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Abstract The paper proposes a statistic to test stationarity of series with κ-stable innovations

and structural breaks, obtains the asymptotical distribution of the statistic, and proves the

consistency of the test. To obtain critic values for the test without the estimation of the index

κ, the paper proposes the bootstrap procedures to approximate the distribution, and proves the

consistency of the procedures. The simulations demonstrate that the bootstrap test is practical

and powerful.
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1. Introduction

To test the stationarity of series with structural breaks is in the focus of statistics and

econometrics. Perron [1, 2] proposed a DF-type statistic to test the stationarity of series with

different structural breaks. From then on, a great deal of literature on the test of stationarity

arose, such as Perron [3], Banerjee [4], Christiano [6], Zivot [6]. Kim et al. [7] considers the test

of unit root in series with changed variances. Bussetti and Harvey [8] proposed a test based on

residuals to test the stationarity of series in the case of series with different structural breaks.

Recently, series with infinite varianced innovations arouse the interest of statisticians, such

as Athreya[9], Han [10] and Phillips [11]. Just as Guillaume [12] and Mittnik [13], many types

of data from economics and finance have the same character: a heavier tail than the normal

variants, so it is more precise to model these heavy-tailed data with some κ-stable processes,

where the index κ can reflect the heaviness of the data.

However, the test for stationarity of series with κ-stable innovations and structural breaks

has attracted little attention. So in this paper, we propose a statistic to test stationarity of

series with κ-stable innovations and structural breaks, obtain the asymptotical distribution of

the statistic, and prove the consistency of the test. To obtain critic values for the test without
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the estimation of the index κ, the paper proposes the bootstrap procedures to approximate the

distribution, and proves the consistency of the procedures.

The rest of this paper is organized as follows. In Section 2, we state the model and necessary

assumptions and, describe the bootstrap procedures. The main results will appear in Section 3.

Simulation will appear in Section 4.

2. Model and assumptions

We consider the model

yt = µt + δωt + εt, t = 1, . . . , T, (1)

where µt = µt−1 + ηt, {εt, t ≥ 1} are independent of {ηt, t ≥ 1}, {εt, t ≥ 1} and {ηt, t ≥ 1}

are 0-meaned series in the domain of attraction of the same stable law with 1 < κ < 2, ωt = 1

for t > [Tλ], otherwise 0. In the model above, the intercept µt of {yt} has a known change at

T0 = [Tλ].

The null Hypothesis and the alternative one are: H0: µt = c, H1: {µt} is a random walk.

In order to test the hypothesis, we employ the Busetti’s statistic based on the regression

residuals of {yt} on a constant:

ξT (λ) =
1

T 2

∑T
t=1{

∑t
s=1 es}

2

1
T

∑T
s=1 e2

s

,

where {es, 1 ≤ s ≤ [Tλ]} are regression residuals of {ys, 1 ≤ s ≤ [Tλ]} on a constant, {es, [Tλ] +

1 ≤ s ≤ T } are residuals of {ys, [Tλ] + 1 ≤ s ≤ T } on a constant. When {εt} and {ηt} are

normal sequences, namely the index κ=2, the statistic above was used by Busetti [8]. But when

the index 1 < κ < 2, variances of {εt} and {ηt} are infinite, we just use the denominator above

to obtain a rate without the index.

We can anticipate the asymptotic distribution is a function of stable process. The critic

values need the knowledge of the index κ, where the κ is difficult to estimate. We propose the

Bootstrap procedures for the test above:

Step 1. Calculate the residuals of {yt} on a constant:

ε̂t =



















yt −
1

Tλ

[Tλ]
∑

t=1
yt, t ≤ [Tλ],

yt −
1

T (1−λ)

T
∑

t=[Tλ]+1

yt, t > [Tλ];

Step 2. For m ≤ T , select bootstrap samples: {ε̃t, 1 ≤ t ≤ [Tλ]} from {ε̂t, 1 ≤ t ≤ [Tλ]},

{ε̃t, [Tλ] + 1 ≤ t ≤ T } from {ε̂t, [Tλ] + 1 ≤ t ≤ T } above;

Step 3. Construct bootstrap processes:

