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Abstract We consider the discounted aggregate claims when the insurance risks and financial

risks are governed by a discrete-time Markovian environment. We assume that the claim sizes and

the financial risks fluctuate over time according to the states of economy, which are interpreted as

the states of Markovian environment. We will then determine a system of differential equations

for the Laplace-Stieltjes transform of the distribution of discounted aggregate claims under mild

assumption. Moreover, using the differentio-integral equation, we will also investigate the first

two order moments of discounted aggregate claims in a Markovian environment.
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1. Introduction

In classical risk model, one assumes that the rate of net interest is zero, and aggregate claims

are not discounted, though the discounted rate of aggregate claims is the difference of the claim

inflation and the interest earned on investment. As pointed by Jang [3], in real phenomena these

two components of the net interest rate do not have the same level. In contrast with classical

model, recent studies explored discounted aggregate claims under the non-zero rate of net interest,

for example, Delbaen and Haezendonck [2], Willmot [10], Léveille and Garrido [4], Jang [3] and

Bara Kim and Hwa-Sung Kim [1]. Delbaen & Haezendonck [2] and Willmot [10] analyzed the

net premium of compound Poisson discounted aggregate claims. Léveille and Garrido [4] derived

an analytical expression for the first two order moments of discounted aggregate claims. Jang [3]

obtained the Laplace transform of the distribution of the discounted aggregate claims using the

shot noise process. These authors considered discounted aggregate claims under the following

common assumptions. First, the claims occur according to a Poisson Process. Secondly, the

claims form a sequence of i.i.d. random variables. Thirdly, the claim sizes and the epochs of claim
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occurrences are independent. Bara Kim and Hwa-Sung Kim [1] obtained the explicit expressions

for the first two order moments of discounted aggregate claims under weaker conditions. First,

it was assumed that the claim arrivals may be correlated. Secondly, the claim sizes were also

correlated. Finally, the claim sizes and the epochs of claim occurrences were allowed to be

dependent. Most of the literature concerns the discounted aggregate claims under continuous

time insurance risk models with zero or a non-zero constant rate of net interest. However, there is

not much under a discrete-time insurance risk model and with stochastic interest. The advantage

of a discrete-time framework with stochastic interest is its flexibility to insurer features in the

model.

The interest rate that will apply in future time is of course not known. Thus it seems

reasonable to ask why future interest rates have not been modeled as a stochastic process. Two

reasons have led one to refrain from such a model: 1) Insurance is particularly concerned with

the long term development of interest rates and no commonly accepted stochastic model exists

for making long term predictions. 2) A reasonable assumption is that the remaining time of the

insured risks are, essentially, independent random variables. With a fixed interest assumption,

the insurer’s losses from different policies become independent random variables. The distribution

of the aggregate loss can then simply be obtained by convolution. In particular, the variance of

the aggregate loss is the sum of the individual variances, which facilitates the use of the normal

approximation. Stochastic independency between policies would be lost with the introduction of

a stochastic interest rate, since all policies are affected by the same interest development. But

the practical evaluation of an insurance cover should analyse different interest scenarios, interest

varies over time and can be presented by a sequence of random variables.

In this paper, we consider the discounted aggregate claims when the sizes of claims and dis-

counted factors dynamics of the underlying risk assets are governed by a discrete-time Markovian

environment. The discrete-time framework provides a natural and intuitive way to incorporate

the effect in the underlying Markovian chain. We assume that the sizes of claims are correlated,

the financial risks are correlated and the claim sizes and the financial risks are allowed to be

dependent. In doing this, we use a Markovian environment, which affects both claim sizes and

the financial risks. The objective of this paper is to investigate the first two order moments of

discounted aggregate claims in a Markovian environment. We will derive a system of differential

equations for the Laplace-Stieltjes transform of the distribution of discounted aggregate claims.

Moreover, using a differentio-integral equation, we will also derive explicit expressions of the first

two order moments of discounted aggregate claims.

