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1. Introduction

It is known that the symbolic calculus with the shift operator E, the difference operator △

and the differential operator D plays an important role in the calculus of finite differences as

well as in certain topics of computational methods. Various well-known results can be found in

[1–3]. Based on the general theory of the formal power series, all the symbolic expressions used

in the calculus could be formally expressed as power series in △, E or D over the real or complex

number field. For some detailed discussion of power series, see [4] and [5].

As usual, we denote by C∞ the class of infinitely differentiable real functions defined in

R = (−∞, +∞). The operators △, E and D may be defined for all f ∈ C∞ via the following

relations:

△f(t) = f(t + 1) − f(t), Ef(t) = f(t + 1), Df(t) =
d

dt
f(t).

We use the number 1 as an identity operator, viz. 1f(t) = f(t). Obviously, these operators

satisfy some simple symbolic relations such as

E = 1 + △ = eD, △ = E − 1 = eD − 1, D = log(1 + △),

where eD and log(1 + △) are defined as the sense of formal power series expansions, i.e.,

eD =
∑

k>0

1

k!
Dk,
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log(1 + △) =
∑

k>1

(−1)k−1

k
△k.

Moreover, we may define for any real number a, Eaf(t) = f(t + a). In particular, Ekf(0) =

[Ekf(t)]t=0 = f(k).

He et al. [6] note that any power series of the form
∑

∞

k=0 f(k)xk could be written symbolically

as
∑

k>0

f(k)xk =
∑

k>0

xkEkf(0) =
∑

k>0

(xE)kf(0) = (1 − xE)−1f(0).

This shows that the symbolic operator (1 − xE)−1 with parameter x can be applied to f(t) (at

t = 0) to yield a power series or a generating function for {f(k)}. We observe that the Newton

series of the form
∑

∞

k=0 f(k) (x)k

k! could be written symbolically as

∑

k>0

f(k)
(x)k

k!
=

∑

k>0

(x)k

k!
Ekf(0) =

∑

k>0

(

x

k

)

Ekf(0) = (1 + E)xf(0),

where the lower factorial polynomial (x)k = x(x−1) · · · (x−k+1). Hence, the symbolic operator

(1+E)x with parameter x can be applied to f(t) (at t = 0) to yield a Newton series or a Newton

generating function for {f(k)}.

In Section 2, we shall give some definitions and lemmas which will be used in the following

section. We shall show in Section 3 that (1+E)x could be expanded into various series to derive

various symbolic operational formulas as well as summation formula for
∑

k>0 f(k) (x)k

k! . Some

consequences of the summation formulas and the examples will also be shown in this section.

In this paper, we only study the expansions of formal Newton series. For the convergence of

Newton series, see [7] and [1].

2. Preliminaries

We shall need the following definitions.

Definition 1 δ is Sheppard central difference operator defined by the relation δf(t) = f(t +
1
2 ) − f(t − 1

2 ), so that [2]

δ = △E−
1

2 =
△

E
1

2

, δ2k = △2kE−k.

Definition 2 The partial Bell polynomials are defined as follows:

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

c1!c2! · · · (1!)c1(2!)c2 · · ·
xc1

1 xc2

2 . . . , (1)

where the summation takes place over all integers c1, c2, c3, · · · > 0, such that:

c1 + 2c2 + 3c3 + · · · = n, c1 + c2 + c3 + · · · = k.

The potential polynomials P
(x)
n are defined by:

P
(x)
0 = 1, P (x)

n = P (x)
n (x1, x2, . . . , xn) =

∑

16k6n

(x)kBn,k(x1, x2, . . . , xn−k+1), n > 1. (2)
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Definition 3 The hypergeometric function 2F1(a, b; c; x) is defined by the series

∞
∑

n=0

〈a〉n〈b〉n
〈c〉nn!

xn

for |x| < 1, and by continuation elsewhere, where the upper factorial polynomial 〈x〉n = x(x +

1) · · · (x + n − 1) (see [8]).

In next section, we will use some simple and well-known propositions which may be stated

as lemmas as follows.

Lemma 1 For all positive integer j, we have

∞
∑

k=0

(x)kkj

k!
= 2xP

(x)
j (

1

2
,
1

2
, . . .).

Lemma 2 For x > 1, we have Everett’s symbolic expression

Ex =
∞
∑

k=0

((

x + k

2k + 1

)

△2k

Ek−1
−

(

x + k − 1

2k + 1

)

△2k

Ek

)

.

Lemma 3 Gauss’s symbolic expression for Ex is given by

Ex =

∞
∑

k=0

((

x + k

2k

)

△2k

Ek
+

(

x + k

2k + 1

)

△2k+1

Ek+1

)

.