ỹt =



















1
Tλ

[Tλ]
∑

t=1
yt + ε̃t, t ≤ [mλ],

1
T (1−λ)

T
∑

t=[Tλ]+1

yt + ε̃t, t > [mλ];
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Step 4. Calculate the statistic ξm(λ) =
1

m2

∑

m

t=1
{
∑

t

s=1
ẽs}

2

1

m

∑

m

s=1
ẽ2

s

, where {ẽs, 1 ≤ s ≤ [mλ]} are

regression residuals of {ỹs, 1 ≤ s ≤ [mλ]} on a constant, {ẽs, [mλ] + 1 ≤ s ≤ m} are residuals of

{ỹs, [mλ] + 1 ≤ s ≤ m} on a constant;

Step 5. Duplicate the steps above, we can calculate the empirical distribution and empirical

p-values of ξm(λ).

In order to prove the convergence of ξm(λ), we adopt Athreya [10] assumption on the size of

bootstrap procedures for an estimator in series with stable innovations:

Assumption When T → ∞, m → ∞ and m/T → ∞.

3. Main results

Under the assumption above, four following results are established:

Lemma 1[11] If {εt, t ≥ 1} and {ηt, t ≥ 1} are in an attracted field of a stable law, that is to

say: there exists an aT = T 1/κl(T ), where l(T ) is a slowly varying function, such that

a−1
T

[Tr]
∑

t=1

εt → Uκ(r), a−1
T

[Tr]
∑

t=1

εt
2 → Vκ/2(r), a

−1
T

[Tr]
∑

t=1

ηt → Xκ(r), a−1
T

[Tr]
∑

t=1

ηt
2 → Yκ/2(r),

where Uκ(r), Vκ/2, Xκ(r), Yκ/2(r) are stable variables with the corresponding index.

Theorem 1 If {yt} are generated in model (1) under the hypothesis H0, then the statistic

satisfies:

ξT (λ) →

∫ 1

0
(B(r, λ))2dr

Vκ/2(1)
,

where Uκ(r), Vκ/2(1) are stable variables with the index κ, κ/2, respectively, and B(r, λ) is defined

as:

B(r, λ) =

{

Uκ(r) − r
λUκ(λ), r ≤ λ,

{Uκ(r) − Uκ(λ)} − r−λ
1−λ{Uκ(1) − Uκ(λ)}, r > λ.

Proof The residuals of {yt} generated by (1) on a constant is the equation (2): et = ε̂t, then

by Lemma 1 and the theorem for continuous map of processes, a−1
T

∑[Tr]
t=1 et → B(r, λ)), and the

numerator T−1a−2
T

∑T
t=1{

∑t
s=1 es}

2 →
∫ 1

0 (B(r, λ))2dr for

a−2
T

[Tλ]
∑

s=1

e2
t = a−2

T

[Tλ]
∑

s=1

ε2
t − (Tλ)−1(a−1

T

[Tλ]
∑

s=1

εs)
2,

a−2
T

T
∑

s=[Tλ]+1

e2
t = a−2

T

T
∑

s=[Tλ]+1

ε2
t − (T (1 − λ)−1(a−1

T

T
∑

s=[Tλ]+1

εs)
2.

The denominator a−2
T

∑T
s=1 e2

s → V (1). The proof is completed. 2

Theorem 2 If {yt} are generated in model (1) under the alternative hypothesis H1, then the

statistic satisfies: ξT (λ) = OP (T ).

Proof Under the alternative hypothesis H1, µk = µk−1 + ηt is a series of random walk, so the
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residuals of {yt} on a constant yields:

êt =



















µt −
1

Tλ

[Tλ]
∑

t=1
µt + εt −

1
Tλ

[Tλ]
∑

t=1
εt, t ≤ [Tλ],

µt −
1

T (1−λ)

T
∑

t=[Tλ]+1

µt + εt −
1

T (1−λ)

T
∑

t=[Tλ]+1

εt, t > [Tλ].
(2)

Then for r ≤ λ,

T−1a−1
T

[Tr]
∑

s=1

(µs −
1

Tλ

[Tλ]
∑

t=1

µt) →

∫ r

0

Xκ(s)ds
r

λ

∫ 1

λ

Xκ(s)ds, (3)

