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Abstract In this paper, we establish some relations between the Hilbert’s projective metric

and the norm on a Banach space and show that the metric and the norm induce equivalent

convergences at certain set. As applications, we utilize the main results to discuss the eigenvalue

problems for a class of positive homogeneous operators of degree α and the positive solutions for

a class of nonlinear algebraic system.
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1. Introduction

The Hilbert’s projective metric is particularly useful in proving the existence of a unique

fixed point for a positive nonlinear operator defined in Banach space. Elementary accounts of

the general theory may be found in Krasnosel’skii, Vainikko, Zabreiko, Rutitskii, and Stetsenko

[1] and in Bushell [2]. The properties of the metric and its use in some integral equations can

be found in [3–6]. Based upon the Hilbert’s projective metric, the authors [4] established several

ergodic theorems for nonlinear operators in ordered Banach spaces and the authors [3, 6] proved

existence and uniqueness of a solution to several classes of nonlinear integral equations by means

of positive homogeneous operators of degree α. In particular, Bushell [7] applied the Hilbert’s

projective metric to prove that, if T is a real nonsingular n×n matrix, then there exists a unique

real positive definite matrix A such that T ′AT = A2 and Koufany [8] formulated the metric on

symmetric cones for using the Jordan algebra theory and extended Bushell’s theorem to a class

of convex cones. In this paper, we establish some relations between Hilbert’s projective metric

and the norm on Banach spaces. As simple applications, we discuss the eigenvalue problems

for a class of positive homogeneous operators of degree α and the positive solutions for a class

of nonlinear algebraic system. Therefore, we give the existence, uniqueness of fixed points to
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positive homogeneous operators of degree α and the existence, uniqueness of positive solutions

to nonlinear algebraic system.

2. Main results

The following notations are taken from Nussbaum [9], Guo and Lakshmikantham [10]. Let

E be a real Banach space and θ be the zero element of E. A closed convex set P in E is called

a cone if the following conditions are satisfied:

(i) if x ∈ P , then λx ∈ P for λ ≥ 0; (ii) if x ∈ P and −x ∈ P , then x = θ.

A cone P induces a partial ordering ≤ in E by

x ≤ y if and only if y − x ∈ P.

A cone P is called normal if there exists a constant N such that

θ ≤ x ≤ y implies that ‖x‖ ≤ N‖y‖,

where ‖ · ‖ is the norm on E. A cone P is called solid if it contains interior points, i.e., P̊ 6= ∅.

Lemma 2.1 ([9, 11]) Let P be a cone in E. Then the following assertions are equivalent.

(i) P is normal.

(ii) There exists an equivalent norm ‖ · ‖1 on E such that θ ≤ x ≤ y implies ‖x‖1 ≤ ‖y‖1,

i.e., ‖ · ‖1 is monotonic.

(iii) xn ≤ zn ≤ yn (n = 1, 2, 3 . . .) and ‖xn − x‖ → 0, ‖yn − x‖ → 0 imply ‖zn − x‖ → 0.

Let P be a solid cone in real Banach space E. For given x, y ∈ P̊ , there exist sufficiently small

positive number µ and sufficiently large positive number λ such that x−µy ∈ P and y− 1
λ
x ∈ P ,

i.e., µy ≤ x ≤ λy. Hence, we can define

m(x, y) = sup{µ > 0|µy ≤ x}, M(x, y) = inf{λ > 0|x ≤ λy}.

As a result, we have

0 < m(x, y) ≤ M(x, y) and m(x, y)y ≤ x ≤ M(x, y)y.

The Hilbert’s projective metric is then defined by

d(x, y) = ln
M(x, y)

m(x, y)
.

Lemma 2.2 ([2, 10]) d(x, y) is a quasi-metric in P̊ , i.e., d(x, y) satisfies the following three

conditions:

(i) d(x, x) = 0, ∀ x ∈ P̊ ;

(ii) d(x, y) = d(y, x), ∀x, y ∈ P̊ ;

(iii) d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ P̊ .

