The Weighted Estimates of the Schrödinger Operators on the Nilpotent Lie Group

Yu LIU
Department of Mathematics and Mechanics, School of Applied Science, University of Science and Technology Beijing, Beijing 100083, P. R. China

Abstract

In this paper we consider the Schrödinger operator $-\Delta_{G}+W$ on the nilpotent Lie group G where the nonnegative potential W belongs to the reverse Hölder class $B_{q_{1}}$ for some $q_{1} \geq \frac{D}{2}$ and D is the dimension at infinity of G. The weighted $L^{p}-L^{q}$ estimates for the operators $W^{\alpha}\left(-\Delta_{G}+W\right)^{-\beta}$ and $W^{\alpha} \nabla_{G}\left(-\Delta_{G}+W\right)^{-\beta}$ are obtained.

Keywords nilpotent Lie group; Schrödinger operators; reverse Hölder class.
Document code A
MR(2000) Subject Classification 22E30; 35J10; 42B20
Chinese Library Classification O174.1

1. Introduction

As we know, Schrödinger operators on the Euclidean space \mathbb{R}^{n} with non-negative potentials which belong to the reverse Hölder class have been investigated by a number of scholars [1, 2]. Now the investigation of Schrödinger operators has been generalized to two direction. On the one hand, Kurata and Sugano generalized Shen's results to uniformly elliptic operators in [3]. on the other hand, $\mathrm{Lu}[4]$ and Li [5] investigated the Schrödinger operators in a more general setting.

The main purpose of this paper is to investigate the weighted $L^{p}-L^{q}$ boundedness of the operators

$$
T_{1}=W^{\alpha}\left(-\Delta_{G}+W\right)^{-\beta}, \quad 0 \leq \alpha \leq \beta \leq 1
$$

and

$$
T_{2}=W^{\alpha} \nabla_{G}\left(-\Delta_{G}+W\right)^{-\beta}, \quad 0 \leq \alpha \leq \frac{1}{2} \leq \beta \leq 1, \beta-\alpha \geq \frac{1}{2}
$$

on the nilpotent Lie group G. Note that Sugano [6] has studied the weighted estimates of the above two operators on the Euclidean space and Liu [7] has obtained the same estimates on the stratified Lie group.

Assume G is a simple connected nilpotent Lie group and \mathfrak{g} is its Lie algebra which is identified with the space of left invariant vector fields. Given $X=\left\{X_{1}, \ldots, X_{k}\right\} \subseteq \mathfrak{g}$ a Hörmander system

[^0]of left invariant vector fields on G. This means that there exists an integer s such that the vector fields X_{1}, \ldots, X_{k} together with their commutators of order at most s span the tangent space of G at every point x. Let $\Delta_{G}=\sum_{i=1}^{k} X_{i}^{2}$ be the sub-Laplacian on G associated to X. The gradient operator ∇_{G} is denoted by $\nabla_{G}=\left(X_{1}, \ldots, X_{k}\right)$. Following [8], one can define a left invariant metric d associated to X which is called the Carnot-Caratheodory metric: let $x, y \in G$, and
$$
d(x, y)=\inf \{\delta|\gamma:[0, \delta] \rightarrow G| \gamma(0)=x, \gamma(\delta)=y\}
$$
where γ is a piecewise smooth curve satisfying $\gamma^{\prime}(s)=\sum_{i=1}^{k} a_{i}(s) X_{i}(\gamma(s))$ with $\sum_{i=1}^{k}\left|a_{i}(s)\right|^{2} \leq 1$, for all $s \in[0, t]$.

If $x \in G$ and $r>0$, we will denote by $B(x, r)=\{h \in G \mid d(x, y)<r\}$ the metric balls. Assume $\mathrm{d} x$ is the Haar measure on G. Then for every measurable set $E \subseteq G,|E|$ denotes the measure of E. Suppose e is the unit element of G. Note that $V(t)=|B(e, t)|=|B(x, t)|$ for any $x \in G$ and $t>0$. Let d and D be the local dimension and the dimension at infinity of G. Note that $D \geq d$ and we always assume $d \geq 2$ throughout the paper. It follows from (1.1) in [5] that there exists a constant $C_{1}>0$ such that

$$
\begin{gathered}
C_{1}^{-1} t^{d} \leq V(t) \leq C_{1} t^{d}, \quad \forall 0 \leq t \leq 1 \\
C_{1}^{-1} t^{D} \leq V(t) \leq C_{1} t^{D}, \quad \forall 1 \leq t<\infty
\end{gathered}
$$

Also, there exists a constant $C_{2}>1$ such that for any $r>0$,

$$
\begin{equation*}
V(2 r) \leq C_{2} V(r) \tag{1}
\end{equation*}
$$

Definition $1 A$ nonnegative locally L^{q} integrable function W on G is said to belong to the reverse Hölder class $B_{q}(1<q<\infty)$ if there exists $C>0$ such that the reverse Hölder inequality

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B} W(x)^{q} \mathrm{~d} x\right)^{\frac{1}{q}} \leq C\left(\frac{1}{|B|} \int_{B} W(x) \mathrm{d} x\right) \tag{2}
\end{equation*}
$$

holds for every ball B in G.
It is important that the B_{q} class has a property of "self improvement"; that is, if $W \in B_{q}$, then $W \in B_{q+\varepsilon}$ for some $\varepsilon>0$ ([5]).

