Hilbert's Projective Metric and the Norm on a Banach Space

Cheng Bo ZHAI*, Zhan Dong LIANG
School of Mathematical Sciences, Shanxi University, Shanxi 030006, P. R. China

Abstract

In this paper, we establish some relations between the Hilbert's projective metric and the norm on a Banach space and show that the metric and the norm induce equivalent convergences at certain set. As applications, we utilize the main results to discuss the eigenvalue problems for a class of positive homogeneous operators of degree α and the positive solutions for a class of nonlinear algebraic system.

Keywords Hilbert's projective metric; normal and solid cone; norm.

Document code A

MR(2010) Subject Classification 47H10
Chinese Library Classification O177.91

1. Introduction

The Hilbert's projective metric is particularly useful in proving the existence of a unique fixed point for a positive nonlinear operator defined in Banach space. Elementary accounts of the general theory may be found in Krasnosel'skii, Vainikko, Zabreiko, Rutitskii, and Stetsenko [1] and in Bushell [2]. The properties of the metric and its use in some integral equations can be found in [3-6]. Based upon the Hilbert's projective metric, the authors [4] established several ergodic theorems for nonlinear operators in ordered Banach spaces and the authors [3, 6] proved existence and uniqueness of a solution to several classes of nonlinear integral equations by means of positive homogeneous operators of degree α. In particular, Bushell [7] applied the Hilbert's projective metric to prove that, if T is a real nonsingular $n \times n$ matrix, then there exists a unique real positive definite matrix A such that $T^{\prime} A T=A^{2}$ and Koufany [8] formulated the metric on symmetric cones for using the Jordan algebra theory and extended Bushell's theorem to a class of convex cones. In this paper, we establish some relations between Hilbert's projective metric and the norm on Banach spaces. As simple applications, we discuss the eigenvalue problems for a class of positive homogeneous operators of degree α and the positive solutions for a class of nonlinear algebraic system. Therefore, we give the existence, uniqueness of fixed points to

[^0]positive homogeneous operators of degree α and the existence, uniqueness of positive solutions to nonlinear algebraic system.

2. Main results

The following notations are taken from Nussbaum [9], Guo and Lakshmikantham [10]. Let E be a real Banach space and θ be the zero element of E. A closed convex set P in E is called a cone if the following conditions are satisfied:
(i) if $x \in P$, then $\lambda x \in P$ for $\lambda \geq 0$; (ii) if $x \in P$ and $-x \in P$, then $x=\theta$.

A cone P induces a partial ordering \leq in E by

$$
x \leq y \text { if and only if } y-x \in P
$$

A cone P is called normal if there exists a constant N such that

$$
\theta \leq x \leq y \text { implies that }\|x\| \leq N\|y\|,
$$

where $\|\cdot\|$ is the norm on E. A cone P is called solid if it contains interior points, i.e., $\stackrel{\circ}{P} \neq \emptyset$.
Lemma $2.1([9,11])$ Let P be a cone in E. Then the following assertions are equivalent.
(i) P is normal.
(ii) There exists an equivalent norm $\|\cdot\|_{1}$ on E such that $\theta \leq x \leq y$ implies $\|x\|_{1} \leq\|y\|_{1}$, i.e., $\|\cdot\|_{1}$ is monotonic.
(iii) $x_{n} \leq z_{n} \leq y_{n}(n=1,2,3 \ldots)$ and $\left\|x_{n}-x\right\| \rightarrow 0,\left\|y_{n}-x\right\| \rightarrow 0$ imply $\left\|z_{n}-x\right\| \rightarrow 0$.

Let P be a solid cone in real Banach space E. For given $x, y \in \stackrel{\circ}{P}$, there exist sufficiently small positive number μ and sufficiently large positive number λ such that $x-\mu y \in P$ and $y-\frac{1}{\lambda} x \in P$, i.e., $\mu y \leq x \leq \lambda y$. Hence, we can define

$$
m(x, y)=\sup \{\mu>0 \mid \mu y \leq x\}, \quad M(x, y)=\inf \{\lambda>0 \mid x \leq \lambda y\}
$$

As a result, we have

$$
0<m(x, y) \leq M(x, y) \text { and } m(x, y) y \leq x \leq M(x, y) y
$$

The Hilbert's projective metric is then defined by

$$
d(x, y)=\ln \frac{M(x, y)}{m(x, y)}
$$

Lemma $2.2([2,10]) \quad d(x, y)$ is a quasi-metric in $\stackrel{\circ}{P}$, i.e., $d(x, y)$ satisfies the following three conditions:
(i) $d(x, x)=0, \forall x \in \stackrel{\circ}{P}$;
(ii) $d(x, y)=d(y, x), \forall x, y \in \stackrel{\circ}{P}$;
(iii) $d(x, y) \leq d(x, z)+d(z, y), \forall x, y, z \in \stackrel{\circ}{P}$.