Moreover we have

(iv) d(λx, µy) = d(x, y), ∀x, y ∈ P̊ , λ > 0, µ > 0;

(v) d(x, y) = 0 if and only if x = λy, where λ > 0.
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From Lemma 2.2 we know that (P̊
⋂

Sr, d) is a metric space, where Sr = {x ∈ E|‖x‖ = r},

∀r > 0. Moreover, we have the following.

Theorem 2.1 Suppose that the norm on E is monotonic, that is, θ ≤ x ≤ y implies ‖x‖ ≤ ‖y‖.

Then (P̊
⋂

Sr, d) is a complete metric space.

Proof The completeness of (P̊
⋂

Sr, d) in case r = 1 has been proved by Guo and Lakshmikan-

tham [10]. To prove the general case, suppose that {xn} is a Cauchy sequence in (P̊
⋂

Sr, d).

From Lemma 2.2(iv), we know that {xn

r
} is a Cauchy sequence in (P̊

⋂
S1, d). Therefore, there

exists z ∈ P̊
⋂

S1 such that d(xn

r
, z) → 0 (n → ∞). It follows from Lemma 2.2 (iv) that

d(xn, rz) → 0 as n → ∞, so {xn} converges to rz in (P̊
⋂

Sr, d). (P̊
⋂

Sr, d) is a complete metric

space. 2

Theorem 2.2 Suppose that P is normal and solid. Then (P̊
⋂

Sr, d) is a complete metric space.

Proof Since P is normal, from Lemma 2.1, we know that there exists a norm ‖ · ‖1 on E which

satisfies the following two conditions:

(A1) ‖ · ‖1 is equivalent to ‖ · ‖, i.e., there exist δ > β > 0 such that β‖x‖ ≤ ‖x‖1 ≤ δ‖x‖ for

any x ∈ E;

(A2) Norm ‖ · ‖1 is monotonic.

By Theorem 2.1, (P̊
⋂

S
(1)
r , d) is a complete metric space, where S

(1)
r = {x ∈ E|‖x‖1 = r}. Now

we prove that (P̊
⋂

Sr, d) is a complete metric space too. Let {xn} ∈ P̊
⋂

Sr and d(xn, xm) →

0(n, m → ∞). Since ‖xn‖ = r, we have from (A1) that 0 < βr ≤ ‖xn‖1 ≤ δr (n = 1, 2, . . .).

Setting zn = rxn

‖xn‖1

, we see zn ∈ P̊
⋂

S
(1)
r and

d(zn, zm) = d(
rxn

‖xn‖1
,

rxm

‖xm‖1
) = d(xn, xm) → 0, n, m → ∞.

Thus by the completeness of (P̊
⋂

S
(1)
r , d), there exists z∗ ∈ P̊

⋂
S

(1)
r such that d(zn, z∗) →

0 (n → ∞). Since ‖z∗‖1 = r and β‖z∗‖ ≤ ‖z∗‖1 ≤ δ‖z∗‖, we have

r

δ
≤ ‖z∗‖ ≤

r

β
.

Let x∗ = rz∗

‖z∗‖ . Then x∗ ∈ P̊
⋂

Sr and

d(xn, x∗) = d(
‖xn‖1

r
zn,

rz∗

‖z∗‖
) = d(zn, z∗) → 0, n → ∞.

Hence, (P̊
⋂

Sr, d) is complete and our theorem is proved. 2

Now let e ∈ E and e > θ. Set

Ee = {x ∈ E| there exists λ > 0 such that − λe ≤ x ≤ λe}

and

‖x‖e = inf{λ > 0| − λe ≤ x ≤ λe}, ∀ x ∈ Ee.

It is easy to see that Ee becomes a normed linear space under the norm ‖ · ‖e, and ‖x‖e is called

the e-norm of the element x ∈ Ee.
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Lemma 2.3 ([12]) Let cone P be normal. Then

(i) Ee is a Banach space with e-norm, and there exists a constant ω > 0 such that ‖x‖ ≤

ω‖x‖e for any x ∈ Ee;

(ii) Pe = Ee

⋂
P is a normal solid cone of Ee;

(iii) if P is solid and e ∈ P̊ , then Ee = E and the e-norm ‖ · ‖e is equivalent to the original

norm ‖ · ‖.