Now we recall the definitions of fractional maximal operator M_{γ} and $A_{p, q}$-weight on G.
Definition 2 Let $f \in L_{\text {loc }}^{1}(G)$. For $\gamma>0$, the fractional maximal operator is defined by

$$
M_{\gamma} f(x)=\sup _{x \in B} \frac{1}{|B|^{1-\gamma}} \int_{B}|f(y)| \mathrm{d} y, \quad x \in G
$$

where the supremum on the right side is taken over all balls B such that $x \in B$.
Definition 3 Let $1<p<\infty$ and $1<q<\infty$. For a non-negative function $w(x)$, we say $w \in A_{p, q}$ if

$$
\left(\frac{1}{|B|} \int_{B} w(x)^{q} \mathrm{~d} x\right)^{\frac{1}{q}}\left(\frac{1}{|B|} \int_{B} w(x)^{-p /(p-1)} \mathrm{d} x\right)^{\frac{p-1}{p}} \leq C
$$

holds for every ball B in G, where C is a positive constant independent of B.

We obtain the estimates for the adjoint operators T_{1}^{*} and T_{2}^{*} with the potential $W \in B_{q_{1}}$ for some $q_{1}>\frac{D}{2}$.

Theorem 1 Suppose $W \in B_{q_{1}}$ for some $q_{1}>\frac{D}{2}, 0<\alpha \leq \beta \leq 1$ and let $\frac{1}{q_{2}}=1-\frac{\alpha}{q_{1}}$. Then there exists a constant $C>0$ such that

$$
\left|T_{1}^{*} f(x)\right| \leq C\left\{M_{\varepsilon q_{2}}\left(|f|^{q_{2}}\right)(x)\right\}^{\frac{1}{q_{2}}}, \quad f \in C_{0}^{\infty}(G)
$$

where $\varepsilon=\frac{2(\beta-\alpha)}{\theta}, \theta \in[d, D]$.
Theorem 2 Suppose $V \in B_{q_{1}}$ for some $q_{1}>\frac{D}{2}, 0<\alpha \leq \frac{1}{2}<\beta \leq 1$ and $\beta-\alpha \geq \frac{1}{2}$. And let

$$
\frac{1}{q_{2}}= \begin{cases}1-\frac{\alpha}{q_{1}}, & \text { if } q_{1} \geq D \\ 1-\frac{(\alpha+1)}{q_{1}}+\frac{1}{D}, & \text { if } \frac{D}{2}<q_{1}<D\end{cases}
$$

Then there exists a constant $C>0$ such that

$$
\left|T_{2}^{*} f(x)\right| \leq C\left\{M_{\varepsilon q_{2}}\left(|f|^{q_{2}}\right)(x)\right\}^{\frac{1}{q_{2}}}, \quad f \in C_{0}^{\infty}(G)
$$

where $\varepsilon=\frac{2(\beta-\alpha)-1}{\theta}, \theta \in[d, D]$.
The above theorems will yield the weighted L^{p} estimates for T_{1} and T_{2} which generalize the main results in [6] and [7] to the nilpotent Lie group.

Corollary 1 Assume that $W \in B_{q_{1}}$ for $q_{1}>\frac{D}{2}$, and $0 \leq \alpha \leq \beta \leq 1$. Let $1<p<\frac{1}{\frac{\alpha}{q_{1}}+\frac{\gamma}{\theta}}$, $\frac{1}{q}=\frac{1}{p}-\frac{\gamma}{\theta}$ and $\frac{1}{q_{2}}=1-\frac{\alpha}{q_{1}}$, where $\gamma=2(\beta-\alpha)$ and $\theta \in[d, D]$. We suppose w satisfies
(A) $\alpha>0, w^{-q_{2}} \in A_{\frac{q^{\prime}}{q_{2}}, \frac{p^{\prime}}{q_{2}}}$ and $w^{-\frac{q_{2} q^{\prime}}{q_{2}-q^{\prime}}} \in A_{\infty}$;
(B) $\alpha=0, w^{-q_{2}} \in A_{\frac{q^{\prime}}{q_{1}}, \frac{p^{\prime}}{q_{2}}}, w^{-p^{\prime}}$ and $w^{-\frac{q_{2} q^{\prime}}{q_{2}-q^{\prime}}} \in A_{\infty}$,
where $\frac{1}{p}+\frac{1}{p^{\prime}}=1, \frac{1}{q}+\frac{1}{q^{\prime}}=1$. Then there exists a positive constant C such that for any $f \in C_{0}^{\infty}(G)$,

$$
\left\|\left(T_{1} f\right) w\right\|_{L^{q}(G)} \leq C\|f w\|_{L^{p}(G)}
$$

Corollary 2 Assume that $W \in B_{q_{1}}$ for $q_{1}>\frac{D}{2}$, and

$$
\left\{\begin{array}{l}
0 \leq \alpha \leq \frac{1}{2} \leq \beta \leq 1, \quad \text { if } \quad q_{1} \geq D \\
0 \leq \alpha \leq \frac{1}{2}<\beta \leq 1, \quad \text { if } \quad \frac{D}{2}<q_{1}<D
\end{array}\right.
$$

Let $\gamma=2(\beta-\alpha)-1$ and $\beta-\alpha \geq \frac{1}{2}$, and let $1<p<\frac{1}{\frac{1}{p_{1}}+\frac{\gamma}{\theta}}, \frac{1}{q}=\frac{1}{p}-\frac{\gamma}{\theta}, \frac{1}{q_{2}}=1-\frac{1}{p_{1}}$, where $\theta \in[d, D]$ and

$$
\frac{1}{p_{1}}= \begin{cases}\frac{\alpha}{q_{1}}, & \text { if } q_{1}>D \\ \frac{(\alpha+1)}{q_{1}}-\frac{1}{D}, & \text { if } \frac{D}{2}<q_{1}<D\end{cases}
$$

