A Note on the 3-Edge-Connected Supereulerian Graphs

Xiao Min LI*, Deng Xin LI

School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, P. R. China

Abstract For two integers l > 0 and $k \ge 0$, define C(l, k) to be the family of 2-edge connected graphs such that a graph $G \in C(l, k)$ if and only if for every bond $S \subseteq E(G)$ with $|S| \le 3$, each component of G - S has order at least (|V(G)| - k)/l. In this note we prove that if a 3edge-connected simple graph G is in C(10, 3), then G is supereulerian if and only if G cannot be contracted to the Petersen graph. Our result extends an earlier result in [Supereulerian graphs and Petersen graph. JCMCC 1991, 9: 79-89] by Chen.

Keywords supereulerian; collapsible; reduction; 3-edge-connected.

Document code A MR(2000) Subject Classification 05C45 Chinese Library Classification 0157.5

1. Introduction

We follow Bondy and Murty [1] for undefined notations and terminology. For a graph G, let $\kappa'(G)$ denote the edge-connectivity of G. If G has a spanning eulerian subgraph, then it is called supereulerian. We write SL for all supereulerian graphs. In particular, K_1 is both eulerian and supereulerian. Let P denote the Petersen graph.

Let l > 0, $k \ge 0$ be two integers and let C(l, k) denote a class of 2-connected graphs of order n such that a graph $G \in C(l, k)$ if and only if for every bond $S \subseteq E(G)$ with $|S| \le 3$, each component of G - S has order at least (n - k)/l. For 3-edge-connected graphs, Chen presented the following result.

Theorem 1 ([6, Theorem 2]) Let G be a 3-edge-connected graph. If $G \in C(10,0)$, then G is supercularian if and only if G cannot be contracted to P.

In this note we shall prove the following result which extends Theorem 1.

Theorem 2 Let G be a simple graph. If $G \in C(10,3)$ with $\kappa'(G) \ge 3$, then G is superculerian if and only if G cannot be contracted to P.

In the proof of Theorem 2 we need Catlin's reduction method.

A graph H is called collapsible if for every even set $X \subseteq V(H)$, there is a spanning connected subgraph H_X of H such that X is the set of vertices with odd degree in H_X . In [2], Catlin showed

Received August 19, 2008; Accepted June 30, 2009

Supported by the Science Foundation of Chongqing Education Committee (Grant No.KJ100725).

* Corresponding author

E-mail address: lxm@ctbu.edu.cn (X. M. LI)

that every graph G has a unique collection of pairwise disjoint maximal collapsible subgraphs H_1, H_2, \ldots, H_c . The reduction of G is obtained from G by contracting each H_i into a single vertex v_{H_i} (H_i is called the preimage of v_{H_i}) and by deleting any resulting loops ($1 \le i \le c$). A graph is reduced if it is the reduction of some graph, and K_1 is the only collapsible reduced graph. Let F(G) be the minimum number of edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees. The following theorems are useful in the proof of our main result.

Theorem 3 ([2, Theorem 8]) Let G be a connected graph. Each of the following holds:

- (i) Let G' be the reduction of G. Then $G \in SL$ if and only if $G' \in SL$.
- (ii) If G is simple and nontrivial collapsible graph, then $|V(G)| \ge 3$.

Theorem 4 Let G be a connected reduced graph. Each of the following holds:

- (i) [4, Theorem 1.5] If $F(G) \le 2$, then $G \in \{K_1, K_2, K_{2,t} \ (t \ge 1)\}$.
- (ii) [3] F(G) = 2|V(G)| |E(G)| 2.

Theorem 5 ([5]) Let G be a connected graph with $|V(G)| \leq 13$ and $\delta(G) \geq 3$. Then either G is a superculerian graph with 12 vertices and with an odd cycle, or the reduction of G is in $\{K_1, K_2, K_{1,2}, K_{1,3}, P\}$.

2. The proof of main result

Proof of Theorem 2 Let G' be the reduction of G. Denote $D_i = \{v | d(v) = i, v \in V(G')\}$ and $d_i = |D_i|$, for each interger $i \ge 1$. By (i) of Theorem 3, it suffices to show $G' \notin SL$ if and only if G' = P. Suppose that $G' \notin SL$.