The rest of the paper is organized as follows. In Section 2, we give a circumstance for the

model and some assumptions. In Section 3, we present a system of difference equations for

the Laplace-stieltjes transform of the distribution of discounted aggregate claims. In Section 4,

the explicit formulae of the first two order moments of discounted aggregate claims are derived.

Finally, concluding remarks are given in Section 5.
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2. The model

In this section, we present a discrete-time insurance risk model among financial risks and a

Markovian environment. Following Nyrhinen [5, 6], Tang and Tsitsiashvili [7, 8] and Tang and

Vernic [9], we consider the discrete-time insurance risk model

W (n) =

n
∑

i=1

Xi

i
∏

k=1

Yk, n = 1, 2, . . . , (1)

W (0) =0, (2)

where Xn is the aggregate claims within period n and Yn is the discounted factor from time n to

n− 1, n = 1, 2, . . . . We call Xn the insurance risks and Yn the financial risks for n = 1, 2, . . . . It

is clear that W (n) introduced above denotes the total discounted amount of claims by the end

of the period n. Here we assume Xn are correlated, Yn are correlated and both Xn and Yn are

allowed to be dependent, for n = 1, 2, . . . .

Next, we describe the laws for Xn and Yn, n = 1, 2, . . . . First, we introduce a discrete time

process {J(n) : n = 0, 1, 2, . . .} that describes the environment for the risk business. Categorize

the circumstances for the risk business into m states, say, 1, 2, . . . , m. Suppose that {J(n) :

n = 0, 1, 2, . . .} is homogeneous Markovian chain, whose state set is {1, 2, . . . , m} and transition

matrix is Q = (qij)m×m. Let J(n) denote the state of the business at time n. We call {J(n) :

n = 0, 1, 2, . . .} the Markovian environment process. In the following, we give some assumptions.

Assumption A Given J(n), J(0), (W (n + k) − W (n), J(n + k)) is independent of W (n).

Assumption B Given J(n), (Xn+k, Yn+k)(k ≥ 1) are independent of J(0), J(1), . . . , J(n−1).

Given J(1), W (1) and J(0) are independent and Y1 is dependent on X1.

Assumption C Given J(0), J(1), . . . , J(n),(Y1, Y2, . . . , Yn) is independent of (Xn+k, Yn+k, Jn+k),

k ≥ 1.

Assumption D {(Xn, Yn, Jn), n ≥ 1} is a stationary process.

We also suppose that
∏n

h=1 Yh is independent of J(n), J(0). Finally, throughout the paper,

we assume that the moments involved in the paper exist and the integral and differential orders

may be interchanged.

3. The Laplace-Stieltjes transform

Let X(i) denote the generic random variable for the claim size Xn given J(n) = i. Denote

the Laplace-stieltjes transform, the first and the second moments of X(i) by ĝi(s), gi and g
(2)
i ,

respectively, that is,

ĝi(s) =E
[

e−sX(i)]

= E
[

e−sXn |J(n) = i
]

, gi = E
[

X(i)
]

= E
[

Xn|J(n) = i
]

,

g
(2)
i =E

[

(X i)2
]

= E
[

(

Xn

)2
|J(n) = i

]

, Ĝ(s) = diag
(

ĝ1(s), . . . , ĝm(s)
)

,

G =diag
(

g1, . . . , gm

)

, G(2) = diag
(

g
(2)
1 , . . . , g(2)

m

)

.

Let

fij(s, n) = E
[

e−sW (n)1J(n)=j |J(0) = i
]

. (3)
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Denote by F (s, n) the m × m matrix whose (i, j) entry is fij(s, n). Now we give a series of

propositions for fij(s, n).