We suppose w satisfies
(A) $\alpha>0, w^{-q_{2}} \in A_{\frac{q^{\prime}}{q_{2}}, \frac{p^{\prime}}{q_{2}}}$ and $w^{-\frac{q_{2} q^{\prime}}{q_{2}-q^{\prime}}} \in A_{\infty}$;
(B) $\alpha=0, w^{-q_{2}} \in A_{\frac{q^{\prime}}{q_{2}}, \frac{p^{\prime}}{q_{2}}}, w^{-p^{\prime}}$ and $w^{-\frac{q_{2} q^{\prime}}{q_{2}-q^{\prime}}} \in A_{\infty}$,
where $\frac{1}{p}+\frac{1}{p^{\prime}}=1, \frac{1}{q}+\frac{1}{q^{\prime}}=1$. Then there exists a positive constant C such that for any
$f \in C_{0}^{\infty}(G)$,

$$
\left\|\left(T_{2} f\right) w\right\|_{L^{q}(G)} \leq C\|f w\|_{L^{p}(G)} .
$$

Throughout this paper, unless otherwise indicated, we will use C to denote constants, which are not necessarily the same at each occurrence. By $A \sim B$, we mean that there exist $C>0$ and $c>0$ such that $c \leq \frac{A}{B} \leq C$.

2. Preliminaries

First we briefly recall the definition of the auxiliary function $m(x, V)$ and its basic properties on the nilpotent Lie group in [5].

Let $W \in B_{q_{1}}$ for some $q_{1}>\frac{D}{2}$, where D is the dimension at infinity of G. Then the auxiliary function $\rho(x, W)=\rho(x)$ is defined by

$$
\rho(x)=\frac{1}{m(x, W)} \doteq \sup _{r>0}\left\{r: \frac{r^{2}}{W(r)} \int_{B(x, r)} W(y) \mathrm{d} y \leq 1\right\}, \quad x \in G
$$

Lemma 1 The measure $W(x) \mathrm{d} x$ satisfies the doubling condition, that is, there exists $C>0$ such that

$$
\int_{B(x, 2 r)} W(y) \mathrm{d} y \leq C \int_{B(x, r)} W(y) \mathrm{d} y
$$

for all balls $B(x, r)$ in G.
Lemma 2 There exists $C>0$ such that, for $0<r<R<\infty$,

$$
\frac{r^{2}}{V(r)} \int_{B(x, r)} W(y) \mathrm{d} y \leq C\left(\frac{r}{R}\right)^{2-\frac{D}{q_{1}}} \frac{R^{2}}{V(R)} \int_{B(x, R)} W(y) \mathrm{d} y
$$

Lemma 3 If $r=\rho(x)$, then

$$
\frac{r^{2}}{V(r)} \int_{B(x, r)} W(y) \mathrm{d} y=1
$$

Moreover,

$$
\frac{r^{2}}{V(r)} \int_{B(x, r)} W(y) \mathrm{d} y \sim 1 \quad \text { if and only if } \quad r \sim \rho(x)
$$

Lemma 4 There exist $C>0$ and $l_{0}>0$ such that, for any x and y in G,

$$
\frac{1}{C}\left(1+\frac{\mathrm{d}(x, y)}{\rho(x)}\right)^{-l_{0}} \leq \frac{\rho(y)}{\rho(x)} \leq C\left(1+\frac{\mathrm{d}(x, y)}{\rho(x)}\right)^{\frac{l_{0}}{l_{0}+1}}
$$

In particular, $\rho(x) \sim \rho(y)$ if $\mathrm{d}(x, y)<C \rho(x)$.
Lemma 5 There exist $C>0$ and $l_{1}>0$ such that

$$
\int_{B(x, R)} \frac{\mathrm{d}(x, y)^{2} W(y)}{V(\mathrm{~d}(x, y))} \mathrm{d} y \leq \frac{C R^{2}}{V(R)} \int_{B(x, R)} W(y) \mathrm{d} y \leq C\left(1+\frac{R}{\rho(x)}\right)^{l_{1}}
$$

See [5] for the proofs of Lemmas 1-5.
Let $\Gamma(x, y, \lambda)$ denote the fundamental solution for the operator $-\Delta_{G}+W+\lambda$, where $\lambda \geq 0$. The following estimates of the fundamental solution for the Schrödinger operator on the nilpotent Lie group have been proved in [5].

Lemma 6 Let $l>0$ be an integer. Suppose $W \in B_{\frac{D}{2}}$. Then there exists $C_{l}>0$ such that for $x \neq y$,

$$
|\Gamma(x, y, \lambda)| \leq \frac{C_{l}}{\left(1+\mathrm{d}(x, y) \lambda^{\frac{1}{2}}\right)^{l}\left(1+\mathrm{d}(x, y) \rho(x)^{-1}\right)^{l}} \frac{\mathrm{~d}(x, y)^{2}}{V(\mathrm{~d}(x, y))}
$$

Lemma 7 Let $l>0$ be an integer. Suppose $W \in B_{\frac{D}{2}}$. Then there exists $C_{l}>0$ such that for $x \neq y$,

$$
\begin{aligned}
\left|\nabla_{G, y} \Gamma(y, x, \lambda)\right| \leq & \frac{C_{l}}{\left(1+\mathrm{d}(x, y) \lambda^{\frac{1}{2}}\right)^{l}\left(1+\mathrm{d}(x, y) \rho(x)^{-1}\right)^{l}} \frac{\mathrm{~d}(x, y)^{2}}{V(\mathrm{~d}(x, y))} \times \\
& \left\{\int_{B\left(y, \frac{1}{4} \mathrm{~d}(x, y)\right)} \frac{\mathrm{d}(y, h)}{V(\mathrm{~d}(y, h))} W(h) \mathrm{d} h+\frac{1}{\mathrm{~d}(x, y)}\right\}
\end{aligned}
$$

