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Abstract Motivated by the recent result obtained by Takahashi and Zembayashi in 2008, we

prove a strong convergence theorem for finding a common element of the set of solutions of

a generalized equilibrium problem and the set of fixed points of a hemi-relatively nonexpansive

mapping in a Banach space by using the shrinking projection method. The main results obtained

in this paper extend some recent results.
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1. Introduction

Let C be a nonempty closed convex subset of a real Banach space E, and T a mapping from

C into itself. We denote by F (T ) the set of fixed points of T . Let f be an equilibrium bifunction

from C × C into R, and A : C → E∗ a nonlinear mapping. Now we consider the following

generalized equilibrium problem: find z ∈ C such that

f(z, y) + 〈Az, y − z〉 > 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP , i.e.,

EP = {z ∈ C : f(z, y) + 〈Az, y − z〉 > 0, ∀y ∈ C}.

In the case of f ≡ 0, EP is denoted by V I(C, A). In the case of A ≡ 0, EP is denoted by

EP (f), Takahashi-Zembayashi [1] in 2008 proved a strong convergence theorem for finding a

common element of EP (f) and the set of fixed points of a relatively nonexpansive mapping in

the framework of uniformly smooth and uniformly convex Banach spaces by using the shrinking

projection method. Now, in this paper, we imitatively prove a strong convergence theorem for

finding a common element of the set of solutions of an equilibrium problem (1.1) and the set
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of fixed points of a hemi-relatively nonexpansive mapping in the same framework by using the

similar shrinking projection method.

2. Preliminaries

Let E be a real Banach space with dual E∗. We denote by J the normalized duality mapping

from E to 2E∗

defined by

Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2},

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E∗ is uniformly

convex, then J is uniformly continuous on bounded subsets of E. In this case, J is singe valued

and also one to one.

Now in the framework of smooth Banach spaces, we consider the function defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 for x, y ∈ E.

Following Alber [2], the generalized projection ΠC from E onto C is defined by

ΠC(x) = arg min
y∈C

φ(y, x), ∀x ∈ E.

The generalized projection ΠC : E → C is a map that assigns to an arbitrary point x ∈ E

the minimum point of the function φ(y, x), that is, ΠCx = x̃, where x̃ is the solution to the

minimization problem

φ(x̃, x) = min
y∈C

φ(y, x).

Existence and uniqueness of the operator ΠC follow from the properties of the functional φ(y, x)

and strict monotonicity of the mapping J (see [2, 6, 10]). The generalized projection ΠC from E

onto C is well defined, single valued and satisfies

(‖x‖ − ‖y‖)2 6 φ(y, x) 6 (‖x‖ + ‖y‖)2, ∀x, y ∈ E. (2.1)

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 and ΠC is the metric projection of H onto C.

T is called hemi-relatively nonexpansive if φ(p, Tx) 6 φ(p, x) for all x ∈ C and p ∈ F (T ). A

point p ∈ C is said to be an asymptotic fixed point of T if there exists {xn} in C which converges

weakly to p and limn→∞ ‖xn − Txn‖ = 0. We denote the set of all asymptotic fixed points of T

by F̂ (T ). Following Matsushita-Takahashi [3], a mapping T is said to be relatively nonexpansive

if the following conditions are satisfied:

(1) F (T ) is nonempty;

(2) φ(p, Tx) 6 φ(p, x), for all p ∈ F (T ), x ∈ C;

(3) F̂ (T ) = F (T ).

It is obvious that the class of hemi-relatively nonexpansive mappings contains the class of

relatively nonexpansive mappings.

For solving the equilibrium problem for bifunction f : C × C → R, let us assume that f

satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;
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(A2) f is monotone, i.e., f(x, y) + f(y, x) 6 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t→0+

f(tz + (1 − t)x, y) 6 f(x, y);

(A4) for each x ∈ C, y → f(x, y) is a convex and lower semicontinuous.

Lemma 2.1 Let E be a strictly convex and smooth real Banach space, C a closed convex subset

of E. Let T be a hemi-relatively nonexpansive mapping from C into itself. Then F (T ) is closed

and convex..

Proof We firstly prove that F (T ) is closed.

Indeed, if {xn} ⊂ F (T ) with xn → x, then we have φ(xn, Tx) 6 φ(xn, x). Hence,

φ(x, Tx) = lim
n→∞

φ(xn, Tx) 6 lim
n→∞

φ(xn, x) = φ(x, x) = 0.

