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Abstract In this paper we consider the Schrödinger operator −∆G + W on the nilpotent Lie

group G where the nonnegative potential W belongs to the reverse Hölder class Bq
1

for some

q
1
≥ D

2
and D is the dimension at infinity of G. The weighted Lp

−Lq estimates for the operators

W α(−∆G + W )−β and W α
∇G(−∆G + W )−β are obtained.
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1. Introduction

As we know, Schrödinger operators on the Euclidean space R
n with non-negative potentials

which belong to the reverse Hölder class have been investigated by a number of scholars [1, 2].

Now the investigation of Schrödinger operators has been generalized to two direction. On the

one hand, Kurata and Sugano generalized Shen’s results to uniformly elliptic operators in [3].

on the other hand, Lu [4] and Li [5] investigated the Schrödinger operators in a more general

setting.

The main purpose of this paper is to investigate the weighted Lp − Lq boundedness of the

operators

T
1

= Wα(−∆G + W )−β , 0 ≤ α ≤ β ≤ 1,

and

T
2

= Wα∇G(−∆G + W )−β , 0 ≤ α ≤
1

2
≤ β ≤ 1, β − α ≥

1

2
,

on the nilpotent Lie group G. Note that Sugano [6] has studied the weighted estimates of the

above two operators on the Euclidean space and Liu [7] has obtained the same estimates on the

stratified Lie group.

Assume G is a simple connected nilpotent Lie group and g is its Lie algebra which is identified

with the space of left invariant vector fields. Given X = {X1, . . . , Xk} ⊆ g a Hörmander system
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of left invariant vector fields on G. This means that there exists an integer s such that the vector

fields X1, . . . , Xk together with their commutators of order at most s span the tangent space of G

at every point x. Let ∆G =
∑k

i=1 X2
i be the sub-Laplacian on G associated to X . The gradient

operator ∇G is denoted by ∇G = (X1, . . . , Xk). Following [8], one can define a left invariant

metric d associated to X which is called the Carnot-Caratheodory metric: let x, y ∈ G, and

d(x, y) = inf{δ | γ : [0, δ] → G | γ(0) = x, γ(δ) = y},

where γ is a piecewise smooth curve satisfying γ′(s) =
∑k

i=1 ai(s)Xi(γ(s)) with
∑k

i=1 |ai(s)|
2 ≤ 1,

for all s ∈ [0, t].

If x ∈ G and r > 0, we will denote by B(x, r) = {h ∈ G|d(x, y) < r} the metric balls. Assume

dx is the Haar measure on G. Then for every measurable set E ⊆ G, |E| denotes the measure of

E. Suppose e is the unit element of G. Note that V (t) = |B(e, t)| = |B(x, t)| for any x ∈ G and

t > 0. Let d and D be the local dimension and the dimension at infinity of G. Note that D ≥ d

and we always assume d ≥ 2 throughout the paper. It follows from (1.1) in [5] that there exists

a constant C1 > 0 such that

C−1
1 td ≤ V (t) ≤ C1t

d, ∀0 ≤ t ≤ 1,

C−1
1 tD ≤ V (t) ≤ C1t

D, ∀1 ≤ t < ∞.

Also, there exists a constant C2 > 1 such that for any r > 0,

V (2r) ≤ C2V (r). (1)

Definition 1 A nonnegative locally Lq integrable function W on G is said to belong to the

reverse Hölder class Bq (1 < q < ∞) if there exists C > 0 such that the reverse Hölder inequality

( 1

|B|

∫

B

W (x)qdx
)

1
q

≤ C
( 1

|B|

∫

B

W (x)dx
)

(2)

holds for every ball B in G.

It is important that the Bq class has a property of “self improvement”; that is, if W ∈ Bq,

then W ∈ Bq+ε for some ε > 0 ([5]).

Now we recall the definitions of fractional maximal operator Mγ and Ap,q-weight on G.

Definition 2 Let f ∈ L1
loc(G). For γ > 0, the fractional maximal operator is defined by

Mγf(x) = sup
x∈B

1

|B|1−γ

∫

B

|f(y)|dy, x ∈ G,

where the supremum on the right side is taken over all balls B such that x ∈ B.

Definition 3 Let 1 < p < ∞ and 1 < q < ∞. For a non-negative function w(x), we say

w ∈ Ap,q if
( 1

|B|

∫

B

w(x)qdx
)

1
q
( 1

|B|

∫

B

w(x)−p/(p−1)dx
)

p−1

p

≤ C

holds for every ball B in G, where C is a positive constant independent of B.
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We obtain the estimates for the adjoint operators T ∗
1

and T ∗
2

with the potential W ∈ Bq
1

for

some q
1

> D
2 .