Proposition 3.1 For any s ≥ 0, n = 1, 2, . . . , k = 1, 2, . . . , we have

F (s, n + k) = F (s, n)E
[

F
(

s

n
∏

h=1

Yh, k
)]

. (4)

Proof For any s ≥ 0, i, j = 1, 2, . . . , m,

fij(s, n + k) = E
[

e−sW (n+k)1J(n+k)=j |J(0) = i
]

= E
[

e−sW (n)E
[

e−s(W (n+k)−W (n))1J(n+k)=j

∣

∣W (n), J(n), J(0) = i
]∣

∣J(0) = i
]

.

Since (W (n+k)−W (n), J(n+k)) is independent of W (n) when J(n), J(0) are given , the above

equation is

fij(s, n + k) = E
[

e−sW (n)E
[

e−s
∑ n+k

h=n+1 Xl

∏ l
j=1 Yh1J(n+k)=j

∣

∣J(n), J(0) = i
]

|J(0) = i
]

.

Given J(n), (Xn+1, Yn+1, . . .) is independent of J(n − 1), J(n − 2), . . . , J(0), so

E
[

e−s
∑n+k

l=n+1
Xl

∏ l
h=n+1 Yh1J(n+k)=j

∣

∣J(n), J(0) = i
]

= E
[

e−s
∑n+k

l=n+1 Xl

∏

l
h=1 Yh1J(n+k)=j

∣

∣J(n)
]

.

For {(Xn, Yn, J(n)), n ≥ 1} is a stationary process, the above equation is equal to

=E
[

e−s
∑

k
l=1 Xl

∏

l
h=1 Yh1J(k)=j

∣

∣J(0)
]

=fJ(0)j(s, k).

(Y1, Y2, . . . , Yn) is independent of (Xn+1, Yn+1, J(n + 1), Xn+2, Yn+2, J(n + 2), . . .) given J(n),

. . ., J(0). Then

E
[

e−s
∏n

h=1 Yh

∑ n+k

l=n+1
Xl

∏ l
h=n+1 Yh1J(n+k)=j

∣

∣J(n), J(0) = i
]

= E
[

E
[

e−s
∏

n
h=1 Yh(

∑ n+k

l=n+1 Xl

∏

l
h=n+1 Yh)1J(n+k)=j

∣

∣J(n), J(0) = i, Y1, Y2, . . . , Yn

]

| J(n), J(0) = i
]

= E
[

E
[

e−s̃(
∑n+k

l=n+1 Xl

∏ l
h=n+1 Yh)1J(n+k)=j

∣

∣J(n), J(0) = i |s̃=s
∏

n
h=1 Yh

]

| J(n), J(0) = i
]

= E
[

fJ(n)j(s

n
∏

h=1

Yh, k) | J(n), J(0) = i
]

.

Moreover,
∏n

j=1 Yj is independent of J(n) and J(0), then

E
[

fJ(n)j(s

n
∏

h=1

Yh, k) | J(n), J(0) = i
]

= E
[

fJ(n)j(s

n
∏

h=1

Yh, k) | J(n)
]

=

m
∑

l=1

1J(n)=lEfl,j(s

n
∏

h=1

Yh, k).

Thus

fij(s, n + k) = E
[

e−sW (n)EfJ(n)j(s

n
∏

h=1

Yh, k)|J(0) = i
]
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=

m
∑

l=1

E
[

e−sW (n)1J(n)=lEfl,j(s

n
∏

h=1

Yh, k)|J(0) = i
]

=

m
∑

l=1

E
[

e−sW (n)1J(n)=l|J(0) = i
]

Efl,j(s

n
∏

h=1

Yh, k)

=

m
∑

l=1

fi,l(s, n)Efl,j(s

n
∏

h=1

Yh, k),

which completes the proof. 2

Proposition 3.2 For any s ≥ 0, we have

F (s, 1) = QEĜ(sY1), (5)

F (0, 1) = Q. (6)

Proof For any s ≥ 0, we have

fij(s, 1) = E
[

e−sW (1)1J(1)=j |J(0) = i
]

= P (J(1) = j|J(0) = i)E
[

e−sW (1)
∣

∣J(1) = j, J(0) = i
]

= qijE
[

e−sW (1)
∣

∣J(1) = j, J(0) = i
]

.