Moreover we have
(iv) $d(\lambda x, \mu y)=d(x, y), \forall x, y \in \stackrel{\circ}{P}, \lambda>0, \mu>0$;
(v) $d(x, y)=0$ if and only if $x=\lambda y$, where $\lambda>0$.

From Lemma 2.2 we know that $\left(\stackrel{\circ}{P} \bigcap S_{r}, d\right)$ is a metric space, where $S_{r}=\{x \in E \mid\|x\|=r\}$, $\forall r>0$. Moreover, we have the following.

Theorem 2.1 Suppose that the norm on E is monotonic, that is, $\theta \leq x \leq y$ implies $\|x\| \leq\|y\|$. Then $\left(\stackrel{\circ}{P} \bigcap S_{r}, d\right)$ is a complete metric space.

Proof The completeness of $\left(\stackrel{\circ}{P} \bigcap S_{r}, d\right)$ in case $r=1$ has been proved by Guo and Lakshmikantham [10]. To prove the general case, suppose that $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(\stackrel{P}{P} \bigcap S_{r}, d\right)$. From Lemma 2.2(iv), we know that $\left\{\frac{x_{n}}{r}\right\}$ is a Cauchy sequence in $\left(\stackrel{\circ}{P} \bigcap S_{1}, d\right)$. Therefore, there exists $z \in \stackrel{\circ}{P} \bigcap S_{1}$ such that $d\left(\frac{x_{n}}{r}, z\right) \rightarrow 0(n \rightarrow \infty)$. It follows from Lemma 2.2 (iv) that $d\left(x_{n}, r z\right) \rightarrow 0$ as $n \rightarrow \infty$, so $\left\{x_{n}\right\}$ converges to $r z$ in $\left(\stackrel{\circ}{P} \bigcap S_{r}, d\right)$. $\left(\stackrel{\circ}{P} \bigcap S_{r}, d\right)$ is a complete metric space.

Theorem 2.2 Suppose that P is normal and solid. Then $\left(\stackrel{\circ}{P} \bigcap S_{r}, d\right)$ is a complete metric space.
Proof Since P is normal, from Lemma 2.1, we know that there exists a norm $\|\cdot\|_{1}$ on E which satisfies the following two conditions:
$\left(\mathrm{A}_{1}\right)\|\cdot\|_{1}$ is equivalent to $\|\cdot\|$, i.e., there exist $\delta>\beta>0$ such that $\beta\|x\| \leq\|x\|_{1} \leq \delta\|x\|$ for any $x \in E$;
$\left(\mathrm{A}_{2}\right)$ Norm $\|\cdot\|_{1}$ is monotonic.
By Theorem 2.1, $\left(\stackrel{\circ}{P} \bigcap S_{r}^{(1)}, d\right)$ is a complete metric space, where $S_{r}^{(1)}=\left\{x \in E \mid\|x\|_{1}=r\right\}$. Now we prove that $\left(\stackrel{\circ}{P} \bigcap S_{r}, d\right)$ is a complete metric space too. Let $\left\{x_{n}\right\} \in \stackrel{\circ}{P} \bigcap S_{r}$ and $d\left(x_{n}, x_{m}\right) \rightarrow$ $0(n, m \rightarrow \infty)$. Since $\left\|x_{n}\right\|=r$, we have from $\left(\mathrm{A}_{1}\right)$ that $0<\beta r \leq\left\|x_{n}\right\|_{1} \leq \delta r(n=1,2, \ldots)$. Setting $z_{n}=\frac{r x_{n}}{\left\|x_{n}\right\|_{1}}$, we see $z_{n} \in \stackrel{\circ}{P} \bigcap S_{r}^{(1)}$ and

$$
d\left(z_{n}, z_{m}\right)=d\left(\frac{r x_{n}}{\left\|x_{n}\right\|_{1}}, \frac{r x_{m}}{\left\|x_{m}\right\|_{1}}\right)=d\left(x_{n}, x_{m}\right) \rightarrow 0, \quad n, m \rightarrow \infty
$$