Theorem 1 Suppose W ∈ Bq
1

for some q
1

> D
2 , 0 < α ≤ β ≤ 1 and let 1

q
2

= 1 − α
q
1

. Then

there exists a constant C > 0 such that

|T ∗
1 f(x)| ≤ C{Mεq

2
(|f |q2 )(x)}

1
q
2 , f ∈ C∞

0 (G),

where ε = 2(β−α)
θ , θ ∈ [d, D].

Theorem 2 Suppose V ∈ Bq
1

for some q
1

> D
2 , 0 < α ≤ 1

2 < β ≤ 1 and β − α ≥ 1
2 . And let

1

q
2

=

{

1 − α
q
1

, if q
1
≥ D,

1 − (α+1)
q
1

+ 1
D , if D

2 < q
1

< D.

Then there exists a constant C > 0 such that

|T ∗
2 f(x)| ≤ C{Mεq

2
(|f |q2 )(x)}

1
q
2 , f ∈ C∞

0 (G),

where ε = 2(β−α)−1
θ , θ ∈ [d, D].

The above theorems will yield the weighted Lp estimates for T
1

and T
2

which generalize the

main results in [6] and [7] to the nilpotent Lie group.

Corollary 1 Assume that W ∈ Bq
1

for q
1

> D
2 , and 0 ≤ α ≤ β ≤ 1. Let 1 < p < 1

α
q
1

+ γ
θ

,

1
q = 1

p − γ
θ and 1

q
2

= 1 − α
q
1

, where γ = 2(β − α) and θ ∈ [d, D]. We suppose w satisfies

(A) α > 0, w−q2 ∈ A q′

q2
, p′

q2

and w
−

q2q′

q2−q′ ∈ A∞;

(B) α = 0, w−q2 ∈ A q′

q2
, p′

q2

, w−p′

and w
−

q2q′

q2−q′ ∈ A∞,

where 1
p + 1

p′
= 1, 1

q + 1
q′

= 1. Then there exists a positive constant C such that for any

f ∈ C∞
0 (G),

‖ (T
1
f)w ‖Lq(G)≤ C ‖ fw ‖Lp(G) .

Corollary 2 Assume that W ∈ Bq1
for q1 > D

2 , and
{

0 ≤ α ≤ 1
2 ≤ β ≤ 1, if q

1
≥ D,

0 ≤ α ≤ 1
2 < β ≤ 1, if D

2 < q
1

< D.

Let γ = 2(β − α) − 1 and β − α ≥ 1
2 , and let 1 < p < 1

1
p
1

+ γ
θ

, 1
q = 1

p − γ
θ , 1

q
2

= 1 − 1
p
1

, where

θ ∈ [d, D] and

1

p
1

=

{

α
q
1

, if q
1

> D,
(α+1)

q
1

− 1
D , if D

2 < q
1

< D.

We suppose w satisfies

(A) α > 0, w−q2 ∈ A q′

q2
, p′

q2

and w
−

q2q′

q2−q′ ∈ A∞;

(B) α = 0, w−q2 ∈ A q′

q2
, p′

q2

, w−p′

and w
−

q2q′

q2−q′ ∈ A∞,

where 1
p + 1

p′
= 1, 1

q + 1
q′

= 1. Then there exists a positive constant C such that for any
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f ∈ C∞
0 (G),

‖ (T
2
f)w ‖Lq(G)≤ C ‖ fw ‖Lp(G) .

Throughout this paper, unless otherwise indicated, we will use C to denote constants, which

are not necessarily the same at each occurrence. By A ∼ B, we mean that there exist C > 0 and

c > 0 such that c ≤ A
B ≤ C.

2. Preliminaries

First we briefly recall the definition of the auxiliary function m(x, V ) and its basic properties

on the nilpotent Lie group in [5].

Let W ∈ Bq
1

for some q
1

> D
2 , where D is the dimension at infinity of G. Then the auxiliary

function ρ(x, W ) = ρ(x) is defined by

ρ(x) =
1

m(x, W )
=̇ sup

r>0

{

r :
r2

W (r)

∫

B(x,r)

W (y)dy ≤ 1
}

, x ∈ G.