This implies φ(x, Tx) = 0, and hence x ∈ F (T ).

Finally, we show that F (T ) is convex.

Indeed, for any x, y ∈ F (T ), taking z = tx + (1 − t)y for t ∈ [0, 1], we have

φ(z, T z) = ‖z‖2 − 2〈z, J(Tz)〉+ ‖Tz‖2

= ‖z‖2 − 2〈tx + (1 − t)y, J(Tz)〉+ ‖Tz‖2

= ‖z‖2 − 2t〈x, J(Tz)〉 − 2(1 − t)〈y, J(Tz)〉 + ‖Tz‖2

= ‖z‖2 + tφ(x, T z) + (1 − t)φ(y, T z) − t‖x‖2 − (1 − t)‖y‖2

6 ‖z‖2 + tφ(x, z) + (1 − t)φ(y, z) − t‖x‖2 − (1 − t)‖y‖2

= ‖z‖2 − 2〈tx + (1 − t)y, Jz〉 + ‖z‖2 = φ(z, z) = 0.

This implies z ∈ F (T ).

Lemma 2.2 ([4]) Let C be a closed convex subset of a uniformly smooth, strictly convex and

reflexive Banach space E, and let f be a bifunction from C × C to R satisfying (A1)–(A4). Let

r > 0 and x ∈ E. Then there exists z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 > 0, ∀ y ∈ C.

Lemma 2.3 ([5]) Let C be a closed convex subset of a uniformly smooth, strictly convex and

reflexive Banach space E, and let f be a bifunction from C × C to R satisfying (A1)–(A4). For

r > 0 and x ∈ E, define a mapping Tr : E → 2C as follows:

Tr(x) = {z ∈ C : f(z, y) +
1

r
〈y − z, Jz − Jx〉 > 0, ∀ y ∈ C}

for all x ∈ E. Then the following holds:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, that is, for all x, y ∈ E,

〈Trx − Try, JTrx − JTry〉 6 〈Trx − Try, Jx − Jy〉;

(3) F (Tr) = F̂ (Tr) = EP (f);
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(4) EP (f) is closed and convex.

Lemma 2.4 ([5]) Let C be a closed convex subset of a smooth, strictly convex and reflexive

Banach space E and let f be a bifunction from C×C to R satisfying (A1)–(A4). Then for r > 0,

x ∈ E, and q ∈ F (Tr),

φ(q, Trx) + φ(Trx, x) 6 φ(q, x).

Lemma 2.5 ([2, 6]) Let C be nonempty closed convex subset of a smooth, strictly convex and

reflexive Banach space E. Then

φ(x, ΠCy) + φ(ΠCy, y) 6 φ(x, y), ∀x ∈ C, y ∈ E.

Lemma 2.6 ([6]) Let E be a smooth and uniformly convex Banach space and let {xn} and

{yn} be sequences in E such that either {xn} or {yn} is bounded. If limn→∞ φ(xn, yn) = 0, then

limn→∞ ‖xn − yn‖ = 0.

Lemma 2.7 ([7–9]) Let E be a smooth and uniformly convex Banach space and let r > 0.

Then there exists a strictly increasing, continuous and convex function h : [0, 2r] → R such that

h(0) = 0 and

h(‖x − y‖) 6 φ(x, y)

for all x, y ∈ Br, where Br = {x ∈ E : ‖x‖ 6 r}.

Recall that an operator S in a Banach space is called closed. If xn → x and Txn → y, then

Tx = y.

3. The main results

Theorem 3.1 Let E be a uniformly smooth and uniformly convex Banach space, and C a

nonempty closed convex subset of E. Let f be a bifunction from C×C to R satisfying (A1)–(A4),

and S a closed hemi-relatively nonexpansive mapping from C into itself such that F (S)∩EP 6= ∅.

Assume, A : C → E∗ is α-inverse-strongly monotone mapping. {xn} is a sequence generated by

x0 = x ∈ C, C0 = C and





yn = J−1(anJxn + (1 − an)JSxn),

un ∈ C such that f(un, y) + 〈Aun, y − un〉 +
1

rn

〈y − un, Jun − Jyn〉 > 0, ∀ y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) 6 φ(z, xn)},

xn+1 = ΠCn+1
x,

(3.1)

for every n ∈ {0}∪N, where J is the duality mapping on E, {an} ⊂ [0, 1] satisfies lim infn→∞ an(1−

an) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then, {xn} converges strongly to ΠF (S)∩EP x, where

ΠF (S)∩EP is the generalized projection of E onto F (S) ∩ EP .