Thus by the completeness of $\left(\stackrel{\circ}{P} \bigcap S_{r}^{(1)}, d\right)$, there exists $z^{*} \in \stackrel{\circ}{P} \bigcap S_{r}^{(1)}$ such that $d\left(z_{n}, z^{*}\right) \rightarrow$ $0(n \rightarrow \infty)$. Since $\left\|z^{*}\right\|_{1}=r$ and $\beta\left\|z^{*}\right\| \leq\left\|z^{*}\right\|_{1} \leq \delta\left\|z^{*}\right\|$, we have

$$
\frac{r}{\delta} \leq\left\|z^{*}\right\| \leq \frac{r}{\beta}
$$

Let $x^{*}=\frac{r z^{*}}{\left\|z^{*}\right\|}$. Then $x^{*} \in \stackrel{\circ}{P} \bigcap S_{r}$ and

$$
d\left(x_{n}, x^{*}\right)=d\left(\frac{\left\|x_{n}\right\|_{1}}{r} z_{n}, \frac{r z^{*}}{\left\|z^{*}\right\|}\right)=d\left(z_{n}, z^{*}\right) \rightarrow 0, \quad n \rightarrow \infty .
$$

Hence, $\left(\stackrel{\circ}{P} \bigcap S_{r}, d\right)$ is complete and our theorem is proved.
Now let $e \in E$ and $e>\theta$. Set

$$
E_{e}=\{x \in E \mid \text { there exists } \lambda>0 \text { such that }-\lambda e \leq x \leq \lambda e\}
$$

and

$$
\|x\|_{e}=\inf \{\lambda>0 \mid-\lambda e \leq x \leq \lambda e\}, \quad \forall x \in E_{e}
$$

It is easy to see that E_{e} becomes a normed linear space under the norm $\|\cdot\|_{e}$, and $\|x\|_{e}$ is called the e-norm of the element $x \in E_{e}$.

Lemma 2.3 ([12]) Let cone P be normal. Then
(i) E_{e} is a Banach space with e-norm, and there exists a constant $\omega>0$ such that $\|x\| \leq$ $\omega\|x\|_{e}$ for any $x \in E_{e}$;
(ii) $P_{e}=E_{e} \bigcap P$ is a normal solid cone of E_{e};
(iii) if P is solid and $e \in \stackrel{\circ}{P}$, then $E_{e}=E$ and the e-norm $\|\cdot\|_{e}$ is equivalent to the original norm $\|\cdot\|$.

Theorem 2.3 Let P be normal and solid and $\left\{x_{n}\right\} \in \stackrel{\circ}{P} \bigcap S_{r}, x \in \stackrel{\circ}{P} \bigcap S_{r}$. Then $d\left(x_{n}, x\right) \rightarrow$ $0(n \rightarrow \infty)$ if and only if $\left\|x_{n}-x\right\| \rightarrow 0(n \rightarrow \infty)$.

Proof Suppose that $d\left(x_{n}, x\right) \rightarrow 0(n \rightarrow \infty)$. Then

$$
\begin{equation*}
\frac{M\left(x_{n}, x\right)}{m\left(x_{n}, x\right)} \rightarrow 1, \quad n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

We know

$$
m\left(x_{n}, x\right) x \leq x_{n} \leq M\left(x_{n}, x\right) x
$$

That is

$$
\begin{equation*}
x \leq \frac{x_{n}}{m\left(x_{n}, x\right)} \leq \frac{M\left(x_{n}, x\right)}{m\left(x_{n}, x\right)} x . \tag{2.2}
\end{equation*}
$$

It follows from (2.1) and (2.2) that

$$
\theta \leq \frac{x_{n}}{m\left(x_{n}, x\right)}-x \leq \frac{M\left(x_{n}, x\right)}{m\left(x_{n}, x\right)} x-x .
$$

Since P is normal, we have

$$
\begin{equation*}
\left\|\frac{x_{n}}{m\left(x_{n}, x\right)}-x\right\| \leq N\left\|\frac{M\left(x_{n}, x\right)}{m\left(x_{n}, x\right)} x-x\right\|=N\left|\frac{M\left(x_{n}, x\right)}{m\left(x_{n}, x\right)}-1\right| \cdot\|x\| \rightarrow 0, \quad n \rightarrow \infty \tag{2.3}
\end{equation*}
$$

where N is the normal constant of cone P. Thus

$$
\begin{equation*}
\frac{\left\|x_{n}\right\|}{m\left(x_{n}, x\right)} \rightarrow\|x\|, \quad n \rightarrow \infty \tag{2.4}
\end{equation*}
$$

Note that $\left\|x_{n}\right\|=\|x\|=r$, from (2.4), we have

$$
\begin{equation*}
m\left(x_{n}, x\right) \rightarrow 1, \quad n \rightarrow \infty \tag{2.5}
\end{equation*}
$$