Lemma 1 The measure W (x)dx satisfies the doubling condition, that is, there exists C > 0

such that
∫

B(x,2r)

W (y)dy ≤ C

∫

B(x,r)

W (y)dy

for all balls B(x, r) in G.

Lemma 2 There exists C > 0 such that, for 0 < r < R < ∞,

r2

V (r)

∫

B(x,r)

W (y)dy ≤ C(
r

R
)
2− D

q
1

R2

V (R)

∫

B(x,R)

W (y)dy.

Lemma 3 If r = ρ(x), then
r2

V (r)

∫

B(x,r)

W (y)dy = 1.

Moreover,
r2

V (r)

∫

B(x,r)

W (y)dy ∼ 1 if and only if r ∼ ρ(x).

Lemma 4 There exist C > 0 and l0 > 0 such that, for any x and y in G,

1

C

(

1 +
d(x, y)

ρ(x)

)−l0
≤

ρ(y)

ρ(x)
≤ C

(

1 +
d(x, y)

ρ(x)

)

l0
l0+1

.

In particular, ρ(x) ∼ ρ(y) if d(x, y) < C ρ(x).

Lemma 5 There exist C > 0 and l1 > 0 such that
∫

B(x,R)

d(x, y)2W (y)

V (d(x, y))
dy ≤

CR2

V (R)

∫

B(x,R)

W (y)dy ≤ C
(

1 +
R

ρ(x)

)l1
.

See [5] for the proofs of Lemmas 1–5.

Let Γ(x, y, λ) denote the fundamental solution for the operator −∆G + W + λ, where λ ≥ 0.

The following estimates of the fundamental solution for the Schrödinger operator on the nilpotent

Lie group have been proved in [5].
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Lemma 6 Let l > 0 be an integer. Suppose W ∈ BD
2
. Then there exists Cl > 0 such that for

x 6= y,
∣

∣Γ(x, y, λ)
∣

∣ ≤
Cl

(

1 + d(x, y)λ
1
2

)l(
1 + d(x, y)ρ(x)−1

)l

d(x, y)2

V (d(x, y))
.

Lemma 7 Let l > 0 be an integer. Suppose W ∈ BD
2
. Then there exists Cl > 0 such that for

x 6= y,

∣

∣∇G, yΓ(y, x, λ)
∣

∣ ≤
Cl

(

1 + d(x, y)λ
1
2

)l(
1 + d(x, y)ρ(x)−1

)l

d(x, y)2

V (d(x, y))
×

{

∫

B(y, 1
4
d(x,y))

d(y, h)

V (d(y, h))
W (h)dh +

1

d(x, y)

}

.

In particular, when W ∈ BD
2
, there exists Cl > 0 such that for x 6= y,

∣

∣∇G,yΓ(y, x, λ)
∣

∣ ≤
Cl

(

1 + d(x, y)λ
1
2

)l(
1 + d(x, y)ρ(x)−1

)l

d(x, y)

V (d(x, y))
.

In order to prove Corollarys 1–4, we need to introduce the theory of the weighted norm

inequalities for fractional maximal operators and fractional integral operators on spaces of ho-

mogeneous type in [9].

Let (X, d, µ) be a space of homogeneous type, where d is a quasi-distance and µ is a pos-

itive measure defined on a σ-algebra of subsets of X and satisfies the doubling condition. It

follows from [9] that the nilpotent Lie group G endowed with the Carnot-Carathedory metric d

is also a space of homogeneous type. let Mδ be the fractional maximal operator on the space of

homogeneous type X which is defined, for each δ ∈ [0, 1), by

Mδf(x) = sup
x∈B

1

µ(B)1−δ

∫

B

|f(y)|dµ(y), f ∈ L1
loc(X, dµ).

Let Iδ be the fractional integral operator on the space of homogeneous type X which is defined,

for each δ ∈ (0, 1), by

Iδf(x) =

∫

X

f(y)

µ(B(y, d(x, y)))1−δ
dµ(y), f ∈ L1(X, dµ).

A weight ω is a nonnegative function in L1
loc(X, dµ) and we shall use ω(A) to denote

∫

A ωdµ.

We say that a weight ω belongs to A∞ if there exist positive constants C > 0 and δ > 0 such

that
µ(E)

µ(B)
≤ C

(ω(E)

ω(B)

)δ

holds for every ball B and every measurable set E ⊆ B.