T−1a−2
T

[Tr]
∑

s=1

(µs −
1

Tλ

[Tλ]
∑

t=1

µt)
2 →

∫ r

0

X2
κ(r)dr − 2λ−1

∫ r

0

Xκ(s)ds

∫ λ

0

Xκ(s)ds+

r

λ2
(

∫ λ

0

Xκ(r)dr)2 , (4)

and for r ≥ λ,

T−1a−1
T

T
∑

s=[Tr]+1

(µs −
1

T (1 − λ)

T
∑

t=[Tλ]+1

µt) →

∫ 1

r

Xκ(s)ds
r − λ

1 − λ

∫ 1

λ

Xκ(s)ds, (5)

T−1a−1
T

T
∑

s=[Tr]+1

(µs −
1

T (1 − λ)

T
∑

t=[Tλ]+1

µt)
2 →

∫ 1

r

X2
κ(r)dr +

1 − r

(1 − λ)2
(

∫ 1

λ

Xκ(r)dr)2−

2(1 − λ)−1

∫ 1

r

Xκ(s)ds

∫ 1

λ

Xκ(s)ds. (6)

From equations (3), (4) and (6),

T−1a−1
T

[Tr]
∑

i=1

ei → B1(r, λ), B1(r, λ) =

{

∫ r

0
X(s)ds − r

λ

∫ λ

0
Xκ(s)ds, r ≤ λ,

∫ 1

r
X(s)ds − r−λ

1−λ

∫ 1

λ
Xκ(s)ds, r > λ.

(7)

So T−2a−2
T

∑T
t=1{

∑t
s=1 es}

2 = OP (Ta2
T ). From equations (3), (5) and (7), T−1a−2

T

∑T
s=1 e2

s =

OP (1). The proof of Theorem 2 is completed. 2

Remark 1 Theorem 1 is just the asymptotical distribution in Busetti [8] when the index κ = 2.

Theorem 2 states the consistency of the test.

For convenience, we denote by ξ∞(λ) the asymptotical distribution of ξT (λ). Let ε =

σ(εt, t ≥ 1) and Pε be a conditional probability on ε. Under the hypothesis H0,

ε̂t =



















εt −
1

Tλ

[Tλ]
∑

t=1
εt, t ≤ [Tλ],

εt −
1

T (1−λ)

T
∑

t=[Tλ]+1

εt, t > [Tλ],
(8)

so the corresponding unobservable variable εt is selected when an ε̃t is selected, denoted by εt.

The following lemma is necessary for convergence of bootstrap procedures:

Lemma 2 Under the assumption and hypothesis H0, if Um(τ) = a−1
m

∑[mτ ]
i=1 ε̃i, 0 ≤ τ ≤ 1, for
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any bounded continuous function h on D[0, 1], Pε(h(a−1
m

[mτ ]
∑

i=1

ε̃i) ≤ x) → P (h(U(·)) ≤ x) for all

points of continuity of the stable law x.

Proof From the definition of {ε̃t} and the equation (2),

ε̃t =



















εt −
1

Tλ

[Tλ]
∑

t=1
εt, t ≤ [mλ],

εt −
1

T (1−λ)

T
∑

t=[Tλ]+1

εt, t > [mλ],
(9)

so a−1
m

∑[mτ ]
i=1 ε̃i = a−1

m

∑[mτ ]
i=1 εi −

[mτ ]
Tλ

∑[Tλ]
i=1 εi −

[m(τ−λ]
T (1−λ)

∑T
[Tλ]+1 εt. Lemma 1 and the assump-

tion certify that the last two terms converge to 0 in probability. With the Lemma 1 in [10], the

proof is completed. 2

Theorem 3 Under the assumption and the hypothesis H0, for any x > 0, the empirical distri-

bution satisfies: Pε(ξm(λ) ≤ x) → Pε(ξ∞(λ) ≤ x), T → ∞.

