulos and Schinas [3] investigated the global asymptotic stability of the following

nonlinear recursive sequence:

Ziezkf{jfl,j} Tpi+ TpjTnji1+1
Yiez, Tn—i

where k € {1,2,3,...}, {4,/ —1} CZ;r = {0,1,...,k} and the initial values x_g, 2 _jy1,...,20 €

(0, 00).

Li [4,5] studied the global asymptotic stability of the following two nonlinear recursive se-

Tpa1 = , n=0,1,..., (E3)

quences: N N N N
LTn—-1Tp—2Lnp— Tp— Ln— Tp— a
o1 = xnnfllxnnfj"’nfz:flInn73l+ xnn722xn73n+31 + a7 ne O, 17 o (E4)
and
Tpi1 = TnTn—-1Tn—3 + Tn + Tn—1 + Tn-3 +a "= 07 1, L (E5)

TnTp—1+ TnTp_3 + Tn_1Tn-3+1+a’
where a € [0,+00) and the initial values z_5,2_3,2_1,2¢ € (0, 0).

In this paper, by using an effective method which is different from the usual methods we
derive the global asymptotic stability of the positive equilibrium of the two extensive classes of

recursive sequences, whereas it is extremely difficult to use the method in the literature [1], to
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obtain the global asymptotic stability of the positive equilibrium of the two extensive classes of
recursive sequences.

To prove the global asymptotic stability of the positive equilibrium of the above two extensive
classes of recursive sequences, we construct the following class of nonlinear recursive sequence
(3):

First, let k > 1 and ig, 41,. .., € {0,1,...} with ig < iy < -+ < iok. Let Fo(Tn_iy) = Tn—io
and Go(Tn—i,) = 1, and for any 1 < j <k, let

F; (I"*iov s 7xn*i2j) :(In*izj Tn—ig;_1 T+ 1)Fj*1(xn7ioa ce ,In,i2j72)—|—
(‘Tn_in + Ln—izj 1 )Gj—l (wn—iw e 7$n—i2j72)
and
Gj (‘Tn—iw cee 7xn—i2j) :(‘Tn_in Ln—igj 1 + 1)Gj—1(xn—i07 s 7xn_i2j—2)+
(In*izj + Tn—ig; 1 )ijl('xn*iov T In*i2j—2)'

Then we can find out that the class of recursive sequence (1) and the following Eq.(3) give

rise to substantially the equivalent form.

cFy (xn*io y Tn—igy .- - ,In,i%) + f(xnfio y Ln—igs -« Infigk)
Tnt1 = , n=0,1,..., (3)
G (xn*io yTn—igy .- - ,In,i%) + f(xnfio y Ln—igs -« Infigk)
where f € C((0,00)2%%1[0,00)) and the initial conditions z_;,, , T iy, 41,---,T0 € (0,00).
It is easy to see that the positive equilibrium T of Eq.(3) satisfies
2k+1 elements 2k+1 elements
f_ch (z,=,...,T) +f (T,T,...,T)
Gy (Z,7,...,%) +f (T,T,...,T)
2k+1 elements 2k+1 elements
2k—1 elements 2k—1 elements 2k+1 elements
—_—~
@+ 1)F (7,7,...,T) +2c2G—1 (T,%,...,7) +f (T,%,...,T)
c(@*+1)Gr-1 (7,7,...,7) +2cxF,—1 (T,7,...,7) +f (Z,T, -+ ,T)
2k—1 elements 2k—1 elements 2k+1 elements
Thus, we have
2k—1 elements 2k—1 elements 2k+1 elements

2 ’ '
(T_l)[C(T +T)kal (vav"'vf) +C(T+1)Fk71 (EaTa"wT) +f (E,T,...,T)]:O,
from which one can see that Eq.(3) has the unique positive equilibrium T = 1.

Remark Let k =1, ¢ = 1, f(Zn—ig,Tn—iys---sTn—in,) = a. Then Eq.(3) is Eq.(E4) when
(io,il,ig) = (1,2,3) and is Eq(E5) when (io,il,ig) = (O, 1,3).

2. Properties of positive solutions of the two extensive classes of recur-
sive sequences.
In this section we shall study the properties of positive solutions of the two extensive classes

of recursive sequences (1) and (2).
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If we change Eq.(3) to the form:

CG]C (xn—i07 x’ﬂ—i17 e 7xn—i2k) + f(xn—iouxn—i17 e 7xn—i2k)
cFy (In*iov Tn—igy- - In,i%) + f(xnfioaxnfilv cee 7xn7i2k)

Tpt1 = , n=0,1,... . (4

Then it can be seen that Eq.(4) and the class of recursive sequence (2) give rise to substantially
the equivalent form.