Proposition 1 (1) Suppose 0 ≤ δ < 1 and 1 < p ≤ q < ∞. Let (w, v) be a pair of weight with

v−
1

p−1 ∈ A∞. Then

‖ Mδf ‖Lq(X,wdµ)≤ C ‖ f ‖Lp(X,vdµ),

if and only if

1

µ(B)(1−δ)p

(

∫

B

wdµ
)

p
q
(

∫

B

v−
1

p−1 dµ
)p−1

≤ C < ∞, for every ball B ⊆ X.
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(2) Suppose 0 < δ < 1, (w, v) be a pair of weight with w ∈ A∞ and v−
1

p−1 ∈ A∞. Then

‖ Iδf ‖Lq(X,wdµ)≤ C ‖ f ‖Lp(X,vdµ),

if and only if

1

µ(B)(1−δ)p

(

∫

B

wdµ
)

p
q
(

∫

B

v−
1

p−1 dµ
)p−1

≤ C < ∞, for every ball B ⊆ X.

3. The proof of the main results

Proof of Theorem 1 By the functional calculus, we may write, for all 0 < β < 1,

(−∆G + W )−β =
1

π

∫ ∞

0

λ−β(−∆G + W + λ)−1dλ. (3)

Let f ∈ C∞
0 (G). From (−∆G + W + λ)−1f(x) =

∫

G Γ(x, y, λ)f(y)dy, it follows that

T
1
f(x) =

∫

G

K1(x, y)W (x)αf(y)dy, (4)

where

K1(x, y) =

{

1
π

∫ ∞

0 λ−βΓ(x, y, λ)dλ, for 0 < β < 1,

Γ(x, y, 0), for β = 1.
(5)

Let f ∈ C∞
0 (G). The adjoint of T

1
is given by

T ∗
1 f(x) =

∫

G

K1(y, x)W (y)αf(y)dy.

By Lemma 6, for all 0 < β ≤ 1 and all integer l ≥ 2, there exists a constant Cl > 0 such that

∣

∣K1(y, x)
∣

∣ ≤
Cl

(

1 + d(x, y)ρ(x)−1
)l

d(x, y)2β

V (d(x, y))
. (6)

Let r = ρ(x). It follows from Hölder’s inequality that

∣

∣T ∗
1 f(x)

∣

∣ ≤

∫

G

Cl
(

1 + d(x, y)ρ(x)−1
)l

d(x, y)2β

V (d(x, y))
W (y)α|f(y)|dy

≤Cl

∞
∑

j=−∞

∫

2j−1r<d(x,y)≤2jr

1
(

1 + 2j−1
)l

(2j−1r)2β

V (2j−1r)
W (y)α|f(y)|dy

≤CCl

∞
∑

j=−∞

(2jr)2βV (2j−1r)−ε

(1 + 2j−1)l

{ 1

V (2j−1r)

∫

B(x,2jr)

W (y)q
1 dy

}
α
q
1

{ 1

V (2j−1r)1−εq
2

∫

B(x,2jr)

|f(y)|q2 dy
}

1
q
2 .

Letting ε = 2(β−α)
θ , where θ ∈ [d, D] and using (2) we know that

∣

∣T ∗
1 f(x)

∣

∣ ≤CCl{Mεq
2
(|f |q2 )(x)}q

2

∞
∑

j=−∞

(2jr)2β−2αV (2j−1r)−ε

(1 + 2j−1)l

{ (2jr)2

|B(x, 2jr)|

∫

B(x,2jr)

W (y)dy
}α

≤CCl{Mεq
2
(|f |q2 )(x)}q

2

{

∑

j≤1+log
2

1
r

(2jr)2β−2αV (2j−1r)−ε

(1 + 2j−1)l

{ (2jr)2

|B(x, 2jr)|

∫

B(x,2jr)

W (y)dy
}α

+
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∑

j>1+log
2

1
r

(2jr)2β−2αV (2j−1r)−ε

(1 + 2j−1)l

{ (2jr)2

|B(x, 2jr)|

∫

B(x,2jr)

W (y)dy
}α}

≤CCl{Mεq
2
(|f |q2 )(x)}q

2

{

∑

j≤1+log
2

1
r

(2jr)(2β−2α)(1− d
θ
)

(1 + 2j−1)l

{ (2jr)2

|B(x, 2jr)|

∫

B(x,2jr)

W (y)dy
}α

+

∑

j>1+log
2

1
r

(2jr)(2β−2α)(1−D
θ

)

(1 + 2j−1)l

{ (2jr)2

|B(x, 2jr)|

∫

B(x,2jr)

W (y)dy
}α}

≤CCl{Mεq
2
(|f |q2 )(x)}q

2

∞
∑

j=−∞

1

(1 + 2j−1)l

{ (2jr)2

|B(x, 2jr)|

∫

B(x,2jr)

W (y)dy
}α

.