In particular, when $W \in B_{\frac{D}{2}}$, there exists $C_{l}>0$ such that for $x \neq y$,

$$
\left|\nabla_{G, y} \Gamma(y, x, \lambda)\right| \leq \frac{C_{l}}{\left(1+\mathrm{d}(x, y)^{\frac{1}{2}}\right)^{l}\left(1+\mathrm{d}(x, y) \rho(x)^{-1}\right)^{l}} \frac{\mathrm{~d}(x, y)}{V(\mathrm{~d}(x, y))}
$$

In order to prove Corollarys $1-4$, we need to introduce the theory of the weighted norm inequalities for fractional maximal operators and fractional integral operators on spaces of homogeneous type in [9].

Let (X, d, μ) be a space of homogeneous type, where d is a quasi-distance and μ is a positive measure defined on a σ-algebra of subsets of X and satisfies the doubling condition. It follows from [9] that the nilpotent Lie group G endowed with the Carnot-Carathedory metric d is also a space of homogeneous type. let M_{δ} be the fractional maximal operator on the space of homogeneous type X which is defined, for each $\delta \in[0,1)$, by

$$
M_{\delta} f(x)=\sup _{x \in B} \frac{1}{\mu(B)^{1-\delta}} \int_{B}|f(y)| \mathrm{d} \mu(y), \quad f \in L_{\mathrm{loc}}^{1}(X, \mathrm{~d} \mu) .
$$

Let I_{δ} be the fractional integral operator on the space of homogeneous type X which is defined, for each $\delta \in(0,1)$, by

$$
I_{\delta} f(x)=\int_{X} \frac{f(y)}{\mu(B(y, \mathrm{~d}(x, y)))^{1-\delta}} \mathrm{d} \mu(y), \quad f \in L^{1}(X, \mathrm{~d} \mu)
$$

A weight ω is a nonnegative function in $L_{\text {loc }}^{1}(X, \mathrm{~d} \mu)$ and we shall use $\omega(A)$ to denote $\int_{A} \omega \mathrm{~d} \mu$. We say that a weight ω belongs to A_{∞} if there exist positive constants $C>0$ and $\delta>0$ such that

$$
\frac{\mu(E)}{\mu(B)} \leq C\left(\frac{\omega(E)}{\omega(B)}\right)^{\delta}
$$

holds for every ball B and every measurable set $E \subseteq B$.
Proposition 1 (1) Suppose $0 \leq \delta<1$ and $1<p \leq q<\infty$. Let (w, v) be a pair of weight with $v^{-\frac{1}{p-1}} \in A_{\infty}$. Then

$$
\left\|M_{\delta} f\right\|_{L^{q}(X, w \mathrm{~d} \mu)} \leq C\|f\|_{L^{p}(X, v \mathrm{~d} \mu)},
$$

if and only if

$$
\frac{1}{\mu(B)^{(1-\delta) p}}\left(\int_{B} w \mathrm{~d} \mu\right)^{\frac{p}{q}}\left(\int_{B} v^{-\frac{1}{p-1}} \mathrm{~d} \mu\right)^{p-1} \leq C<\infty, \text { for every ball } B \subseteq X
$$

(2) Suppose $0<\delta<1,(w, v)$ be a pair of weight with $w \in A_{\infty}$ and $v^{-\frac{1}{p-1}} \in A_{\infty}$. Then

$$
\left\|I_{\delta} f\right\|_{L^{q}(X, w \mathrm{~d} \mu)} \leq C\|f\|_{L^{p}(X, v \mathrm{~d} \mu)}
$$

if and only if

$$
\frac{1}{\mu(B)^{(1-\delta) p}}\left(\int_{B} w \mathrm{~d} \mu\right)^{\frac{p}{q}}\left(\int_{B} v^{-\frac{1}{p-1}} \mathrm{~d} \mu\right)^{p-1} \leq C<\infty, \text { for every ball } B \subseteq X
$$

3. The proof of the main results

Proof of Theorem 1 By the functional calculus, we may write, for all $0<\beta<1$,

$$
\begin{equation*}
\left(-\Delta_{G}+W\right)^{-\beta}=\frac{1}{\pi} \int_{0}^{\infty} \lambda^{-\beta}\left(-\Delta_{G}+W+\lambda\right)^{-1} \mathrm{~d} \lambda \tag{3}
\end{equation*}
$$

Let $f \in C_{0}^{\infty}(G)$. From $\left(-\Delta_{G}+W+\lambda\right)^{-1} f(x)=\int_{G} \Gamma(x, y, \lambda) f(y) \mathrm{d} y$, it follows that

$$
\begin{equation*}
T_{1} f(x)=\int_{G} K_{1}(x, y) W(x)^{\alpha} f(y) \mathrm{d} y \tag{4}
\end{equation*}
$$

where

$$
K_{1}(x, y)= \begin{cases}\frac{1}{\pi} \int_{0}^{\infty} \lambda^{-\beta} \Gamma(x, y, \lambda) \mathrm{d} \lambda, & \text { for } 0<\beta<1 \tag{5}\\ \Gamma(x, y, 0), & \text { for } \beta=1\end{cases}
$$

Let $f \in C_{0}^{\infty}(G)$. The adjoint of T_{1} is given by

$$
T_{1}^{*} f(x)=\int_{G} \overline{K_{1}(y, x)} W(y)^{\alpha} f(y) \mathrm{d} y
$$