Claim 1 $d_1 = d_2 = 0$ and $F(G') \ge 3$.

Since $\kappa'(G) \ge 3$, we have $\kappa'(G') \ge 3$ and $\delta(G') \ge 3$. Therefore $d_1 = d_2 = 0$.

If $F(G') \leq 2$, then by (i) of Theorem 4, $G' \in \{K_1, K_2, K_{2,t}(t \geq 1)\}$. As $G' \notin SL$, $G' \neq K_1$, so $G' \in \{K_2, K_{2,t}(t \geq 1)\}$, contrary to $\kappa'(G') \geq 3$. Hence Claim 1 holds.

Claim 2 $d_3 \ge 10$.

By (ii) of Theorem 4 we have F(G') = 2|V(G')| - |E(G')| - 2. As $|V(G')| = \sum_{j\geq 1} d_j$ and $2|E(G')| = \sum_{j\geq 1} jd_j$. Therefore

$$d_{3} = 4 + 2F(G') + \sum_{j \ge 5} (j-4)d_{j}.$$
 (1)

By (1), if $d_3 \leq 9$, then $2F(G') = d_3 - 4 - \sum_{j \geq 5} (j-4)d_j \leq 5 - \sum_{j \geq 5} (j-4)d_j < 6$, hence F(G') < 3, contrary to Claim 1. Hence $d_3 \geq 10$.

If $d_3 = 10$, let H_1, H_2, \ldots, H_{10} be the preimages of those vertices in D_3 . Let $V'_4 = \{v | d(v) > 3, v \in V(G')\}$ and |V(G)| = n. Since $G \in C(10, 3)$, we have

$$n \ge \sum_{i=1}^{10} |V(H_i)| + |V'_4| \ge n - 3 + |V'_4|.$$

So $|V'_4| \leq 3$ and $|V(G')| \leq 13$, then by Theorem 5, by $G' \notin SL$ and by $\delta(G') \geq 3$, we have G' = P.

If $d_3 \ge 11$, let $c = d_3$, and H_1, H_2, \ldots, H_c be the preimages of those vertices in D_3 . Therefore,

$$|V(G)| \ge \sum_{i=1}^{c} |V(H_i)| \ge 11 \frac{|V(G)| - 3}{10}$$

hence $|V(G)| \leq 33$.

Case 1 $14 \le |V(G)| \le 33$.

For each i = 1, 2, ..., c, by $G \in C(10, 3)$, $|V(H_i)| \geq \frac{|V(G)|-3}{10} > 1$, then H_i is nontrivial collapsible, so by (ii) of Theorem 3 $|V(H_i)| \geq 3$. Thus $|V(G')| \leq 11$. Hence by $d_3 \geq 11$, we have $|V(G')| = d_3 = 11$, a contradiction obtained.

Case 2 $|V(G)| \le 13$.

Since $\kappa'(G) \ge 3$, $\delta(G) \ge 3$. By Theorem 5, either $G \in SL$ or G = P. If $G \in SL$, by (i) of Theorem 3, $G' \in SL$, contrary to the assumption, hence G = P and G' = P.

This completes the proof of Theorem 2. \Box

References

- BONDY J A, MURTY U S R. Graph Theory with Applications [M]. American Elsevier Publishing Co., Inc., New York, 1976.
- [2] CATLIN P A. A reduction method to find spanning Eulerian subgraphs [J]. J. Graph Theory, 1988, 12(1): 29–44.
- [3] CATLIN P A. Super-Eulerian graphs, collapsible graphs, and four-cycles [J]. Congr. Numer., 1987, 58: 233-246.
- [4] CATLIN P A, HAN Zhengyiao, LAI Hongjian. Graphs without spanning closed trails [J]. Discrete Math., 1996, 160(1-3): 81–91.
- [5] CHEN Zhihong. Supereulerian graphs and spanning eulerian subgraphs [D]. Ph.D. Dissertation, Wayne State University, 1991.
- [6] CHEN Zhihong. Super-Eulerian graphs and the Petersen graph [J]. J. Combin. Math. Combin. Comput., 1991, 9: 79–89.