3. Main results

In this section, we will show various expansions of (1 + E)x.

Proposition 1 The operator (1 + E)x has following formal symbolic expansions:

(1 + E)x =2x
∑

k>0

(x)k

k!

1

2k
△k, (3)

(1 + E)x =2x
∞
∑

j=0

P
(x)
j (

1

2
,
1

2
, . . .)

Dj

j!
, (4)

(1 + E)x =1 +

∞
∑

l=0

[(

x

l + 1

)

2F1

(

l + 1 − x, 2l + 2

l + 2
;−1

)

△2l

El−1
−

(

x

l + 2

)

2F1

(

l + 2 − x, 2l + 2

l + 3
;−1

)

△2l

El

]

, (5)

(1 + E)x =
∞
∑

l=0

[(

x

l

)

2F1

(

l − x, 2l + 1

l + 1
;−1

)

△2l

El
+

(

x

l + 1

)

2F1

(

l + 1 − x, 2l + 2

l + 2
;−1

)

△2l+1

El+1

]

. (6)

Proof Obviously, (3) can be derived as follows:

(1 + E)x = (2 + △)x = 2x

(

1 +
△

2

)x

= 2x
∑

k>0

(

x

k

) (

△

2

)k

= 2x
∑

k>0

(x)k

k!2k
△k.
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To prove (4), using E = eD and Lemma 1 we have

(1 + E)x =(1 + eD)x =

∞
∑

k=0

(

x

k

)

ekD =

∞
∑

k=0

(x)k

k!

∞
∑

j=0

(kD)j

j!

=
∞
∑

j=0

Dj

j!

∞
∑

k=0

(x)kkj

k!
= 2x

∞
∑

j=0

P
(x)
j (

1

2
,
1

2
, . . .)

Dj

j!
.

By using Lemmas 2 and 3, we can derive (5) as follows.

(1 + E)x − 1 =
∑

k>1

(

x

k

)

Ek =
∑

k>1

(

x

k

) ∞
∑

l=0

((

k + l

2l + 1

)

△2l

El−1
−

(

k + l − 1

2l + 1

)

△2l

El

)

=

∞
∑

l=0





△2l

El−1

∑

k>l+1

(

x

k

)(

k + l

2l + 1

)

−
△2l

El

∑

k>l+2

(

x

k

)(

k + l − 1

2l + 1

)





=

∞
∑

l=0





△2l

El−1

∑

j>0

(

x

j + l + 1

)(

j + 2l + 1

2l + 1

)

−

△2l

El

∑

j>0

(

x

j + l + 2

)(

j + 2l + 1

2l + 1

)





=

∞
∑

l=0





△2l

El−1

(

x

l + 1

)

∑

j>0

〈l + 1 − x〉j〈2l + 2〉j
〈l + 2〉jj!

(−1)j −

△2l

El

(

x

l + 2

)

∑

j>0

〈l + 2 − x〉j〈2l + 2〉j
〈l + 3〉jj!

(−1)j





=
∞
∑

l=0

[(

x

l + 1

)

2F1

(

l + 1 − x, 2l + 2

l + 2
;−1

)

△2l

El−1
−

(

x

l + 2

)

2F1

(

l + 2 − x, 2l + 2

l + 3
;−1

)

△2l

El

]

.

Similarly, we get formula (6).

Applying the symbolic expansions (3–6) to a function f(t) at t = 0, we have

Proposition 2 Let f(t) and h(t) be two functions, and let h(t) be infinitely differentiable at

t = 0. Then we have formally
∞
∑

k=0

f(k)
(x)k

k!
=2x

∞
∑

k=0

(x)k

k!2k
△kf(0), (7)

∞
∑

k=0

h(k)
(x)k

k!
=2x

∞
∑

j=0

P
(x)
j

(

1

2
,
1

2
, . . .

)

Djh(0)

j!
, (8)

∞
∑

k=1

f(k)
(x)k

k!
=

∞
∑

l=0

[(

x

l + 1

)

2F1

(

l + 1 − x, 2l + 2

l + 2
;−1

)

δ2lf(1) −

(

x

l + 2

)

2F1

(

l + 2 − x, 2l + 2

l + 3
;−1

)

δ2lf(0)

]

, (9)
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∞
∑

k=0

f(k)
(x)k

k!
=

∞
∑

l=0

[(

x

l

)

2F1

(

l − x, 2l + 1

l + 1
;−1

)

δ2lf(0) +

(

x

l + 1

)

2F1

(

l + 1 − x, 2l + 2

l + 2
;−1

)

(

δ2lf(0) − δ2lf(−1)
)

]