Proof Firstly, we may define a bifunction g : C × C → R by

g(x, y) = f(x, y) + 〈Ax, y − x〉, ∀x, y ∈ C.
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We claim that the bifunction g satisfies conditions (A1)–(A4).

Indeed, we can see easily that g(x, x) = 0 for all x ∈ C, i.e., (A1) holds. Next, we can prove

easily that g(z, y) + g(y, z) 6 0 for all y, z ∈ C by way of the assumption that A is α-inverse-

strongly monotone. By virtue of the continuity of x → 〈Ax, y − x〉, we can conclude g satisfies

(A3). Below, we may prove y 7→ g(x, y) is convex for any x ∈ C. Indeed,

g(x, ty + (1 − t)z) = f(x, ty + (1 − t)z) + 〈Ax, ty + (1 − t)z − x〉

6 tf(x, y) + (1 − t)f(x, z) + t〈Ax, y − x〉 + (1 − t)〈Ax, z − x〉

= tg(x, y) + (1 − t)g(x, z).

Next, we prove that y 7→ g(x, y) is lower semi-continuous.

Indeed, if {yn} ⊂ C with yn → y ∈ C, then

g(x, y) = f(x, y) + 〈Ax, y − x〉 6 lim inf
n→∞

f(x, yn) + lim
n→∞

〈Ax, yn − x〉 = lim inf
n→∞

g(x, yn).

Thus, (A4) also holds for g(x, y).

From all the proof above, (3.1) can actually be equivalent to





yn = J−1(anJxn + (1 − an)JSxn),

un ∈ C such that g(un, y) +
1

rn

〈y − un, Jun − Jyn〉 > 0, ∀ y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) 6 φ(z, xn)},

xn+1 = ΠCn+1
x,

(3.2)

where S : C → C is a nonexpansive mapping defined by (3.2), and g(x, y) is a bifunction

satisfying the conditions (A1)–(A4). Now we have EP = EP (g), for

EP (g) = {z ∈ C : g(z, y) > 0, ∀y ∈ C} = {z ∈ C : f(z, y) + 〈Az, y − z〉 > 0, ∀y ∈ C} = EP.

Below, we shall prove {xn} generated by (3.2) converges strongly to ΠF (S)∩EP (g)x.

Since the bifunction g satisfies conditions (A1)–(A4), we know by Lemma 2.3(4) that EP (g)

is closed and convex. In addition, Lemma 2.1 tells us that F (S) is also closed and convex so that

ΠF (S)∩EP (g) is well defined.

Secondly, since the bifunction g satisfies conditions (A1)–(A4), we may still denote un = Trn
yn

for all n ∈ N. Then Lemmas 2.3 and 2.4 yield that each Trn
is relatively nonexpansive. We claim

that each Cn is closed and convex.

Indeed, since

φ(z, un) 6 φ(z, xn) ⇔ ‖un‖
2 − ‖xn‖

2 − 2〈z, Jun − Jxn〉 > 0,

Cn is closed and convex for all n ∈ {0} ∪ N. This implies each ΠCn+1
is well defined.

Next, we show by induction that EP (g) ∩ F (S) ⊂ Cn for all n ∈ {0} ∪ N.

Indeed, from C0 = C, we have F (S) ∩ EP (g) ⊂ C0.

Suppose that F (S) ∩ EP (g) ⊂ Ck for some k ∈ {0} ∪ N. Let u ∈ F (S) ∩ EP (g) ⊂ Ck. Since

Trk
is relatively nonexpansive, and S is hemi-relatively nonexpansive, we get by Lemmas 2.3 and



1104 R. F. RAO and J. L. HUANG

2.4
φ(u, uk) =φ(u, Trk

yk) 6 φ(u, yk)

=φ(u, J−1(akJxk + (1 − ak)JSxk))

=‖u‖2 − 2〈u, akJxk + (1 − ak)JSxk〉 + ‖akJxk + (1 − ak)JSxk‖
2

6‖u‖2 − 2ak〈u, Jxk〉 − 2(1 − ak)〈u, JSxk〉 + ak‖xk‖
2 + (1 − ak)‖Sxk‖

2

=akφ(u, xk) + (1 − ak)φ(u, Sxk) 6 φ(u, xk).