By Lemma 6 , for all $0<\beta \leq 1$ and all integer $l \geq 2$, there exists a constant $C_{l}>0$ such that

$$
\begin{equation*}
\left|\overline{K_{1}(y, x)}\right| \leq \frac{C_{l}}{\left(1+\mathrm{d}(x, y) \rho(x)^{-1}\right)^{l}} \frac{\mathrm{~d}(x, y)^{2 \beta}}{V(\mathrm{~d}(x, y))} \tag{6}
\end{equation*}
$$

Let $r=\rho(x)$. It follows from Hölder's inequality that

$$
\begin{aligned}
\left|T_{1}^{*} f(x)\right| \leq & \int_{G} \frac{C_{l}}{\left(1+\mathrm{d}(x, y) \rho(x)^{-1}\right)^{l}} \frac{\mathrm{~d}(x, y)^{2 \beta}}{V(\mathrm{~d}(x, y))} W(y)^{\alpha}|f(y)| \mathrm{d} y \\
\leq & C_{l} \sum_{j=-\infty}^{\infty} \int_{2^{j-1} r<\mathrm{d}(x, y) \leq 2^{j} r} \frac{1}{\left(1+2^{j-1}\right)^{l}} \frac{\left(2^{j-1} r\right)^{2 \beta}}{V\left(2^{j-1} r\right)} W(y)^{\alpha}|f(y)| \mathrm{d} y \\
\leq & C C_{l} \sum_{j=-\infty}^{\infty} \frac{\left(2^{j} r\right)^{2 \beta} V\left(2^{j-1} r\right)^{-\varepsilon}}{\left(1+2^{j-1}\right)^{l}}\left\{\frac{1}{V\left(2^{j-1} r\right)} \int_{B\left(x, 2^{j} r\right)} W(y)^{q_{1}} \mathrm{~d} y\right\}^{\frac{\alpha}{q_{1}}} \\
& \left\{\frac{1}{V\left(2^{j-1} r\right)^{1-\varepsilon q_{2}}} \int_{B\left(x, 2^{j} r\right)}|f(y)|^{q_{2}} \mathrm{~d} y\right\}^{\frac{1}{q_{2}}} .
\end{aligned}
$$

Letting $\varepsilon=\frac{2(\beta-\alpha)}{\theta}$, where $\theta \in[d, D]$ and using (2) we know that

$$
\begin{aligned}
\left|T_{1}^{*} f(x)\right| & \leq C C_{l}\left\{M_{\varepsilon q_{2}}\left(|f|^{q_{2}}\right)(x)\right\}^{q_{2}} \sum_{j=-\infty}^{\infty} \frac{\left(2^{j} r\right)^{2 \beta-2 \alpha} V\left(2^{j-1} r\right)^{-\varepsilon}}{\left(1+2^{j-1}\right)^{l}}\left\{\frac{\left(2^{j} r\right)^{2}}{\left|B\left(x, 2^{j} r\right)\right|} \int_{B\left(x, 2^{j} r\right)} W(y) \mathrm{d} y\right\}^{\alpha} \\
& \leq C C_{l}\left\{M_{\varepsilon q_{2}}\left(|f|^{q_{2}}\right)(x)\right\}^{q_{2}}\left\{\sum_{j \leq 1+\log _{2} \frac{1}{r}} \frac{\left(2^{j} r\right)^{2 \beta-2 \alpha} V\left(2^{j-1} r\right)^{-\varepsilon}}{\left(1+2^{j-1}\right)^{l}}\left\{\frac{\left(2^{j} r\right)^{2}}{\left|B\left(x, 2^{j} r\right)\right|} \int_{B\left(x, 2^{j} r\right)} W(y) \mathrm{d} y\right\}^{\alpha}+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad \sum_{j>1+\log _{2} \frac{1}{r}} \frac{\left(2^{j} r\right)^{2 \beta-2 \alpha} V\left(2^{j-1} r\right)^{-\varepsilon}}{\left(1+2^{j-1}\right)^{l}}\left\{\frac{\left(2^{j} r\right)^{2}}{\left|B\left(x, 2^{j} r\right)\right|} \int_{B\left(x, 2^{j} r\right)} W(y) \mathrm{d} y\right\}^{\alpha}\right\} \\
& \leq \\
& \leq C C_{l}\left\{M_{\varepsilon q_{2}}\left(|f|^{q_{2}}\right)(x)\right\}^{q_{2}}\left\{\sum_{j \leq 1+\log _{2} \frac{1}{r}} \frac{\left(2^{j} r\right)^{(2 \beta-2 \alpha)\left(1-\frac{d}{g}\right)}}{\left(1+2^{j-1}\right)^{l}}\left\{\frac{\left(2^{j} r\right)^{2}}{\left|B\left(x, 2^{j} r\right)\right|} \int_{B\left(x, 2^{j} r\right)} W(y) \mathrm{d} y\right\}^{\alpha}+\right. \\
& \left.\quad \sum_{j>1+\log _{2} \frac{1}{r}} \frac{\left(2^{j} r\right)^{(2 \beta-2 \alpha)\left(1-\frac{D}{\theta}\right)}}{\left(1+2^{j-1}\right)^{l}}\left\{\frac{\left(2^{j} r\right)^{2}}{\left|B\left(x, 2^{j} r\right)\right|} \int_{B\left(x, 2^{j} r\right)} W(y) \mathrm{d} y\right\}^{\alpha}\right\} \\
& \leq \\
& \leq C C_{l}\left\{M_{\varepsilon q_{2}}\left(|f|^{q_{2}}\right)(x)\right\}^{q_{2}} \sum_{j=-\infty}^{\infty} \frac{1}{\left(1+2^{j-1}\right)^{l}}\left\{\frac{\left(2^{j} r\right)^{2}}{\left|B\left(x, 2^{j} r\right)\right|} \int_{B\left(x, 2^{j} r\right)} W(y) \mathrm{d} y\right\}^{\alpha} .
\end{aligned}
$$