Thus, we only need to discuss Eq.(3) (because Eq.(4) and Eq.(3) give rise to substantially
same dynamic behaviors, and the proof is similar).

Since

Fk (:I;n—io y Ln—igy .-+ 7xn—i2k) - Gk (:En—io y Lp—igs -« - 7xn—i2k)
= (xn*izk - 1)(17"*1'%71 - 1)[Fk*1('rn*i07 AR In*izkfz) - kal(xnfiov R xnfizkfz)]

= @n—iox = D) @n—izpys = 1) (@n—iz = D(@n—i; — D[Fo(@n—iy) — Go(@n—i)]
= (@n—ip = D)(@n—iy = 1)+ (Tnip, — 1),
it follows from Eq.(3) that for any n > 0,
A(Xp—ig — D) (@n—iy — 1) (Tp—iy, — 1)
CGr(Tn—igs Tn—iys- s Tn—ing) T F(Trn—ios Tn—iyy - s Tn—ing )

Definition 1 Let {z,};2 ;, be a solution of Eq.(3) and {an};?
an € {—1,0,1} for every n > —igg. {an}S2

()

Tn4+1 — 1=
ne—i,, be a sequence with

is called itinerary of {x,, }22 ifa, = —1 when

’n,:figjC nzf’igk

r, <1, a, =0 when z,, =1 and a,, = 1 when x, > 1.
From Eq.(5), we get
Proposition 1 Let {a,}5°

o4, be an itinerary of a solution {x,};? of Eq.(3). Then

n:—izk

Qpg1 = An—igGn—i, * ** On—iy, for any n > 0.

Proposition 2 Let {x,}2 be a solution of Eq.(3). Then x,, # 1 for any n > 1 <

H;?:ko( -5 —1)#0.

Proof. Let {an}p_;,,
sition 1 that =, # 1 for any n > 1 <= a, # 0 for any n > 1 <— Hz%oa_] # 0 <<

[[%(z—y = 1) #0. O

Proposition 3 Ifged(is+ 1,495+ 1) = 1 for some s € {0,1,...,2k—1}, then a positive solution

n——i2k

be an itinerary of the solution {z,}52 _, . Then it follows from Propo-

—i2k

{zn )5, of Eq.(3) is eventually equal to 1 <= x;, = 1 for some p > —igy,.

Proof — is obvious.

<. If z, = 1 for some p > —ig, then a, = 0, where {a,}2

ne—i,, 1s the itinerary of

{#n}5Z _4,,- By Proposition 1, we have a;(i,,+1)+p = @ji,+1)4p = 0 for any j > 0. Since
ged(is + 1,49, + 1) = 1, we see that for any ¢ € {0,1,...,ia,}, there exist j; € {1,2,... 42 + 1}
and m; € {0,1,...,is + 1} such that

Je(is + 1) = my(ior + 1) + ¢
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from which it follows by Proposition 1 that

Uiy +1) (inp+1)+t4p = 0-

Again by Proposition 1, we have a,, = 0 for any n > (i5 + 1)(i2x + 1) + p, which implies z,, = 1
for any n > (is + 1)(igs + 1) +p. O

Example 1 Consider the recursive sequence:

Tn—igTn—iy Tn—3 + Tn—ig + Tn—iy + ZTp-3+ b

, n=0,1,..., 6
Tn—igTn—iy + Tn—igTn—3 + Tn—iy Tn—3 + 1 + b ( )

Tp+1 =

where b € [0,4+00), 0 < ig < i1 < 3 and the initial values x_3, x_9, z_1, o € (0,00). Let
{zn}52 _5 be a solution of Eq.(6). Then

1) zp, #1foranyn>1<— ngfg(xj —1)#0;

2) {z,}52 _5 is eventually equal to 1 <= z,, = 1 for some p > —3.

Proof 1) The conclusion follows from Proposition 2.
2) The conclusion follows from Proposition 3 since either ged(ig+1,4) = 1 or ged(i1+1,4) =
1. O

3. Global asymptotic stability of the two extensive classes of recursive
sequences

In this section we shall study the global asymptotic stability of the two extensive classes of

recursive sequences (1) and (2). To do this, we need the following lemmas.