Theorem 2.3 Let P be normal and solid and {xn} ∈ P̊
⋂

Sr, x ∈ P̊
⋂

Sr. Then d(xn, x) →

0 (n → ∞) if and only if ‖xn − x‖ → 0 (n → ∞).

Proof Suppose that d(xn, x) → 0 (n → ∞). Then

M(xn, x)

m(xn, x)
→ 1, n → ∞. (2.1)

We know

m(xn, x)x ≤ xn ≤ M(xn, x)x.

That is

x ≤
xn

m(xn, x)
≤

M(xn, x)

m(xn, x)
x. (2.2)

It follows from (2.1) and (2.2) that

θ ≤
xn

m(xn, x)
− x ≤

M(xn, x)

m(xn, x)
x − x.

Since P is normal, we have

‖
xn

m(xn, x)
− x‖ ≤ N‖

M(xn, x)

m(xn, x)
x − x‖ = N |

M(xn, x)

m(xn, x)
− 1| · ‖x‖ → 0, n → ∞, (2.3)

where N is the normal constant of cone P . Thus

‖xn‖

m(xn, x)
→ ‖x‖, n → ∞. (2.4)

Note that ‖xn‖ = ‖x‖ = r, from (2.4), we have

m(xn, x) → 1, n → ∞. (2.5)

Therefore, from (2.3) and (2.5), we can get

‖xn − x‖ ≤ ‖xn −
xn

m(xn, x)
‖ + ‖

xn

m(xn, x)
− x‖

= |r −
r

m(xn, x)
| + ‖

xn

m(xn, x)
− x‖ → 0, n → ∞.

Hence, we have proved that d(xn, x) → 0 (n → ∞) implies ‖xn − x‖ → 0 (n → ∞).

In the following we prove the converse conclusion. Suppose ‖xn − x‖ → 0 (n → ∞). Take

e ∈ P̊ , by Lemma 2.3, we know Ee = E and the e-norm is equivalent to the original norm ‖ · ‖

and thus

εn = ‖xn − x‖e → 0, n → ∞, (2.6)
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and

−εne ≤ xn − x ≤ εne. (2.7)

Note that x ∈ P̊ , we can choose a small positive number γ such that x ≥ γe. It follows from

(2.7) that

(1 −
εn

γ
)x ≤ x − εne ≤ xn ≤ x + εne ≤ (1 +

εn

γ
)x.

This shows that

1 −
εn

γ
≤ m(xn, x) ≤ M(xn, x) ≤ 1 +

εn

γ
.

Therefore

d(xn, x) = ln
M(xn, x)

m(xn, x)
≤ ln

1 + εn

γ

1 − εn

γ

→ 0, n → ∞.

Hence, we have proved that ‖xn − x‖ → 0 (n → ∞) implies d(xn, x) → 0 (n → ∞). 2

Corollary 2.4 ([10]) Let P be normal and solid and {xn} ⊂ P̊ , x ∈ P̊ . Then ‖xn − x‖ → 0 if

and only if d(xn, x) → 0 with ‖xn‖ → ‖x‖.

Proof Suppose that ‖xn − x‖ → 0 (n → ∞). Then, ‖xn‖ → ‖x‖ and

‖
xn

‖xn‖
−

x

‖x‖
‖ → 0, n → ∞.

Since xn

‖xn‖ , x
‖x‖ ∈ P̊

⋂
S1, by Theorem 2.3 in the case r = 1, we get d( xn

‖xn‖ , x
‖x‖ ) → 0. Note that

d(xn, x) = d( xn

‖xn‖ , x
‖x‖ ), thus d(xn, x) → 0 as n → ∞.

Conversely, let d(xn, x) → 0 with ‖xn‖ → ‖x‖. Then

d(
xn

‖xn‖
,

x

‖x‖
) = d(xn, x) → 0.

By Theorem 2.3 in the case r = 1, we have ‖ xn

‖xn‖ − x
‖x‖‖ → 0. Moreover, we obtain

‖xn − x‖ = ‖xn‖ · ‖
xn

‖xn‖
−

x

‖xn‖
‖ ≤ ‖xn‖(‖

xn

‖xn‖
−

x

‖x‖
‖ + ‖

x

‖x‖
−

x

‖xn‖
‖).