Since J(1), W (1) and J(0) are mutually independent and Y (1) is dependent of X(1), we have

qijE
[

e−sW (1)
∣

∣J(1) = j, J(0) = i
]

= qijE
[

e−(sY1)X1
∣

∣J(1) = j
]

= qijE
[

E
[

e−(sY1)X1
∣

∣J(1) = j, Y1

]

]

= qijEĝj(sY1),

which yields (5). The equation (6) is trivial.

Proposition 3.3 We assume that Ỹ1 has the same distribution as Y1 and is independent of

(Y1, Y2, . . . , Yn). For any s ≥ 0, n = 2, 3, . . . , we have

F (s, n + 1) − F (s, n) = F (s, n)
[

Q(Ĝ(sỸ1

n
∏

h=1

Yh) − I)]
]

(7)

F (0, n) = Qn. (8)

Proof For any s ≥ 0, by Proposition 1, we have

F (s, n + 1) − F (s, n) = F (s, n)E
[

F (s

n
∏

h=1

Yh, 1)
]

− F (s, n)

= F (s, n)
[

E
[

F (s

n
∏

h=1

Yh, 1) − I
]

]

.

By Proposition 2, the above equation leads to

E
[

fij(s
n

∏

h=1

Yh, 1) = E
[

qijE[ĝj(s
n

∏

h=1

YhỸ1]
]

= qijE[ĝj(sỸ1

n
∏

h=1

Yh],

F (s, n + 1) − F (s, n) = F (s, n)
[

QE
[

Ĝ(sỸ1

n
∏

h=1

Yh)
]

− I
]

.
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By F (0, 1) = Q and the above difference equation, we may obtain

F (0, n + 1) − F (0, n) = F (0, n)[Q − I] = QnF (0, 1),

F (0, n) = Qn.

4. Moments

Let E(n) be the m × m matrix whose (i, j) entry is

Eij(n) = E
[

W (n)1J(n)=j |J(0) = i
]

(9)

and µ(n) be the m-dimensional column vector whose ith component is

µi(n) = E
[

W (n)
∣

∣J(0) = i]. (10)

Then µ(n) = E(n)e, where e = (1, 1, . . . , 1)T is the m-dimensional column vector.

Theorem 4.1 For n = 0, 1, 2, . . . , we have

E(n + 1) =

n
∑

i=0

c1iQ
i+1GQn−i, (11)

where c1n = E[Ỹ1

∏n

j=1 Yj ], c10 = E[Ỹ1].

Proof For W (0) = 0, E[W (0)|J(0)] = 0. Since

Eij(1) =E[W (1)1J(1)=j |J(0) = i] = E[X1Y11J(1)=j |J(0) = i]

=qijE[X1Y1|J(1) = j, J(0) = i] = qijE[X1Y1|J(1) = j] = qijE
[

E
[

X1Y1|J(1) = j, Y1

]

]

=qijE
[

Y1E
[

X1|J(1) = j, Y1

]

]

= qijE
[

Y1E
[

X1|J(1) = j
]

]

=qijE[Y1gj

]

= qijc10gj,

we have E(1) = c10QG. Let

Mk(n) =
∂kF (s, n)

∂sk

∣

∣

s=0
, k = 1, 2, (12)

and denote the probability density functions of Ỹ1, (Y1, Y2, . . . , Y n), X(i) by p1(y), pn(y1, . . . , yn),

p(x|i), respectively,

∂E[Ĝ(sỸ1

∏n

h=1 Yh)]

∂s
=

∂

∂s

∫

Rn+1

Ĝ(sy

n
∏

h=1

yhp1(y)pn(y1, . . . , yn))dydy1 · · · dyn

=

∫

Rn+1

y

n
∏

h=1

yh

∂Ĝ(s̃)

∂s̃
|s̃=sy

∏

n
h=1 yh

p1(y)pn(y1, . . . , yn)dydy1 · · · dyn.