Therefore, from (2.3) and (2.5), we can get

$$
\begin{aligned}
\left\|x_{n}-x\right\| & \leq\left\|x_{n}-\frac{x_{n}}{m\left(x_{n}, x\right)}\right\|+\left\|\frac{x_{n}}{m\left(x_{n}, x\right)}-x\right\| \\
& =\left|r-\frac{r}{m\left(x_{n}, x\right)}\right|+\left\|\frac{x_{n}}{m\left(x_{n}, x\right)}-x\right\| \rightarrow 0, \quad n \rightarrow \infty .
\end{aligned}
$$

Hence, we have proved that $d\left(x_{n}, x\right) \rightarrow 0(n \rightarrow \infty)$ implies $\left\|x_{n}-x\right\| \rightarrow 0(n \rightarrow \infty)$.
In the following we prove the converse conclusion. Suppose $\left\|x_{n}-x\right\| \rightarrow 0(n \rightarrow \infty)$. Take $e \in \stackrel{\circ}{P}$, by Lemma 2.3, we know $E_{e}=E$ and the e-norm is equivalent to the original norm $\|\cdot\|$ and thus

$$
\begin{equation*}
\varepsilon_{n}=\left\|x_{n}-x\right\|_{e} \rightarrow 0, \quad n \rightarrow \infty \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
-\varepsilon_{n} e \leq x_{n}-x \leq \varepsilon_{n} e \tag{2.7}
\end{equation*}
$$

Note that $x \in \stackrel{\circ}{P}$, we can choose a small positive number γ such that $x \geq \gamma e$. It follows from (2.7) that

$$
\left(1-\frac{\varepsilon_{n}}{\gamma}\right) x \leq x-\varepsilon_{n} e \leq x_{n} \leq x+\varepsilon_{n} e \leq\left(1+\frac{\varepsilon_{n}}{\gamma}\right) x
$$

This shows that

$$
1-\frac{\varepsilon_{n}}{\gamma} \leq m\left(x_{n}, x\right) \leq M\left(x_{n}, x\right) \leq 1+\frac{\varepsilon_{n}}{\gamma}
$$

Therefore

$$
d\left(x_{n}, x\right)=\ln \frac{M\left(x_{n}, x\right)}{m\left(x_{n}, x\right)} \leq \ln \frac{1+\frac{\varepsilon_{n}}{\gamma}}{1-\frac{\varepsilon_{n}}{\gamma}} \rightarrow 0, \quad n \rightarrow \infty
$$

Hence, we have proved that $\left\|x_{n}-x\right\| \rightarrow 0(n \rightarrow \infty)$ implies $d\left(x_{n}, x\right) \rightarrow 0(n \rightarrow \infty)$.
Corollary $2.4([10])$ Let P be normal and solid and $\left\{x_{n}\right\} \subset \stackrel{\circ}{P}, x \in \stackrel{\circ}{P}$. Then $\left\|x_{n}-x\right\| \rightarrow 0$ if and only if $d\left(x_{n}, x\right) \rightarrow 0$ with $\left\|x_{n}\right\| \rightarrow\|x\|$.

Proof Suppose that $\left\|x_{n}-x\right\| \rightarrow 0(n \rightarrow \infty)$. Then, $\left\|x_{n}\right\| \rightarrow\|x\|$ and

$$
\left\|\frac{x_{n}}{\left\|x_{n}\right\|}-\frac{x}{\|x\|}\right\| \rightarrow 0, \quad n \rightarrow \infty
$$

Since $\frac{x_{n}}{\left\|x_{n}\right\|}, \frac{x}{\|x\|} \in \stackrel{\circ}{P} \bigcap S_{1}$, by Theorem 2.3 in the case $r=1$, we get $d\left(\frac{x_{n}}{\left\|x_{n}\right\|}, \frac{x}{\|x\|}\right) \rightarrow 0$. Note that $d\left(x_{n}, x\right)=d\left(\frac{x_{n}}{\left\|x_{n}\right\|}, \frac{x}{\|x\|}\right)$, thus $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.