It follows from ‖xn‖ → ‖x‖ that ‖xn − x‖ → 0 (n → ∞). 2

Remark 2.1 Theorem 2.3 and Corollary 2.4 show that the convergence in Hilbert’s projective

metric and the convergence in norm are equivalent on P̊
⋂

Sr or P̊ . Under some circumstances,

Hilbert’s projective metric has its own excellent privilege. For instance, let E = C[0, 1] and

P = {f ∈ E|f(x) ≥ 0, x ∈ [0, 1]}. It is easy to see that P is solid, the norm on E is monotonic

and P̊ = {f ∈ E|f(x) > 0, x ∈ [0, 1]}. For ∀r > 0, set Sr = {f ∈ E| ‖f‖ = r}. Then by Theorem

2.1, (P̊
⋂

Sr, d) is a complete metric space. However, for usual metric

d1(x, y) = max
t∈[0,1]

|x(t) − y(t)|,

(P̊
⋂

Sr, d1) is not complete. In addition, even if d1(xn, x) 6→ 0, d(xn, x) → 0 is possible. For

example, let xn(t) = 2r − 2r
n

t, x(t) = r (r > 0). We have

d1(xn, x) = max
t∈[0,1]

|xn(t) − x(t)| = max
t∈[0,1]

|r −
2r

n
t| 6→ 0,
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but for Hilbert’s projective metric

d(xn, x) = d(
xn

2
, x) → 0.

3. Applications

In this section, we discuss the eigenvalue problems for a class of positive homogeneous op-

erators of degree α and give the existence, uniqueness of fixed points to positive homogeneous

operators of degree α by using Theorem 2.3. A class of nonlinear algebraic system is also con-

sidered. We also assume that E is a real Banach space and P ⊂ E is a solid cone. Let A be an

operator from P̊ to P̊ . Recall the following definition from [2].

Definition 3.1 If A(λx) = λαAx for all x ∈ P̊ , λ > 0, we say that A is positive homogeneous

of degree α in P̊ .

Remark 3.1 Let α ∈ (0, 1) and P be normal, and let operator A : P̊ → P̊ be increasing, general

positive homogeneous of degree α. Then operator A : P̊ → P̊ is continuous [10].

Lemma 3.1 ([13]) Let (E, d) be a metric space and f : E → E be contractive (i.e., x 6= y

implies d(f(x), f(y)) < d(x, y)). Then each cluster point ξ ∈ E of the sequence {fn(x)} is a

unique fixed point of f and fn(x) → ξ.

Now we can state and prove the following eigenvalue and fixed-point theorem by using Lemma

3.1 and Theorem 2.3.

Theorem 3.1 Let α ∈ (0, 1) and P be normal, and let operator A : P̊ → P̊ be increasing and

positive homogeneous of degree α. Suppose that: (Q) for some x0 ∈ P̊ , the sequence {Anx0}∞0
(denote A0x0 = x0) has a limit point ξ ∈ P̊ . Then

(a) ∀r > 0, ∃ξr ∈ P̊ , λr > 0 such that Aξr = λrξr;

(b) A has a unique fixed point in P̊ .

Proof Firstly, ∀x, y ∈ P̊ , we have

θ < m(x, y)y ≤ x ≤ M(x, y)y.

By Lemma 2.1, there exists an equivalent norm ‖ · ‖1 of E, which satisfies the condition: ‖ · ‖1

is monotonic. Thus, for ‖x‖1 = ‖y‖1, we can get

0 < m(x, y) ≤ 1 ≤ M(x, y).

Moreover, ξ is still the limit point of sequence {Anx0}∞0 in norm ‖ · ‖1.

Secondly, in view of A(m(x, y)y) ≤ Ax ≤ A(M(x, y)y) and Definition 3.1, we have

(m(x, y))αAy ≤ Ax ≤ (M(x, y))αAy.

Hence

m(Ax, Ay) ≥ (m(x, y))α, M(Ax, Ay) ≤ (M(x, y))α.
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Further

d(Ax, Ay) = ln
M(Ax, Ay)

m(Ax, Ay)
≤ ln

(M(x, y))α

(m(x, y))α
= αd(x, y).