Proof For ξm(λ) =
1

m2

∑

m

t=1
{
∑

t

s=1
ẽs}

2

1

m

∑

m

s=1
ẽ2

s

, just like the way the numerator is considered, the de-

nominator can be considered similarly. Under the hypothesis H0,

ε̃t =















ỹt −
1

mλ

[mλ]
∑

t=1

ỹt = ε̃t −
1

mλ

[mλ]
∑

t=1

ε̃t, t ≤ [mλ],

ỹt −
1

m(1−λ)

m
∑

t=[mλ]+1

ỹt = ε̃t −
1

m(1−λ)

m
∑

t=[mλ]+1

ε̃t, t > [mλ],

with Lemma 2 and the theorem for continuous map of processes, a−1
m

∑[mr]
s=1 ẽs → B(r, λ), then

ma−2
m {

1

m2

m
∑

t=1

(

t
∑

s=1

ẽs)
2} →

∫ 1

0

(B(r, λ))2.

The proof is completed. 2

Theorem 4 Under the assumption and the alternative hypothesis H1, the empirical distribution

satisfies: ξm(λ) = OP (m).

Proof Under the alternative hypothesis H1, denote the corresponding µt as µ̃t when the boot-

strap sample ε̃t is selected. With the definition of ε̃t and equation (3),

ε̃s =



















µ̃s −
1

Tλ

[Tλ]
∑

t=1
µt + εt −

1
Tλ

[Tλ]
∑

t=1
εt, s ≤ [Tλ],

µ̃s −
1

T (1−λ)

T
∑

t=[Tλ]+1

µt + εt −
1

T (1−λ)

T
∑

t=[Tλ]+1

εt, t > [Tλ],
(10)

then

ẽs =



































ỹs −
1

mλ

[mλ]
∑

t=1
ỹt = µ̃s −

1
mλ

[mλ]
∑

t=1
µ̃t + εs −

1
mλ

[mλ]
∑

t=1
ε̃t, t ≤ [mλ],

ỹs −
1

m(1−λ)

m
∑

t=[mλ]+1

ỹt = µ̃s −
1

m(1−λ)

m
∑

t=[mλ]+1

µ̃t + εs−

1
m(1−λ)

m
∑

t=[mλ]+1

ε̃t, t > [mλ].

(11)



1020 R. B. QIN and Z. TIAN

Following the similar procedures in Theorem 3.2, we get

m−2a−2
m

m
∑

t=1

{

t
∑

s=1

ẽs}
2 = OP (ma2

m), m−1a−2
m

m
∑

s=1

e2
s = OP (1).

The proof is completed. 2

Remark 2 Theorem 3 points out that the empirical bootstrap distribution is a nice approxi-

mation of ξ∞(λ). Theorem 4 states that the power of bootstrap procedures has no loss asymp-

totically.

4. Simulations

In this section, we study the performance of the test and corresponding Bootstrap procedures

through simulations for stable innovations with the index κ = 1.14. Critic values in Table 1 are

obtained by simulating the asymptotical distribution directly, namely, we calculate the statistic

5000 times independently with a sample size 1000 under the null hypothesis H0, then use the

empirical distribution of the statistic to obtain the values in Table 1. From Table 1, critic values

for κ = 1.14 are larger than those for κ = 2, so the heaviness of the innovation will affect

the statistic in Busetti [8]. In Table 2 and 3, we employ two functions, m = [T/LnT ] and

m = [T/Ln(LnT )] to decide the size of bootstrap sample. From Table 2 and 3, critic values by

Bootstrap procedures are nearly equal to the critic values by simulating directly, just as Theorem

3. Besides this, critic values by Bootstrap procedures are affected less than those by simulating

directly by the ourliers in the innovations. In Table 4, we compare the power of the simulation

directly with the Bootstrap procedures. From Table 4, the empirical power of the Bootstrap

procedures is higher than that of simulation directly asymptotically, as stated in Theorem 4.