Conversely, let $d\left(x_{n}, x\right) \rightarrow 0$ with $\left\|x_{n}\right\| \rightarrow\|x\|$. Then

$$
d\left(\frac{x_{n}}{\left\|x_{n}\right\|}, \frac{x}{\|x\|}\right)=d\left(x_{n}, x\right) \rightarrow 0
$$

By Theorem 2.3 in the case $r=1$, we have $\left\|\frac{x_{n}}{\left\|x_{n}\right\|}-\frac{x}{\|x\|}\right\| \rightarrow 0$. Moreover, we obtain

$$
\left\|x_{n}-x\right\|=\left\|x_{n}\right\| \cdot\left\|\frac{x_{n}}{\left\|x_{n}\right\|}-\frac{x}{\left\|x_{n}\right\|}\right\| \leq\left\|x_{n}\right\|\left(\left\|\frac{x_{n}}{\left\|x_{n}\right\|}-\frac{x}{\|x\|}\right\|+\left\|\frac{x}{\|x\|}-\frac{x}{\left\|x_{n}\right\|}\right\|\right)
$$

It follows from $\left\|x_{n}\right\| \rightarrow\|x\|$ that $\left\|x_{n}-x\right\| \rightarrow 0(n \rightarrow \infty)$.
Remark 2.1 Theorem 2.3 and Corollary 2.4 show that the convergence in Hilbert's projective metric and the convergence in norm are equivalent on $\stackrel{\circ}{P} \bigcap S_{r}$ or $\stackrel{\circ}{P}$. Under some circumstances, Hilbert's projective metric has its own excellent privilege. For instance, let $E=C[0,1]$ and $P=\{f \in E \mid f(x) \geq 0, x \in[0,1]\}$. It is easy to see that P is solid, the norm on E is monotonic and $\stackrel{\circ}{P}=\{f \in E \mid f(x)>0, x \in[0,1]\}$. For $\forall r>0$, set $S_{r}=\{f \in E \mid\|f\|=r\}$. Then by Theorem 2.1, $\left(\stackrel{\circ}{P} \bigcap S_{r}, d\right)$ is a complete metric space. However, for usual metric

$$
d_{1}(x, y)=\max _{t \in[0,1]}|x(t)-y(t)|
$$

$\left(\stackrel{\circ}{P} \bigcap S_{r}, d_{1}\right)$ is not complete. In addition, even if $d_{1}\left(x_{n}, x\right) \nrightarrow 0, d\left(x_{n}, x\right) \rightarrow 0$ is possible. For example, let $x_{n}(t)=2 r-\frac{2 r}{n} t, x(t)=r(r>0)$. We have

$$
d_{1}\left(x_{n}, x\right)=\max _{t \in[0,1]}\left|x_{n}(t)-x(t)\right|=\max _{t \in[0,1]}\left|r-\frac{2 r}{n} t\right| \nrightarrow 0
$$

but for Hilbert's projective metric

$$
d\left(x_{n}, x\right)=d\left(\frac{x_{n}}{2}, x\right) \rightarrow 0
$$

3. Applications

In this section, we discuss the eigenvalue problems for a class of positive homogeneous operators of degree α and give the existence, uniqueness of fixed points to positive homogeneous operators of degree α by using Theorem 2.3. A class of nonlinear algebraic system is also considered. We also assume that E is a real Banach space and $P \subset E$ is a solid cone. Let A be an operator from $\stackrel{\circ}{P}$ to $\stackrel{\circ}{P}$. Recall the following definition from [2].

Definition 3.1 If $A(\lambda x)=\lambda^{\alpha} A x$ for all $x \in \stackrel{\circ}{P}, \lambda>0$, we say that A is positive homogeneous of degree α in $\stackrel{\circ}{P}$.

Remark 3.1 Let $\alpha \in(0,1)$ and P be normal, and let operator $A: \stackrel{\circ}{P} \rightarrow \stackrel{\circ}{P}$ be increasing, general positive homogeneous of degree α. Then operator $A: \stackrel{\circ}{P} \rightarrow \stackrel{\circ}{P}$ is continuous [10].

Lemma $3.1([13])$ Let (E, d) be a metric space and $f: E \rightarrow E$ be contractive (i.e., $x \neq y$ implies $d(f(x), f(y))<d(x, y))$. Then each cluster point $\xi \in E$ of the sequence $\left\{f^{n}(x)\right\}$ is a unique fixed point of f and $f^{n}(x) \rightarrow \xi$.

Now we can state and prove the following eigenvalue and fixed-point theorem by using Lemma 3.1 and Theorem 2.3.

Theorem 3.1 Let $\alpha \in(0,1)$ and P be normal, and let operator $A: \stackrel{\circ}{P} \rightarrow \stackrel{\circ}{P}$ be increasing and positive homogeneous of degree α. Suppose that: (Q) for some $x_{0} \in \stackrel{\circ}{P}$, the sequence $\left\{A^{n} x_{0}\right\}_{0}^{\infty}$ (denote $A^{0} x_{0}=x_{0}$) has a limit point $\xi \in \stackrel{\circ}{P}$. Then
(a) $\forall r>0, \exists \xi_{r} \in \stackrel{\circ}{P}, \lambda_{r}>0$ such that $A \xi_{r}=\lambda_{r} \xi_{r}$;
(b) A has a unique fixed point in $\stackrel{\circ}{P}$.