Lemma 1 Let (yo,y1, -, Yin) € B2 = {(L 1., D}, f € C((0,00)%+1,[0,00)) and M =
max{y;, yl—J|0 < j <igg}. Then

i < CFk(yiovyiw"'?yi%)+f(yi07yi17"'7yi2k) < M. (7)
M CGk(yimyilv"'ayizk)+f(yiovyi1a--.ayi2k)
Proof Since (Yo,Y1,---»¥in) € R —{(1,1,...,1)} and M = max{y;, yi|0 < j <ok}, we

haveM>1andeitherM2a>%0rM>a2ﬁforanyae{yj,%mgjgigk}.
J

It is easy to verify that
Fl (yimyiuyiz) = (yilyiz + 1)%0 + (yil + yi2) < (yilyiz + 1)M + (yil + yiz)yioM
= Gl (yim Yiqs yiz)Mv
and
F1(Yior Yirs Yin )M = [(Yir Yin + D¥Yio + Yir + ¥i)IM > (Yi,Yin + 1) + (Yir + ¥iz)Yio
= Gl (ylo y Yiv s Yio )
From which we have

FQ(yiov Yirs Yiar Yiss %4) = (yi3yi4 + 1>F1 (yio » Yivs yiz) + (yi3 + yi4)G1 (yio » Yivs yi2)
< (yi3yi4 + 1)G1 (yioayinyiz)M + (yle + yi4)F1 (yiov yi17yi2)M
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= G2(Yio: Yir» Y Yis» Yia ) M,
and
5 (Yio» Yins Yizs Yias Yia )M = [(YiaYis + 1) E1Wios Yirs Yiz) + Wis + Yia)G1(Yio s Yir» Yin )| M
> WisYis + )G 1(Yios Yir > Yin) + Wis + Yia) F1 Wig» Yir s Vi)
= G2(Yios Yir» Yis» Yiss Yia)-
By induction we have that for any 1 < j < k,
Fi(Yior Yirs -+ > Yia;) < Gj(Yios Yirs - -+ Yin; )M
and
Fi(Yios Yirs - -+ > Yin; )M > G5 (Yig, Yirs - - Ying )-
Thus

i < Fk(yimyilv'-'ayizk) < M.
M Gk(yi07yi17"'7yi2k)

Therefore, we get

1 <CFk(yiovyilv'"7yi2k)+f(yi07yi17"'7yi2k) <M. O

M CGk(yioayila'"ayizk)+f(yioayi1v--.ayi2k)
Let n be a positive integer and p denote the part-metric on RY (see [7]) which is defined by

%H <i<n} for x=(x1,...,20),y = (Y1,---,yn) € R}.
2

plx,y) = —log mim{ﬁ7
yi

K3
It was shown by Thompson [7] that (R}, p) is a complete metric space. Krause and Nussbaum [8]
proved that the distances indicated by the part-metric and by the Euclidean norm are equivalent

on RY.
Lemma 2 ([9]) Let T': R} — R} be a continuous mapping with unique fixed point x* € R}.
Suppose that there exists some | > 1 such that for the part-metric p,

p(Tlx,2*) < p(x,x*) for all x # z*.

Then x* is globally asymptotically stable.

Theorem 1 The unique equilibrium T = 1 of the two extensive classes of recursive sequences

(1) and (2) is globally asymptotically stable.

P;‘oof Let {zn}5> ;, be a solution of Eq.(3) with initial conditions @, , 2, 41,--.,Z0 €
R such that {2, }2° _;
Denote by T': Rfﬁ"“ — Rf’“"’l the mapping

is not eventually equal to 1 since otherwise there is nothing to show.

T(xn,i% y Tn—igp 41y .’,En)
CFk(xn—i07xn—i17 AR 7xn—i2k) + f(‘rn—i07 x’ﬂ—ilu AR 7xn—i2k) )
" CGk(xnf’iovxnf’L’l; ceey :Enfigk) + f(xnfiov x’n,f’il; sty :Enfigk) '

= (‘T’n—izk-’rl? Tn—igp+2y -+ L

Then solution {z,,} of Eq.(3) is represented by the first component of the solution {y, }22,

o0
n=—1i2gk

of the system yn+1 = Ty, with initial condition yo = (_4,,, T—iy+1,---,%0). It follows from
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Lemma 1 that for all n > 0 the following inequalities hold:

. 1 1 1
Tpg1 > MIN{Tp, Tp_1, ..., Tnoiy, —, e, 1
Tn Tp-—1 Tn—ioy
1 1 1
Tt < MAX{ Ty, Tp—1, .oy Tn—iges — e, 1.
Tn Tp-—1 Tn—ioy

Thus, for 2* = (1,1,...,1) and the part-metric p we have

p(T (y), 2*) < pyn, ™)

for all n > 0. Tt follows from Lemma 2 that the positive equilibrium Z = 1 of Eq.(3) is globally

asymptotically stable. Therefore, the positive equilibrium T = 1 of the two extensive classes of

recursive sequences (1) and (2) is globally asymptotically stable. O
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