Note that ĝi(s) is the ith diagonal element of m × m matrix Ĝ(s), we have

∂ĝi(s̃)

∂s̃
=

∂E[e−s̃X(i)

]

∂s̃
=

∂

∂s̃

∫

R

e−s̃xp(x|i)dx =

∫

R

(−x)e−s̃xp(x|i)dx.
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From the above equations,

∂E[Ĝ(sỸ1

∏n

h=1 Yh)]

∂s
|s=0

=

∫

Rn+1

y

n
∏

h=1

yh[

∫

R

(−x)e−s̃xdiag(p(x|1), p(x|2), . . . , p(x|m))dx]·

p1(y)pn(y1, . . . , yn)dydy1 · · · dyn|s̃=0

=

∫

Rn+1

y

n
∏

h=1

yh(−G)p1(y)pn(y1, . . . , yn)dydy1 · · · dyn

= −E[Ỹ1

n
∏

h=1

Yh]G = −c1nG.

By (7) and (12),

M1(n + 1) − M1(n) =
[∂F (s, n + 1)

∂s
−

∂F (s, n)

∂s

]
∣

∣

s=0

=
∂
(

F (s, n + 1) − F (s, n)
)

∂s

∣

∣

s=0

=
∂

∂s
F (s, n)

[

QE
[

Ĝ(sỸ1

n
∏

h=1

Yh)] − I
]

∣

∣

s=0

=
∂F (s, n)

∂s

∣

∣

s=0
(Q − I) − F (s, n)Q

∂E[Ĝ(sỸ1

∏n

h=1 Yh)]

∂s

∣

∣

s=0

= M1(n)(Q − I) − c1nQn+1G.

Since M1(0) = 0, F (0, n) = Qn and E(n) = −M1(n), the above equations lead to

E(n + 1) − E(n) = E(n)(Q − I) + c1nQn+1G. (13)

Then,

E(n + 1) = E(n)Q + c1nQn+1G =
n

∑

i=0

c1iQ
i+1GQn−i.

Next we consider the second order moment of the discounted value of aggregate claims. Let

µ
(2)
i (n) be the second moment of W (n) given J(0) = i, that is,

µ
(2)
i (n) = E

[

(W (n))2|J(0) = i
]

. (14)

Denote by µ(2)(n) the m-dimensional column vector whose ith component is µ
(2)
i (n), then given

J(0) = i variance σ2
i (n) of W (n) is expressed as

σ2
i (n) = µ

(2)
i (n) −

(

µi(n)
)2

, i = 1, . . . , m. (15)

The following theorem gives an explicit expression for µ
(2)
i (n).

Theorem 4.2 For n = 1, 2, . . . , we have

µ
(2)
i (n + 1) =

n
∑

i=1

[

c2iQ
i+1G(2) + 2c1i

[

i−1
∑

j=0

c1jQ
j+1GQj−i−1

]

QG
]

Qn−i
e + c20QG(2)Qn

e, (16)

where c1n = E[Ỹ1

∏n

h=1 Yh], c10 = E[Ỹ1], c2n = E[(Ỹ1

∏n

h=1)
2Yh], c20 = E[(Ỹ1)

2].
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Proof The proof is similar to that of Theorem 1, except for a more careful differentio-integral

operation. Note that

∂2E[Ĝ(sỸ1

∏n

h=1 Yh)]

∂s2
=

∂2

∂s2

∫

Rn+1

Ĝ(sy

n
∏

h=1

yhp1(y)pn(y1, . . . , yn))dydy1 · · ·dyn

=

∫

Rn+1

(y
n

∏

h=1

yh)2
∂2Ĝ(s̃2)