. (10)

Remark 1 Let x = −1 in (7), (9) and (10). Then we get three series transforms

∞
∑

k=0

(−1)kf(k) =
∞
∑

k=0

(−1)k

2k+1
△kf(0), (11)

∞
∑

k=1

(−1)kf(k) =

∞
∑

l=0

(−1)l+1

4l+1

(

δ2lf(1) + δ2lf(0)
)

, (12)

∞
∑

k=0

(−1)kf(k) =
∞
∑

l=0

(−1)l

4l+1

(

δ2lf(0) + δ2lf(−1)
)

, (13)

which are He et al.’s (4.3), (4.4) and (4.5) in [6]. In [6], they have also shown these series

transform can be used to convert a slowly convergent alternating series into rapidly convergent

series.

Corollary 1 If f(t) is a polynomial in t of degree d, we have

∞
∑

k=0

f(k)
(x)k

k!
=2x

d
∑

k=0

(x)k

k!2k
△kf(0), (14)

∞
∑

k=0

f(k)
(x)k

k!
=2x

d
∑

j=0

P
(x)
j

(

1

2
,
1

2
, . . .

)

Djf(0)

j!
, (15)

∞
∑

k=1

f(k)
(x)k

k!
=

[d/2]
∑

l=0

[(

x

l + 1

)

2F1

(

l + 1 − x, 2l + 2

l + 2
;−1

)

δ2lf(1) −

(

x

l + 2

)

2F1

(

l + 2 − x, 2l + 2

l + 3
;−1

)

δ2lf(0)

]

, (16)

∞
∑

k=0

f(k)
(x)k

k!
=

[d/2]
∑

l=0

[(

x

l

)

2F1

(

l − x, 2l + 1

l + 1
;−1

)

δ2lf(0) +

(

x

l + 1

)

2F1

(

l + 1 − x, 2l + 2

l + 2
;−1

)

(

δ2lf(0) − δ2lf(−1)
)

]

. (17)

Obviously, (14)–(17) can be used to obtain Newton generating functions of {f(k)}.

For example, let f(t) = tm (m > 1). For k 6 m, we have

△kf(0) =
[

△ktm
]

t=0
= k!S(m, k),

where S(m, k) is the Stirling number of the second kind, i.e., the number of distributions of n

distinct balls into k indistinguishable boxes (the order of the boxes does not count) such that no

box is empty. From (14), we have

∞
∑

k=0

km (x)k

k!
= 2x

m
∑

k=0

(x)k

k!2k
k!S(m, k) = 2x

m
∑

k=0

(x)k

2k
S(m, k), (18)
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i.e., the Newton generating function of {km}k∈N. For f(t) =
(

t
m

)

, we have △kf(0) = δm,k, where

δm,k is the Kronecker symbol with δm,k = 1 for m = k and zero for m 6= k. Following (14), we

get
∞
∑

k=0

(

k

m

)

(x)k

k!
= 2x

m
∑

k=0

(x)k

k!2k
δm,k = 2x−m

(

x

m

)

, (19)

i.e., the Newton generating function of {
(

k
m

)

}k∈N.

Formulas (7)–(10) can be used to derive series transforms formulas. For instance, let f(t) =
1

t+1 . We have △kf(0) = (−1)k

k+1 . Following (7), we have

∞
∑

k=0

(x)k

(k + 1)!
= 2x

∞
∑

k=0

(−1)k(x)k

2k(k + 1)!
, (20)

i.e.,

2F1

(

1, −x

2
;−1

)

= 2x
2F1

(

1, −x

2
;
1

2

)

. (21)

(21) can also be derived by Pfaff’s transformation.

Now we consider another example generated by function f(t) = (g(z))t, where g : R → R

and f is defined on N. Clearly, △kf(0) = (g(z) − 1)k. Hence, by (7), we have

∞
∑

k=0

(g(z))k (x)k

k!
=2x

∞
∑

k=0

(x)k

2kk!
(g(z) − 1)k

=2x
∞
∑

k=0

(

x

k

) (

g(z) − 1

2

)k

= 2x

(

1 +
g(z)− 1

2

)x

= (1 + g(z))x.

Similarly, for g(z) > 0, we have Dkf(0) = (ln g(z))k. Following (8), we obtain

∞
∑

k=0

(g(z))k (x)k

k!
= 2x

∞
∑

k=0

P
(x)
k

(

1

2
,
1

2
, . . .

)

1

k!
(ln g(z))k.

For example, taking g(z) = ez, we get

∞
∑

k=0

P
(x)
k

(

1

2
,
1

2
, . . .

)

zk

k!
=

(

1 + ez

2

)x

. (22)
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