Hence, we have u ∈ Ck+1. This implies

EP (g) ∩ F (S) ⊂ Cn, ∀n ∈ {0} ∪ N.

So, {xn} is well defined.

From the definition of xn, we get by Lemma 2.5

φ(xn, x) = φ(ΠCn
x, x) 6 φ(u, x) − φ(u, ΠCn

x) 6 φ(u, x)

for all u ∈ F (S) ∩ EP (g) ⊂ Cn. Then φ(xn, x) is bounded. Thereby, both {xn} and {Sxn} are

bounded.

From xn+1 ∈ Cn+1 ⊂ Cn and xn = ΠCn
x, we have

φ(xn, x) 6 φ(xn+1, x), ∀n ∈ {0} ∪ N.

Thus, the limit of {φ(xn, x)} exists owing to the boundedness of the monotone real sequence

{φ(xn, x)}. Denote

lim
n→∞

φ(xn, x) = d. (3.3)

From Lemma 2.5, we know that for any positive integer m,

φ(xn+m, xn) = φ(xn+m, ΠCn
x) 6 φ(xn+m, x0) − φ(xn, x0), ∀n ∈ N, (3.4)

and hence

lim
n→∞

φ(xn+m, xn) = 0.

Next, we claim that {xn} is a Cauchy sequence. If not, there exists a constant ε0 > 0 and

subsequences {nk}, {mk} ⊂ {n} such that

‖xnk+mk
− xnk

‖ > ε0,

for all k > 1.

In addition, we get by (3.3) and (3.4)

φ(xnk+mk
, xnk

) 6 φ(xnk+mk
, x) − φ(xnk

, x)

6 |φ(xnk+mk
, x) − d| + |φ(xnk

, x) − d| → 0, as k → ∞.

The boundedness of {xn} can be obtained by (2.1) and (3.3). Hence, we get by Lemma 2.6 that

‖xnk+mk
− xnk

‖ → 0, as k → ∞.

The contradiction implies that {xn} is a Cauchy sequence.
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Since

φ(xn+1, xn) = φ(xn+1, ΠCn
x) 6 φ(xn+1, x) − φ(ΠCn

x, x) = φ(xn+1, x) − φ(xn, x)

for all n ∈ {0} ∪ N, we have limn→∞ φ(xn+1, xn) = 0. From xn+1 = ΠCn+1
x ∈ Cn+1, we get by

(3.2)

φ(xn+1, un) 6 φ(xn+1, xn), ∀n ∈ {0} ∪ N.

Thereby,

lim
n→∞

φ(xn+1, un) = 0.

Thus, limn→∞ φ(xn+1, xn) = 0 and Lemma 2.6 yield

lim
n→∞

‖xn+1 − xn‖ = 0 = lim
n→∞

‖xn+1 − un‖,

and hence

lim
n→∞

‖xn − un‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖J(xn) − J(un)‖ = 0.

Let r = sup
n∈N

{‖xn‖, ‖Sxn‖}. Since E is a uniformly smooth Banach space, we know that E∗ is

a uniformly convex Banach space. Therefore, from Lemma 2.7, there exists a continuous, strictly

increasing, and convex function h with h(0) = 0 such that

‖αx∗ + (1 − α)y∗‖2
6 α‖x∗‖2 + (1 − α)‖y∗‖2 − α(1 − α)h(‖x∗ − y∗‖)

for all x∗, y∗ ∈ B∗

r and α ∈ [0, 1], where B∗

r = {x∗ ∈ E∗ : x∗ = Jx, x ∈ Br}. Thanks to the

assumptions on the Banach space E, the normalized duality mapping is really a single-valued

and one-to-one surjection of E onto E∗, which deduces B∗

r = {x∗ ∈ E∗ : ‖x∗‖ 6 r}. So, for

u ∈ F (S) ∩ EP (g), we have

φ(u, un) =φ(u, Trn
yn) 6 φ(u, yn) = φ(u, J−1(anJxn + (1 − an)JSxn))

=‖u‖2 − 2〈u, anJxn + (1 − an)JSxn〉 + ‖anJxn + (1 − an)JSxn‖
2

6‖u‖2 − 2an〈u, Jxn〉 − 2(1 − an)〈u, JSxn〉 + an‖xn‖
2 + (1 − an)‖Sxn‖

2−

an(1 − an)h(‖Jxn − JSxn‖)

=anφ(u, xn) + (1 − an)φ(u, Sxn) − an(1 − an)h(‖Jxn − JSxn‖)

6φ(u, xn) − an(1 − an)h(‖Jxn − JSxn‖).