By Lemma 5 we conclude that for the case j ≥ 1 there exists a constant C > 0 such that

(2jr)2

|B(x, 2jr)|

∫

B(x,2jr)

W (y)dy ≤ C(2j)l1 . (7)

For the case j ≤ 0, by using Lemma 2 we see that

(2jr)2

|B(x, 2jr)|

∫

B(x,2jr)

V (y)dy ≤ C
( r

2jr

)
D
q
1
−2 r2

|B(x, r)|

∫

B(x,r)

V (y)dy = C(2j)
2− D

q
1 . (8)

Thus,

∣

∣T ∗
1 f(x)

∣

∣ ≤ CCl{Mεq
2
(|f |q2 )(x)}q

2

{

∞
∑

j=1

(2j)l1

(1 + 2j−1)l
+

0
∑

j=−∞

(2j)
2− D

q
1

}

≤ C{Mεq
2
(|f |q2 )(x)}

1
q
2 ,

where we take l sufficiently large. 2

Proof of Theorem 2 Let f ∈ C∞
0 (G). Similar to (4) and (5), the adjoint of T

2
is also given by

T ∗
2 f(x) =

∫

G

K2(y, x)W (y)αf(y)dy.

Case q
1
≥ D: By Lemma 7, for all 0 < β ≤ 1 and all integer l ≥ 2, there exists a positive

constant Cl such that

|K2(y, x)| ≤
Cl

(

1 + d(x, y)ρ(x)−1
)l

d(x, y)2β−1

V (d(x, y))
.

Let r = ρ(x). Then similar to the proof of Theorem 1 we have

∣

∣T ∗
2 f(x)

∣

∣ ≤ CCl

∞
∑

j=−∞

(2jr)2β−1

(1 + 2j−1)l

{ 1

V (2jr)

∫

B(x,2jr)

W (y)q
1 dy

}
α
q
1

{ 1

V (2jr)

∫

B(x,2jr)

|f(y)|q2 dy
}

1
q
2 .

Letting ε = 2(β−α)−1
θ , where θ ∈ [d, D]. Similar to the estimates of

∣

∣T ∗
1 f(x)

∣

∣ we conclude that

∣

∣T ∗
2 f(x)

∣

∣ ≤ CCl{Mεq
2
(|f |q2 )(x)}

1
q
2 .

Case D
2 < q

1
< D: Fix x0, y0 ∈ G. Let R = d(x0,y0)

4 . By Lemma 7 we get, for all positive
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integer l, there exists a positive constant Cl such that

∣

∣∇G,yΓ(y0, x0, λ)
∣

∣ ≤
Cl

(1 + R λ
1
2 )l

(

1 + R ρ(x0)−1
)l

( R2

V (R)

∫

B(y0, 1
4
R)

d(y0, y)W (y)dy

V (d(y0, y))
+

R

V (R)

)

.

Then we see that there exists a positive constant Cl such that for all integer l ≥ 2,

∣

∣K2(y0, x0)
∣

∣ ≤
Cl

(

1 + R ρ(x0)−1
)l

( R2β

V (R)

∫

B(y0, 1
4

R)

d(y0, y)W (y)dy

V (d(y0, y))
+

R2β−1

V (R)

)

.

Let r = ρ(x) and choose p
1

such that 1
p
1

= 1
q
1

− 1
D . Note that 1

p
1

+ α
q
1

+ 1
q
2

= 1. By Hölder

inequality, we obtain

∣

∣T ∗
2 f(x)

∣

∣ ≤

∞
∑

j=−∞

∫

2j−1r<d(x,y)≤2jr

|K2(y, x)
∣

∣W (y)α|f(y)|dy

≤

∞
∑

j=−∞

V (2jr)
{ 1

V (2jr)

∫

2j−1r<d(x,y)≤2jr

|K2(y, x)
∣

∣

p
1 dy

}
1

p
1

{ 1

V (2jr)

∫

B(x,2jr)

W (y)q
1 dy

}
α
q
1

{ 1

V (2jr)

∫

B(x,2jr)

|f(y)|q2 dy
}

1
q
2 .