∂s̃
|s̃=sy

∏

n
h=1 yh

p1(y)pn(y1, . . . , yn)dydy1 · · · dyn

and

∂2ĝi(s̃)

∂s̃2
=

∂2E[e−s̃X(i)

]

∂s̃2
=

∂2

∂s̃2

∫

R

e−s̃xp(x|i)dx =

∫

R

x2e−s̃xp(x|i)dx,

we have

∂2E[Ĝ(sỸ1

∏n

h=1 Yh)]

∂s2

∣

∣

s=0

=

∫

Rn+1

(y

n
∏

h=1

yh)2[

∫

R

x2e−s̃xdiag(p(x|1), p(x|2), . . . , p(x|m))dx]·

p1(y)pn(y1, . . . , yn)dydy1 · · · dyn|s̃=0

=

∫

Rn+1

(y

n
∏

h=1

yh)2G(2)p1(y)pn(y1, . . . , yn)dydy1 · · · dyn

= E[(Ỹ1

n
∏

h=1

Yh)(2)]G(2) = c2nG(2).

By the equation (5),

M2(1)

=
∂2F (s, 1)

∂s2

∣

∣

s=0
= Q

∫

R

y2

∫

R

x2e−sxdiag(p(x|1), p(x|2), . . . , p(x|m))dxdy|s=0

= Q

∫

R

y2

∫

R

x2diag(p(x|1), p(x|2), . . . , p(x|m))dxdy|s=0

= Q

∫

R

y2G(2)dy = c20QG(2).

Furthermore, by (12)

M2(n + 1) − M2(n)

=
[∂2F (s, n + 1)

∂s2
−

∂2F (s, n)

∂s2

]∣

∣

s=0
=

∂2
(

F (s, n + 1) − F (s, n)
)

∂s2

∣

∣

s=0

=
∂2

∂s2
{F (s, n)

[

QE
[

Ĝ(sỸ1

n
∏

h=1

Yh

]

− I
]

}
∣

∣

s=0

=
∂2F (s, n)

∂s2

[

QE
[

Ĝ(sỸ1

n
∏

h=1

Yh

]

− I
]

}
∣

∣

s=0
+

∂F (s, n)

∂s
Q

∂E
[

Ĝ(sỸ1

∏n

h=1 Yh

∂s
|s=0+

F (s, n)Q
∂E

[

Ĝ(sỸ1

∏n

h=1 Yh]

∂s
|s=0

= M2(n)(Q − I) − 2c1nM1(n)QG + c2nQn+1G(2),
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where M2(0) = 0 and M1(n) = −E(n). So

M2(n + 1) = M2(n)Q + 2c1nE(n)QG + c2nQn+1G(2)

=

n
∑

i=0

(

c2iQ
i+1G(2) + 2c1iE(i)QG

)

Qn−i

=

n
∑

i=1

(

c2iQ
i+1G(2) + 2c1iE(i)QG

)

Qn−i + c20QG(2)Qn

=

n
∑

i=1

[

c2iQ
i+1G(2) + 2c1i

[

i−1
∑

j=0

c1jQ
j+1GQj−i−1

]

QG
]

Qn−i + c20QG(2)Qn.

Substituting u(2)(n) = M2(n)e into the above equation leads to

µ
(2)
i (n + 1) =

n
∑

i=1

[

c2iQ
i+1G(2) + 2c1i

[

i−1
∑

j=0

c1jQ
j+1GQj−i−1

]

QG
]

Qn−ie + c20QG(2)Qne.

The proof of the theorem is completed. 2

5. Conclusions

In this paper, we derived a system of differential equations for the Laplace-Stieltjes transform

of the distribution of discounted aggregate claims. Moreover, using the differentio-integral equa-

tion, we investigated the first two order moments of discounted aggregate claims in a Markovian

environment. The explicit expressions of the first two order moments have been obtained. These

results may have some practical implications on the pricing and the investment of insurance.
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