Thus for ‖x‖1 = ‖y‖1, we have d(Ax, Ay) ≤ αd(x, y). Therefore, for ‖x‖1 = ‖y‖1 with x 6= y, we

have d(Ax, Ay) < d(x, y).

Thirdly, let A1x = rAx
‖Ax‖1

, ∀r > 0. Then A1 : P̊
⋂

S
(1)
r → P̊

⋂
S

(1)
r , where S

(1)
r = {x ∈

E|‖x‖1 = r}. Moreover, A1 satisfies the following conditions:

(1) ∀x, y ∈ P̊
⋂

S
(1)
r with x 6= y,

d(A1x, A1y) = d(
rAx

‖Ax‖1
,

rAy

‖Ay‖1
) = d(Ax, Ay) < d(x, y).

That is, A1 is contractive in P̊
⋂

S
(1)
r .

(2) From inductive method, it is easy to prove that An
1x0 = r Anx0

‖Anx0‖1

, n = 0, 1, 2, . . . .

(3) ξr := rξ
‖ξ‖1

is a limit point of {An
1x0}∞n=0 in Hilbert’s projective metric d.

In fact, by (Q), there exists {nk} ⊂ {n} such that Ankx0 → ξ in norm ‖·‖. So we have Ankx0 → ξ

in norm ‖ · ‖1. Further, ‖Ankx0‖1 → ‖ξ‖1. Thus,

Ank

1 x0 =
rAnkx0

‖Ankx0‖1
→

rξ

‖ξ‖1
= ξr ∈ P̊

⋂
S(1)

r

in norm ‖ · ‖ and then Ank

1 x0 → ξr in norm ‖ · ‖1. By Theorem 2.3, d(Ank

1 x0, ξr) → 0 as k → ∞.

Since (P̊
⋂

S
(1)
r , d) is complete, it follows from Lemma 3.1 that ξr is the unique fixed point of A1

in P̊
⋂

S
(1)
r . That is to say, A1ξr = ξr = rAξr

‖Aξr‖1

. Let λr = ‖Aξr‖1

r
. Then λr > 0 and Aξr = λrξr.

So conclusion (a) holds.

Finally, we prove that x∗ = λ
1

1−α

r ξr is the unique fixed point of A in P̊ . In fact,

Ax∗ = A(λ
1

1−α

r ξr) = λ
α

1−α

r Aξr = λ
α

1−α

r λrξr = λ
1

1−α

r ξr = x∗.

Suppose there exists y∗ ∈ P̊ such that Ay∗ = y∗. Let

x1 =
rx∗

‖x∗‖1
, y1 =

ry∗

‖y∗‖1
.

Then x1, y1 ∈ P̊
⋂

S
(1)
r and

Ax1 = A(
rx∗

‖x∗‖1
) = (

r

‖x∗‖1
)αAx∗, Ay1 = A(

ry∗

‖y∗‖1
) = (

r

‖y∗‖1
)αAy∗.

Hence,

d(x∗, y∗) = d(Ax∗, Ay∗) = d((
‖x∗‖1

r
)αAx1, (

‖y∗‖1

r
)αAy1)

= d(
rAx1

‖Ax1‖1
,

rAy1

‖Ay1‖1
).

Thus, for x∗

‖x∗‖1

6= y∗

‖y∗‖1

, i.e., x∗ 6= λy∗ (λ > 0), we have from (1)

d(x∗, y∗) = d(
rAx1

‖Ax1‖1
,

rAy1

‖Ay1‖1
) < d(x1, y1) = d(

rx∗

‖x∗‖1
,

ry∗

‖y∗‖1
) = d(x∗, y∗).

This is a contradiction. So x∗ = λy∗ and

x∗ = Ax∗ = A(λy∗) = λαAy∗ = λαy∗ = λy∗.
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Then we obtain λ = 1 and hence x∗ = y∗. Then conclusion (b) also holds. 2

Remark 3.2 Let E = C[0, 1], P = {x ∈ E|x(t) ≥ 0, t ∈ [0, 1]}. Then P is a normal and solid

cone, P̊ = {x ∈ E|x(t) > 0, t ∈ [0, 1]}. Consider a simple operator Ax(t) = x
1

2 (t), x ∈ P̊ .