Using Minkowski’s inequality and the well known theorem on fractional integrals on the nilpotent

Lie group (see (1.7) in [5]), we obtain

V (2jr)
{ 1

V (2jr)

∫

2j−1r<d(x,y)≤2jr

|K2(y, x)
∣

∣

p
1 dy

}
1

p
1

≤
CClV (2jr)

(1 + 2j−3)l

{ (2jr)2β+1

V (2jr)

[ 1

V (2jr)

∫

B(x,2j−2r)

W (y)q
1 dy

]
1

q
1 +

(2jr)2β−1

V (2jr)

}

≤
C′Cl(2

jr)2β−1

(1 + 2j−3)l

[ (2j−2r)2

V (2j−2r)

∫

B(x,2j−2r)

W (y)dy + 1
]

.

For the case j ≥ 1, using (7) we have

V (2jr)
{ 1

V (2jr)

∫

2j−1r<d(x,y)≤2jr

|K2(y, x)
∣

∣

p
1 dy

}
1

p
1 ≤ C′Cl

2jl1(2jr)2β−1

(1 + 2j−3)l
.

For the case j ≤ 0, using (8) we obtain

V (2jr)
{ 1

V (2jr)

∫

2j−1r<d(x,y)≤2jr

|K2(y, x)
∣

∣

p
1 dy

}
1

p
1 ≤ C′Cl

(2jr)2β−1

(1 + 2j−3)l
.

Then it follows that

∣

∣T ∗
2 f(x)

∣

∣ ≤C′Cl{Mεq
2
(|f |q2 )(x)}

1
q
2

{

∞
∑

j=1

2jk
0

(1 + 2j−3)l
+

0
∑

j=−∞

1

(1 + 2j−3)l

}

[ (2jr)2

V (2jr)

∫

B(x,2j−2r)

W (y)dy
]α (2jr)2β−2α−1

V (2jr)ε
,

where ε = 2(β−α)−1
θ , θ ∈ [d, D]. Combining (7) and (8) again and similar to the estimates of

∣

∣T ∗
1 f(x)

∣

∣, we get

|T ∗
2 f(x)| ≤ C{Mεq

2
(|f |q2 )(x)}

1
q
2 . 2
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Proof of Corollary 1 Case α > 0: Note that θ ∈ [d, D]. Let γ = 2(β − α) and 1
q
2

= 1 − α
q
1

.

For q′ such that q
2

< q′ < θ
γ and 1

p′
= 1

q′
− γ

θ , then it follows from the assumptions that

0 < γq
2

< θ, 1 <
q′

q
2

<
θ

γq
2

,
1

p′/q
2

=
1

q′/q
2

−
γq

2

θ
.

By Theorem 1 and Proposition 1(1), there exists a positive constant C such that for any f ∈

C∞
0 (G),

‖ (T ∗
1 f)w−1 ‖Lp′(G)≤ C ‖ fw−1 ‖Lq′ (G) .

Since 1
p + 1

p′
= 1 and 1

q + 1
q′

= 1, the desired estimate follows by duality.

Case α = 0: Since q
2

= 1, so the condition for w is w−1 ∈ Ap′,q′ , which is equivalent to

w ∈ Ap,q. Then following the same idea of the proof of Corollary 1 in [7], we get the desired

estimate. 2

Proof of Corollary 2 Case α > 0: Let γ = 2(β − α) − 1 and 1
q
2

= 1 − 1
p
1

,

1

p
1

=

{

α
q
1

, if q
1

> D,
(α+1)

q
1

− 1
D , if D

2 < q
1

< D.

Note that θ ∈ [d, D]. For q′ such that q
2

< q′ < θ
γ and 1

p′
= 1

q′
− γ

θ , then it follows from the

assumptions that

0 < γq
2

< θ, 1 <
q′

q
2

<
θ

γq
2

,
1

p′/q
2

=
1

q′/q
2

−
γq

2

θ
.

By Theorem 2 and Proposition 1(1), there exists a positive constant C such that for any f ∈

C∞
0 (G),

‖ (T ∗
2 f)w−1 ‖Lp′(G)≤ C ‖ fw−1 ‖Lq′ (G) .

Since 1
p + 1

p′
= 1 and 1

q + 1
q′

= 1, so the desired estimate follows by duality.

Case α = 0 and 1
2 < β ≤ 1: Using the estimates of the kernel K2(x, y) and following the

same idea of the proof of Corollary 3 in [7], we get the desired estimate.
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