By Lemma 5 we conclude that for the case $j \geq 1$ there exists a constant $C>0$ such that

$$
\begin{equation*}
\frac{\left(2^{j} r\right)^{2}}{\left|B\left(x, 2^{j} r\right)\right|} \int_{B\left(x, 2^{j} r\right)} W(y) \mathrm{d} y \leq C\left(2^{j}\right)^{l_{1}} . \tag{7}
\end{equation*}
$$

For the case $j \leq 0$, by using Lemma 2 we see that

$$
\begin{equation*}
\frac{\left(2^{j} r\right)^{2}}{\left|B\left(x, 2^{j} r\right)\right|} \int_{B\left(x, 2^{j} r\right)} V(y) \mathrm{d} y \leq C\left(\frac{r}{2^{j} r}\right)^{\frac{D}{q_{1}}-2} \frac{r^{2}}{|B(x, r)|} \int_{B(x, r)} V(y) \mathrm{d} y=C\left(2^{j}\right)^{2-\frac{D}{q_{1}}} . \tag{8}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
\left|T_{1}^{*} f(x)\right| & \leq C C_{l}\left\{M_{\varepsilon q_{2}}\left(|f|^{q_{2}}\right)(x)\right\}^{q_{2}}\left\{\sum_{j=1}^{\infty} \frac{\left(2^{j}\right)^{l_{1}}}{\left(1+2^{j-1}\right)^{l}}+\sum_{j=-\infty}^{0}\left(2^{j}\right)^{2-\frac{D}{q_{1}}}\right\} \\
& \leq C\left\{M_{\varepsilon q_{2}}\left(|f|^{q_{2}}\right)(x)\right\}^{\frac{1}{q_{2}}},
\end{aligned}
$$

where we take l sufficiently large.
Proof of Theorem 2 Let $f \in C_{0}^{\infty}(G)$. Similar to (4) and (5), the adjoint of T_{2} is also given by

$$
T_{2}^{*} f(x)=\int_{G} \overline{K_{2}(y, x)} W(y)^{\alpha} f(y) \mathrm{d} y .
$$

Case $q_{1} \geq D$: By Lemma 7, for all $0<\beta \leq 1$ and all integer $l \geq 2$, there exists a positive constant C_{l} such that

$$
\left|\overline{K_{2}(y, x)}\right| \leq \frac{C_{l}}{\left(1+\mathrm{d}(x, y) \rho(x)^{-1}\right)^{l}} \frac{\mathrm{~d}(x, y)^{2 \beta-1}}{V(\mathrm{~d}(x, y))} .
$$

Let $r=\rho(x)$. Then similar to the proof of Theorem 1 we have
$\left|T_{2}^{*} f(x)\right| \leq C C_{l} \sum_{j=-\infty}^{\infty} \frac{\left(2^{j} r\right)^{2 \beta-1}}{\left(1+2^{j-1}\right)^{2}}\left\{\frac{1}{V\left(2^{j} r\right)} \int_{B\left(x, 2^{j} r\right)} W(y)^{q_{1}} \mathrm{~d} y\right\}^{\frac{\alpha}{q_{1}}}\left\{\frac{1}{V\left(2^{j} r\right)} \int_{B\left(x, 2^{j} r\right)}|f(y)|^{q_{2}} \mathrm{~d} y\right\}^{\frac{1}{q_{2}}}$.
Letting $\varepsilon=\frac{2(\beta-\alpha)-1}{\theta}$, where $\theta \in[d, D]$. Similar to the estimates of $\left|T_{1}^{*} f(x)\right|$ we conclude that

$$
\left|T_{2}^{*} f(x)\right| \leq C C_{l}\left\{M_{\varepsilon q_{2}}\left(|f|^{q_{2}}\right)(x)\right\}^{\frac{1}{q_{2}}} .
$$

Case $\frac{D}{2}<q_{1}<D$: Fix $x_{0}, y_{0} \in G$. Let $R=\frac{\mathrm{d}\left(x_{0}, y_{0}\right)}{4}$. By Lemma 7 we get, for all positive
integer l, there exists a positive constant C_{l} such that

$$
\left|\nabla_{G, y} \Gamma\left(y_{0}, x_{0}, \lambda\right)\right| \leq \frac{C_{l}}{\left(1+R \lambda^{\frac{1}{2}}\right)^{l}\left(1+R \rho\left(x_{0}\right)^{-1}\right)^{l}}\left(\frac{R^{2}}{V(R)} \int_{B\left(y_{0}, \frac{1}{4} R\right)} \frac{\mathrm{d}\left(y_{0}, y\right) W(y) \mathrm{d} y}{V\left(\mathrm{~d}\left(y_{0}, y\right)\right)}+\frac{R}{V(R)}\right)
$$

Then we see that there exists a positive constant C_{l} such that for all integer $l \geq 2$,

$$
\left|\overline{K_{2}\left(y_{0}, x_{0}\right)}\right| \leq \frac{C_{l}}{\left(1+R \rho\left(x_{0}\right)^{-1}\right)^{l}}\left(\frac{R^{2 \beta}}{V(R)} \int_{B\left(y_{0}, \frac{1}{4} R\right)} \frac{\mathrm{d}\left(y_{0}, y\right) W(y) \mathrm{d} y}{V\left(\mathrm{~d}\left(y_{0}, y\right)\right)}+\frac{R^{2 \beta-1}}{V(R)}\right)
$$