Proof Firstly, $\forall x, y \in \stackrel{\circ}{P}$, we have

$$
\theta<m(x, y) y \leq x \leq M(x, y) y
$$

By Lemma 2.1, there exists an equivalent norm $\|\cdot\|_{1}$ of E, which satisfies the condition: $\|\cdot\|_{1}$ is monotonic. Thus, for $\|x\|_{1}=\|y\|_{1}$, we can get

$$
0<m(x, y) \leq 1 \leq M(x, y)
$$

Moreover, ξ is still the limit point of sequence $\left\{A^{n} x_{0}\right\}_{0}^{\infty}$ in norm $\|\cdot\|_{1}$.
Secondly, in view of $A(m(x, y) y) \leq A x \leq A(M(x, y) y)$ and Definition 3.1, we have

$$
(m(x, y))^{\alpha} A y \leq A x \leq(M(x, y))^{\alpha} A y
$$

Hence

$$
m(A x, A y) \geq(m(x, y))^{\alpha}, M(A x, A y) \leq(M(x, y))^{\alpha}
$$

Further

$$
d(A x, A y)=\ln \frac{M(A x, A y)}{m(A x, A y)} \leq \ln \frac{(M(x, y))^{\alpha}}{(m(x, y))^{\alpha}}=\alpha d(x, y)
$$

Thus for $\|x\|_{1}=\|y\|_{1}$, we have $d(A x, A y) \leq \alpha d(x, y)$. Therefore, for $\|x\|_{1}=\|y\|_{1}$ with $x \neq y$, we have $d(A x, A y)<d(x, y)$.

Thirdly, let $A_{1} x=\frac{r A x}{\|A x\|_{1}}, \forall r>0$. Then $A_{1}: \stackrel{\circ}{P} \bigcap S_{r}^{(1)} \rightarrow \stackrel{\circ}{P} \bigcap S_{r}^{(1)}$, where $S_{r}^{(1)}=\{x \in$ $\left.E \mid\|x\|_{1}=r\right\}$. Moreover, A_{1} satisfies the following conditions:
(1) $\forall x, y \in \stackrel{\circ}{P} \bigcap S_{r}^{(1)}$ with $x \neq y$,

$$
d\left(A_{1} x, A_{1} y\right)=d\left(\frac{r A x}{\|A x\|_{1}}, \frac{r A y}{\|A y\|_{1}}\right)=d(A x, A y)<d(x, y)
$$

That is, A_{1} is contractive in $\stackrel{\circ}{P} \bigcap S_{r}^{(1)}$.
(2) From inductive method, it is easy to prove that $A_{1}^{n} x_{0}=r \frac{A^{n} x_{0}}{\left\|A^{n} x_{0}\right\|_{1}}, n=0,1,2, \ldots$.
(3) $\xi_{r}:=\frac{r \xi}{\|\xi\|_{1}}$ is a limit point of $\left\{A_{1}^{n} x_{0}\right\}_{n=0}^{\infty}$ in Hilbert's projective metric d.

In fact, by (Q), there exists $\left\{n_{k}\right\} \subset\{n\}$ such that $A^{n_{k}} x_{0} \rightarrow \xi$ in norm $\|\cdot\|$. So we have $A^{n_{k}} x_{0} \rightarrow \xi$ in norm $\|\cdot\|_{1}$. Further, $\left\|A^{n_{k}} x_{0}\right\|_{1} \rightarrow\|\xi\|_{1}$. Thus,

$$
A_{1}^{n_{k}} x_{0}=\frac{r A^{n_{k}} x_{0}}{\left\|A^{n_{k}} x_{0}\right\|_{1}} \rightarrow \frac{r \xi}{\|\xi\|_{1}}=\xi_{r} \in \stackrel{\circ}{P} \bigcap S_{r}^{(1)}
$$

in norm $\|\cdot\|$ and then $A_{1}^{n_{k}} x_{0} \rightarrow \xi_{r}$ in norm $\|\cdot\|_{1}$. By Theorem $2.3, d\left(A_{1}^{n_{k}} x_{0}, \xi_{r}\right) \rightarrow 0$ as $k \rightarrow \infty$. Since $\left(\stackrel{\circ}{P} \bigcap S_{r}^{(1)}, d\right)$ is complete, it follows from Lemma 3.1 that ξ_{r} is the unique fixed point of A_{1} in $\stackrel{\circ}{P} \bigcap S_{r}^{(1)}$. That is to say, $A_{1} \xi_{r}=\xi_{r}=\frac{r A \xi_{r}}{\left\|A \xi_{r}\right\|_{1}}$. Let $\lambda_{r}=\frac{\left\|A \xi_{r}\right\|_{1}}{r}$. Then $\lambda_{r}>0$ and $A \xi_{r}=\lambda_{r} \xi_{r}$. So conclusion (a) holds.