So we have A : P̊ → P̊ is increasing and positive homogeneous of degree 1
2 . Take x0 = 2, the

sequence {Anx0}∞0 = {2
1

2n }∞0 has a limit point 1 ∈ P̊ . Hence, all the conditions of Theorem 3.1

are satisfied. Therefore, we have

(a) For any given r > 0, there exist ξr ∈ P̊ , λr > 0 such that Aξr = λrξr.

(b) A has a unique fixed point in P̊ .

In fact, for any given r > 0, let ξr = r and λr = r−
1

2 . Then Aξr = r
1

2 = λrξr. Moreover,

x∗ = λ
1

1−α

r ξr = r−1r = 1 is the unique fixed point of A in P̊ .

Next we consider the nonlinear algebraic system of the form

xm = Txm−1, (3.1)

where m > 1 and x denotes the column vector col(x1, x2, . . . , xn), T = (tij)n×n is an n × n

matrix and all its entries are nonnegative numbers.

Let E = Rn, P = {col(x1, x2, . . . , xn)|xi ≥ 0, i = 1, 2, . . .¸ , n}. Then P is a normal and solid

cone in Rn, P̊ = {col(x1, x2, . . . , xn)|xi > 0, i = 1, 2, . . . , n}. For x = col(x1, x2 . . . , xn) ∈ P and

l > 0, we let xl = col(x1
l, x2

l, . . . , xn
l). Note that if 0 ≤ x ≤ y, then ‖x‖ ≤ ‖y‖ and xl ≤ yl. A

column vector x = col(x1, x2 . . . , xn) ∈ Rn is said to be a positive solution of (3.1) if xk > 0 for

k ∈ {1, 2, . . . , n} and substitution x into (3.1) renders it an identity.

Theorem 3.2 Assume that (i) For all i ∈ {1, 2, . . . , n}, col(ti1, ti2, . . . , tin) 6= 0 (here 0 denotes

zero vector); (ii) There exists x0 ∈ P̊ such that the sequence {T (uk)
m−1

m }∞k=0 (denote u0 =

T (x0)
m−1

m ) has a limit point in P̊ .

Then (a) For any given r > 0, there exist ξr ∈ P̊ , λr > 0 such that λrξr
m = Tξr

m−1.

(b) There is a unique x∗ ∈ P̊ such that x∗m = Tx∗m−1.

Proof Define an operator A : P → E by Ay = T (y)
m−1

m . It follows from the definition of P and

condition (i) that A : P̊ → P̊ is increasing. Further, we can obtain

(1) For λ > 0 and y ∈ P̊ , A(λy) = λ
m−1

m T (y)
m−1

m = λ1− 1

m Ay, i.e., A is positive homogeneous

of degree 1 − 1
m

;

(2) The sequence {Akx0}∞k=0 = {x0, T (x0)
m−1

m , T (uk)
m−1

m }∞k=0 has a limit point in P̊ .

Thus, an application of Theorem 3.1 implies that (A) For any given r > 0, there exist xr ∈ P̊ ,

λr > 0 such that Axr = λrxr; (B) There exists a unique z ∈ P̊ such that Az = z. Set

ξr = xr
1

m , x∗ = z
1

m , then λrξr
m = Aξr

m = Tξr
m−1, x∗m = A(x∗)m = T (x∗)m−1. The proof is

completed. 2

Remark 3.3 Let T = (tij)n×n, where tii > 0 for i = 1, 2, . . . , n and tij = 0 for i 6= j. Consider

the following equation

x2 = Tx. (3.2)
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Take x0 = col(x1, x2, . . . , xn), xi > 0 (i = 1, 2, . . . , n) and set u0 = Tx0
1

2 , then the sequence

{u0, T (uk)
1

2 }∞k=0 = {col((t11)
2− 1

2k−1 x1

1

2k , (t22)
2− 1

2k−1 x2

1

2k , . . . , (tnn)2−
1

2k−1 xn

1

2k )}∞k=1

has a limit point col(t11
2, t22

2, . . . , tnn
2) ∈ P̊ . By Theorem 3.2, the equation (3.2) has a unique

positive solution x∗ in P̊ . It is easy to see that x∗ = col(t11, t22, . . . , tnn).
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