Let $r=\rho(x)$ and choose p_{1} such that $\frac{1}{p_{1}}=\frac{1}{q_{1}}-\frac{1}{D}$. Note that $\frac{1}{p_{1}}+\frac{\alpha}{q_{1}}+\frac{1}{q_{2}}=1$. By Hölder inequality, we obtain

$$
\begin{aligned}
\left|T_{2}^{*} f(x)\right| \leq & \sum_{j=-\infty}^{\infty} \int_{2^{j-1} r<\mathrm{d}(x, y) \leq 2^{j} r}\left|\overline{K_{2}(y, x)}\right| W(y)^{\alpha}|f(y)| \mathrm{d} y \\
\leq & \sum_{j=-\infty}^{\infty} V\left(2^{j} r\right)\left\{\frac{1}{V\left(2^{j} r\right)} \int_{2^{j-1} r<\mathrm{d}(x, y) \leq 2^{j} r}\left|\overline{K_{2}(y, x)}\right|^{p_{1}} \mathrm{~d} y\right\}^{\frac{1}{p_{1}}} \\
& \left\{\frac{1}{V\left(2^{j} r\right)} \int_{B\left(x, 2^{j} r\right)} W(y)^{q_{1}} \mathrm{~d} y\right\}^{\frac{\alpha}{q_{1}}}\left\{\frac{1}{V\left(2^{j} r\right)} \int_{B\left(x, 2^{j} r\right)}|f(y)|^{q_{2}} \mathrm{~d} y\right\}^{\frac{1}{q_{2}}}
\end{aligned}
$$

Using Minkowski's inequality and the well known theorem on fractional integrals on the nilpotent Lie group (see (1.7) in [5]), we obtain

$$
\begin{aligned}
& V\left(2^{j} r\right)\left\{\frac{1}{V\left(2^{j} r\right)} \int_{2^{j-1} r<\mathrm{d}(x, y) \leq 2^{j} r}\left|\overline{K_{2}(y, x)}\right|^{p_{1}} \mathrm{~d} y\right\}^{\frac{1}{p_{1}}} \\
& \quad \leq \frac{C C_{l} V\left(2^{j} r\right)}{\left(1+2^{j-3}\right)^{l}}\left\{\frac{\left(2^{j} r\right)^{2 \beta+1}}{V\left(2^{j} r\right)}\left[\frac{1}{V\left(2^{j} r\right)} \int_{B\left(x, 2^{j-2} r\right)} W(y)^{q_{1}} \mathrm{~d} y\right]^{\frac{1}{q_{1}}}+\frac{\left(2^{j} r\right)^{2 \beta-1}}{V\left(2^{j} r\right)}\right\} \\
& \quad \leq \frac{C^{\prime} C_{l}\left(2^{j} r\right)^{2 \beta-1}}{\left(1+2^{j-3}\right)^{l}}\left[\frac{\left(2^{j-2} r\right)^{2}}{V\left(2^{j-2} r\right)} \int_{B\left(x, 2^{j-2} r\right)} W(y) \mathrm{d} y+1\right] .
\end{aligned}
$$

For the case $j \geq 1$, using (7) we have

$$
V\left(2^{j} r\right)\left\{\frac{1}{V\left(2^{j} r\right)} \int_{2^{j-1} r<\mathrm{d}(x, y) \leq 2^{j} r}\left|\overline{K_{2}(y, x)}\right|^{p_{1}} \mathrm{~d} y\right\}^{\frac{1}{p_{1}}} \leq C^{\prime} C_{l} \frac{2^{j l_{1}}\left(2^{j} r\right)^{2 \beta-1}}{\left(1+2^{j-3}\right)^{l}}
$$

For the case $j \leq 0$, using (8) we obtain

$$
V\left(2^{j} r\right)\left\{\frac{1}{V\left(2^{j} r\right)} \int_{2^{j-1} r<\mathrm{d}(x, y) \leq 2^{j} r}\left|\overline{K_{2}(y, x)}\right|^{p_{1}} \mathrm{~d} y\right\}^{\frac{1}{p_{1}}} \leq C^{\prime} C_{l} \frac{\left(2^{j} r\right)^{2 \beta-1}}{\left(1+2^{j-3}\right)^{l}}
$$

Then it follows that

$$
\begin{aligned}
\left|T_{2}^{*} f(x)\right| \leq & C^{\prime} C_{l}\left\{M_{\varepsilon q_{2}}\left(|f|^{q_{2}}\right)(x)\right\}^{\frac{1}{q_{2}}}\left\{\sum_{j=1}^{\infty} \frac{2^{j k_{0}}}{\left(1+2^{j-3}\right)^{l}}+\sum_{j=-\infty}^{0} \frac{1}{\left(1+2^{j-3}\right)^{l}}\right\} \\
& {\left[\frac{\left(2^{j} r\right)^{2}}{V\left(2^{j} r\right)} \int_{B\left(x, 2^{j-2} r\right)} W(y) \mathrm{d} y\right]^{\alpha} \frac{\left(2^{j} r\right)^{2 \beta-2 \alpha-1}}{V\left(2^{j} r\right)^{\varepsilon}} }
\end{aligned}
$$

where $\varepsilon=\frac{2(\beta-\alpha)-1}{\theta}, \theta \in[d, D]$. Combining (7) and (8) again and similar to the estimates of $\left|T_{1}^{*} f(x)\right|$, we get

$$
\left|T_{2}^{*} f(x)\right| \leq C\left\{M_{\varepsilon q_{2}}\left(|f|^{q_{2}}\right)(x)\right\}^{\frac{1}{q_{2}}}
$$