Finally, we prove that $x^{*}=\lambda_{r}^{\frac{1}{1-\alpha}} \xi_{r}$ is the unique fixed point of A in $\stackrel{\circ}{P}$. In fact,

$$
A x^{*}=A\left(\lambda_{r}^{\frac{1}{1-\alpha}} \xi_{r}\right)=\lambda_{r}^{\frac{\alpha}{1-\alpha}} A \xi_{r}=\lambda_{r}^{\frac{\alpha}{1-\alpha}} \lambda_{r} \xi_{r}=\lambda_{r}^{\frac{1}{1-\alpha}} \xi_{r}=x^{*}
$$

Suppose there exists $y^{*} \in \stackrel{\circ}{P}$ such that $A y^{*}=y^{*}$. Let

$$
x_{1}=\frac{r x^{*}}{\left\|x^{*}\right\|_{1}}, \quad y_{1}=\frac{r y^{*}}{\left\|y^{*}\right\|_{1}}
$$

Then $x_{1}, y_{1} \in \stackrel{\circ}{P} \bigcap S_{r}^{(1)}$ and

$$
A x_{1}=A\left(\frac{r x^{*}}{\left\|x^{*}\right\|_{1}}\right)=\left(\frac{r}{\left\|x^{*}\right\|_{1}}\right)^{\alpha} A x^{*}, A y_{1}=A\left(\frac{r y^{*}}{\left\|y^{*}\right\|_{1}}\right)=\left(\frac{r}{\left\|y^{*}\right\|_{1}}\right)^{\alpha} A y^{*} .
$$

Hence,

$$
\begin{aligned}
d\left(x^{*}, y^{*}\right) & =d\left(A x^{*}, A y^{*}\right)=d\left(\left(\frac{\left\|x^{*}\right\|_{1}}{r}\right)^{\alpha} A x_{1},\left(\frac{\left\|y^{*}\right\|_{1}}{r}\right)^{\alpha} A y_{1}\right) \\
& =d\left(\frac{r A x_{1}}{\left\|A x_{1}\right\|_{1}}, \frac{r A y_{1}}{\left\|A y_{1}\right\|_{1}}\right)
\end{aligned}
$$

Thus, for $\frac{x^{*}}{\left\|x^{*}\right\|_{1}} \neq \frac{y^{*}}{\left\|y^{*}\right\|_{1}}$, i.e., $x^{*} \neq \lambda y^{*}(\lambda>0)$, we have from (1)

$$
d\left(x^{*}, y^{*}\right)=d\left(\frac{r A x_{1}}{\left\|A x_{1}\right\|_{1}}, \frac{r A y_{1}}{\left\|A y_{1}\right\|_{1}}\right)<d\left(x_{1}, y_{1}\right)=d\left(\frac{r x^{*}}{\left\|x^{*}\right\|_{1}}, \frac{r y^{*}}{\left\|y^{*}\right\|_{1}}\right)=d\left(x^{*}, y^{*}\right)
$$

This is a contradiction. So $x^{*}=\lambda y^{*}$ and

$$
x^{*}=A x^{*}=A\left(\lambda y^{*}\right)=\lambda^{\alpha} A y^{*}=\lambda^{\alpha} y^{*}=\lambda y^{*}
$$

Then we obtain $\lambda=1$ and hence $x^{*}=y^{*}$. Then conclusion (b) also holds.
Remark 3.2 Let $E=C[0,1], P=\{x \in E \mid x(t) \geq 0, t \in[0,1]\}$. Then P is a normal and solid cone, $\stackrel{\circ}{P}=\{x \in E \mid x(t)>0, t \in[0,1]\}$. Consider a simple operator $A x(t)=x^{\frac{1}{2}}(t), x \in \stackrel{\circ}{P}$. So we have $A: \stackrel{\circ}{P} \rightarrow \stackrel{\circ}{P}$ is increasing and positive homogeneous of degree $\frac{1}{2}$. Take $x_{0}=2$, the sequence $\left\{A^{n} x_{0}\right\}_{0}^{\infty}=\left\{2^{\frac{1}{2^{n}}}\right\}_{0}^{\infty}$ has a limit point $1 \in \stackrel{\circ}{P}$. Hence, all the conditions of Theorem 3.1 are satisfied. Therefore, we have
(a) For any given $r>0$, there exist $\xi_{r} \in \stackrel{\circ}{P}, \lambda_{r}>0$ such that $A \xi_{r}=\lambda_{r} \xi_{r}$.
(b) A has a unique fixed point in $\stackrel{\circ}{P}$.