Therefore, we have

an(1 − an)h(‖Jxn − JSxn‖) 6 φ(u, xn) − φ(u, un). (3.5)

Since
φ(u, xn) − φ(u, un) = ‖xn‖

2 − ‖un‖
2 − 2〈u, Jxn − Jun〉

6 |‖xn‖ − ‖un‖|(‖xn‖ + ‖un‖) + 2‖u‖ · ‖Jxn − Jun‖

6 ‖xn − un‖(‖xn‖ + ‖un‖) + 2‖u‖ · ‖Jxn − Jun‖,
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we have

lim
n→∞

(φ(u, xn) − φ(u, un)) = 0. (3.6)

From lim infn→∞ an(1 − an) > 0, we get by (3.5)

lim
n→∞

h(‖Jxn − JSxn‖) = 0.

The property of h yields

lim
n→∞

‖Jxn − JSxn‖ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn − Sxn‖ = 0. (3.7)

Since {xn} is a Cauchy sequence, there exists a point p ∈ C such that {xn} converges strongly

to p, i.e.,

lim
n→∞

‖xn − p‖ = 0. (3.8)

Since S is a closed operator, we know by (3.7) and (3.8) that

p ∈ F (S).

Next, we shall show p ∈ EP (g) so that

p ∈ F (S) ∩ EP (g). (3.9)

Indeed, since un = Trn
yn and φ(u, yn) 6 φ(u, xn), we get by Lemma 2.4

φ(un, yn) 6 φ(u, yn) − φ(u, Trn
yn) 6 φ(u, xn) − φ(u, Trn

yn) = φ(u, xn) − φ(u, un).

Then we get by (3.6)

lim
n→∞

φ(un, yn) = 0.

So we get by the boundedness of {un} and Lemma 2.6

lim
n→∞

‖un − yn‖ = 0. (3.10)

Thus, all the sequences {xn}, {yn} and {un} converge strongly to the same element p ∈ F (S).

Since J is uniformly norm-to-norm continuous on bounded sets, we get by (3.10) and rn > a

lim
n→∞

‖Jun − Jyn‖

rn

= 0. (3.11)

From un = Trn
yn, we have

g(un, y) +
1

rn

〈y − un, Jun − Jyn〉 > 0, ∀ y ∈ C. (3.12)

Since g satisfies the conditions (A1)–(A4), we can get by (3.11), (3.12) and by letting n → ∞

that

g(y, p) 6 0, ∀ y ∈ C. (3.13)

For t with 0 < t 6 1 and y ∈ C, let yt = ty + (1 − t)p. Since y ∈ C and p ∈ C, we have yt ∈ C,

and hence g(yt, p) 6 0. So, we get by (A1) and (A4)

0 = g(yt, yt) 6 tg(yt, y) + (1 − t)g(yt, p) 6 tg(yt, y).
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Thus,

g(yt, y) > 0, ∀ y ∈ C.

Letting t → 0+, we get by (A3)

g(p, y) > 0, ∀ y ∈ C.

Therefore, p ∈ EP (g), and hence (3.9) holds.

Finally, we show that p = ΠF (S)∩EP (g)x.

Indeed, we can get by Lemma 2.5

φ(p, ΠF (S)∩EP (g)x) + φ(ΠF (S)∩EP (g)x, x) 6 φ(p, x). (3.14)

On the other hand, since xn+1 = ΠCn+1
x and F (S) ∩ EP (g) ⊂ Cn for all n, we get by Lemma

2.5

φ(ΠF (S)∩EP (g)x, xn+1) + φ(xn+1, x) 6 φ(ΠF (S)∩EP (g)x, x). (3.15)

Then we can get by (3.14) and (3.15) that both φ(p, x) 6 φ(ΠF (S)∩EP (g)x, x) and φ(p, x) >

φ(ΠF (S)∩EP (g)x, x) hold, and hence φ(p, x) = φ(ΠF (S)∩EP (g)x, x). It follows by the uniqueness

of ΠF (S)∩EP (g)x that p = ΠF (S)∩EP (g)x. This completes the proof. 2

Remark Letting A ≡ 0 in Theorem 3.1, and replacing the closed hemi-relatively nonexpansive

mapping with relatively nonexpansive mapping, we see, Theorem 3.1 is reduced to Takahashi-

Zembayashi [1, Theorem 3.1].
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