Proof of Corollary 1 Case $\alpha>0$: Note that $\theta \in[d, D]$. Let $\gamma=2(\beta-\alpha)$ and $\frac{1}{q_{2}}=1-\frac{\alpha}{q_{1}}$. For q^{\prime} such that $q_{2}<q^{\prime}<\frac{\theta}{\gamma}$ and $\frac{1}{p^{\prime}}=\frac{1}{q^{\prime}}-\frac{\gamma}{\theta}$, then it follows from the assumptions that

$$
0<\gamma q_{2}<\theta, 1<\frac{q^{\prime}}{q_{2}}<\frac{\theta}{\gamma q_{2}}, \frac{1}{p^{\prime} / q_{2}}=\frac{1}{q^{\prime} / q_{2}}-\frac{\gamma q_{2}}{\theta}
$$

By Theorem 1 and Proposition 1(1), there exists a positive constant C such that for any $f \in$ $C_{0}^{\infty}(G)$,

$$
\left\|\left(T_{1}^{*} f\right) w^{-1}\right\|_{L^{p^{\prime}}(G)} \leq C\left\|f w^{-1}\right\|_{L^{q^{\prime}}(G)} .
$$

Since $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $\frac{1}{q}+\frac{1}{q^{\prime}}=1$, the desired estimate follows by duality.
Case $\alpha=0$: Since $q_{2}=1$, so the condition for w is $w^{-1} \in A_{p^{\prime}, q^{\prime}}$, which is equivalent to $w \in A_{p, q}$. Then following the same idea of the proof of Corollary 1 in [7], we get the desired estimate.

Proof of Corollary 2 Case $\alpha>0$: Let $\gamma=2(\beta-\alpha)-1$ and $\frac{1}{q_{2}}=1-\frac{1}{p_{1}}$,

$$
\frac{1}{p_{1}}= \begin{cases}\frac{\alpha}{q_{1}}, & \text { if } q_{1}>D \\ \frac{(\alpha+1)}{q_{1}}-\frac{1}{D}, & \text { if } \frac{D}{2}<q_{1}<D\end{cases}
$$

Note that $\theta \in[d, D]$. For q^{\prime} such that $q_{2}<q^{\prime}<\frac{\theta}{\gamma}$ and $\frac{1}{p^{\prime}}=\frac{1}{q^{\prime}}-\frac{\gamma}{\theta}$, then it follows from the assumptions that

$$
0<\gamma q_{2}<\theta, 1<\frac{q^{\prime}}{q_{2}}<\frac{\theta}{\gamma q_{2}}, \frac{1}{p^{\prime} / q_{2}}=\frac{1}{q^{\prime} / q_{2}}-\frac{\gamma q_{2}}{\theta}
$$

By Theorem 2 and Proposition $1(1)$, there exists a positive constant C such that for any $f \in$ $C_{0}^{\infty}(G)$,

$$
\left\|\left(T_{2}^{*} f\right) w^{-1}\right\|_{L^{p^{\prime}}(G)} \leq C\left\|f w^{-1}\right\|_{L^{q^{\prime}}(G)} .
$$

Since $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $\frac{1}{q}+\frac{1}{q^{\prime}}=1$, so the desired estimate follows by duality.
Case $\alpha=0$ and $\frac{1}{2}<\beta \leq 1$: Using the estimates of the kernel $K_{2}(x, y)$ and following the same idea of the proof of Corollary 3 in [7], we get the desired estimate.

References

[1] FEFFERMAN C L. The uncertainty principle [J]. Bull. Amer. Math. Soc. (N.S.), 1983, 9(2): 129-206.
[2] SHEN Zhongwei. L^{p} estimates for Schrödinger operators with certain potentials [J]. Ann. Inst. Fourier (Grenoble), 1995, 45(2): 513-546.
[3] KURATA K, SUGANO S. A remark on estimates for uniformly elliptic operators on weighted L^{p} spaces and Morrey spaces [J]. Math. Nachr., 2000, 209: 137-150.
[4] LU Guozhen. A Fefferman-Phong type inequality for degenerate vector fields and applications [J]. Panamer. Math. J., 1996, 6(4): 37-57.
[5] LI Hongquan. Estimations L^{p} des opérateurs de Schrö-dinger sur les groupes nilpotents [J]. J. Funct. Anal., 1999, 161(1): 152-218. (in French)
[6] SUGANO S. Estimates for the operators $V^{\alpha}(-\Delta+V)^{-\beta}$ and $V^{\alpha} \nabla(-\Delta+V)^{-\beta}$ with certain non-negative potentials $V[J]$. Tokyo J. Math., 1998, 21(2): 441-452.
[7] LIU Yu. The weighted estimates for the operators $W^{\alpha}\left(-\Delta_{G}+W\right)^{-\beta}$ and $W^{\alpha} \nabla_{G}\left(-\Delta_{G}+W\right)^{-\beta}$ on the stratified Lie group $G[J]$. J. Math. Anal. Appl., 2009, 349(1): 235-244.
[8] NAGEL A, STEIN E M, WAIGNER S. Balls and metrics defined by vector fields I: Basic properties [J]. Acta Math., 1985, 155(1-2): 103-147.
[9] BERNARDIS A, SALINAS O. Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type [J]. Studia Math., 1994, 108(2): 201-207.

[^0]: Received October 13, 2008; Accepted September 15, 2009
 Supported by the National Natural Science Foundation of China (Grant Nos.10726064; 10901018) and the Foundation of Theorical Research of Engineering Research Institute of University of Science and Technology Beijing. E-mail address: liuyu75@pku.org.cn