Appendix

1% 2.5% 5% 10% 90% 95% 97.5% 99%

λ=0.1 0.0292 0.0372 0.0464 0.0592 0.3556 0.4579 0.5724 0.7242

0.2 0.0303 0.0403 0.0503 0.0645 0.4757 0.6448 0.8056 1.0024

0.3 0.0316 0.0391 0.0488 0.0639 0.5775 0.7645 0.9441 1.1424

0.4 0.0273 0.0380 0.0476 0.0637 0.6565 0.8734 1.0659 1.3566

0.5 0.0336 0.0401 0.0485 0.0631 0.6800 0.9188 1.1790 1.4841

0.6 0.0321 0.0409 0.0506 0.0658 0.6600 0.9135 1.1475 1.4668

0.7 0.0312 0.0393 0.0500 0.0653 0.5946 0.7911 0.9928 1.2605

0.8 0.0328 0.0404 0.0502 0.0633 0.4751 0.6285 0.7929 1.0345

0.9 0.0283 0.0382 0.0468 0.0591 0.3655 0.4677 0.5819 0.7460

Table 1 Critic values by Monte Carlo simulation, T=1000, κ = 1.14
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1% 2.5% 5% 10% 90% 95% 97.5% 99%

λ=0.1 0.0271 0.0339 0.0407 0.0514 0.3505 0.4538 0.5435 0.6579

0.2 0.0283 0.0345 0.0416 0.0512 0.3477 0.4416 0.5386 0.6886

0.3 0.0319 0.0404 0.0499 0.0630 0.5120 0.6621 0.7900 0.9816

0.4 0.0293 0.0361 0.0446 0.0570 0.5041 0.6641 0.8122 1.0284

0.5 0.0364 0.0457 0.0565 0.0764 0.8316 1.0495 1.2718 1.5214

0.6 0.0292 0.0355 0.0436 0.0579 0.4848 0.6318 0.7803 0.9477

0.7 0.0299 0.0379 0.0459 0.0594 0.4967 0.6700 0.8240 1.0327

0.8 0.0315 0.0395 0.0489 0.0615 0.4869 0.6202 0.7765 0.9762

0.9 0.0311 0.0385 0.0462 0.0567 0.3701 0.4630 0.5914 0.7365

Table 2 Critic values by Bootstrap procedure, T=1000, m = [T/LnT ] = 144, κ = 1.14

1% 2.5% 5% 10% 90% 95% 97.5% 99%

λ=0.1 0.0295 0.0350 0.0423 0.0529 0.3660 0.4751 0.5775 0.6968

0.2 0.0465 0.0609 0.0786 0.1106 0.7827 0.9194 1.0484 1.2410

0.3 0.0545 0.0737 0.1000 0.1378 0.8717 1.0622 1.2394 1.5063

0.4 0.0278 0.0351 0.0456 0.0611 0.5239 0.6846 0.8595 1.1140

0.5 0.0328 0.0404 0.0474 0.0586 0.9071 1.1595 1.3658 1.6451

0.6 0.0276 0.0337 0.0400 0.0503 0.4552 0.6393 0.8082 0.9993

0.7 0.0330 0.0411 0.0520 0.0683 0.4693 0.6249 0.7638 1.0315

0.8 0.0524 0.0659 0.0792 0.1037 0.7409 0.9286 1.1149 1.3145

0.9 0.0294 0.0349 0.0416 0.0506 0.3513 0.4611 0.5669 0.6881

Table 3 Critic values by Bootstrap procedure, T=1000, m = [T/LnLnT ] = 517, κ = 1.14

Monte Carlo bootstrap

10% 5% 2.5% 1% 10% 5% 2.5% 1%

λ=0.1 0.9980 0.9976 0.9974 0.9962 0.9992 0.9992 0.9988 0.9978

0.2 0.9984 0.9976 0.9970 0.9962 0.9986 0.9984 0.9976 0.9960

0.3 0.9964 0.9950 0.9938 0.9930 0.9986 0.9978 0.9972 0.9966

0.4 0.9970 0.9962 0.9954 0.9948 0.9962 0.9952 0.9944 0.9934

0.5 0.9970 0.9962 0.9950 0.9944 0.9962 0.9952 0.9936 0.9926

0.6 0.9972 0.9962 0.9956 0.9946 0.9972 0.9964 0.9956 0.9952

0.7 0.9972 0.9966 0.9956 0.9944 0.9974 0.9970 0.9964 0.9954

0.8 0.9976 0.9970 0.9964 0.9952 0.9982 0.9978 0.9976 0.9968

0.9 0.9992 0.9988 0.9986 0.9982 0.9982 0.9980 0.9968 0.9960

Table 4 Empirical power of two methods (κ = 1.14, m = 144)
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