In fact, for any given $r>0$, let $\xi_{r}=r$ and $\lambda_{r}=r^{-\frac{1}{2}}$. Then $A \xi_{r}=r^{\frac{1}{2}}=\lambda_{r} \xi_{r}$. Moreover, $x^{*}=\lambda_{r}^{\frac{1}{1-\alpha}} \xi_{r}=r^{-1} r=1$ is the unique fixed point of A in $\stackrel{\circ}{P}$.

Next we consider the nonlinear algebraic system of the form

$$
\begin{equation*}
x^{m}=T x^{m-1}, \tag{3.1}
\end{equation*}
$$

where $m>1$ and x denotes the column vector $\operatorname{col}\left(x_{1}, x_{2}, \ldots, x_{n}\right), T=\left(t_{i j}\right)_{n \times n}$ is an $n \times n$ matrix and all its entries are nonnegative numbers.

Let $E=R^{n}, P=\left\{\operatorname{col}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \geq 0, i=1,2, \ldots, n\right\}$. Then P is a normal and solid cone in $R^{n}, \stackrel{\circ}{P}=\left\{\operatorname{col}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i}>0, i=1,2, \ldots, n\right\}$. For $x=\operatorname{col}\left(x_{1}, x_{2} \ldots, x_{n}\right) \in P$ and $l>0$, we let $x^{l}=\operatorname{col}\left(x_{1}{ }^{l}, x_{2}{ }^{l}, \ldots, x_{n}{ }^{l}\right)$. Note that if $0 \leq x \leq y$, then $\|x\| \leq\|y\|$ and $x^{l} \leq y^{l}$. A column vector $x=\operatorname{col}\left(x_{1}, x_{2} \ldots, x_{n}\right) \in R^{n}$ is said to be a positive solution of (3.1) if $x_{k}>0$ for $k \in\{1,2, \ldots, n\}$ and substitution x into (3.1) renders it an identity.

Theorem 3.2 Assume that (i) For all $i \in\{1,2, \ldots, n\}, \operatorname{col}\left(t_{i 1}, t_{i 2}, \ldots, t_{i n}\right) \neq 0$ (here 0 denotes zero vector); (ii) There exists $x_{0} \in \stackrel{\circ}{P}$ such that the sequence $\left\{T\left(u_{k}\right)^{\frac{m-1}{m}}\right\}_{k=0}^{\infty}$ (denote $u_{0}=$ $\left.T\left(x_{0}\right)^{\frac{m-1}{m}}\right)$ has a limit point in $\stackrel{\circ}{P}$.
Then (a) For any given $r>0$, there exist $\xi_{r} \in \stackrel{\circ}{P}, \lambda_{r}>0$ such that $\lambda_{r} \xi_{r}{ }^{m}=T \xi_{r}{ }^{m-1}$.
(b) There is a unique $x^{*} \in \stackrel{\circ}{P}$ such that $x^{* m}=T x^{* m-1}$.

Proof Define an operator $A: P \rightarrow E$ by $A y=T(y)^{\frac{m-1}{m}}$. It follows from the definition of P and condition (i) that $A: \stackrel{\circ}{P} \rightarrow \stackrel{\circ}{P}$ is increasing. Further, we can obtain
(1) For $\lambda>0$ and $y \in \stackrel{\circ}{P}, A(\lambda y)=\lambda^{\frac{m-1}{m}} T(y)^{\frac{m-1}{m}}=\lambda^{1-\frac{1}{m}} A y$, i.e., A is positive homogeneous of degree $1-\frac{1}{m}$;
(2) The sequence $\left\{A^{k} x_{0}\right\}_{k=0}^{\infty}=\left\{x_{0}, T\left(x_{0}\right)^{\frac{m-1}{m}}, T\left(u_{k}\right)^{\frac{m-1}{m}}\right\}_{k=0}^{\infty}$ has a limit point in $\stackrel{\circ}{P}$.

Thus, an application of Theorem 3.1 implies that (A) For any given $r>0$, there exist $x_{r} \in \stackrel{\circ}{P}$, $\lambda_{r}>0$ such that $A x_{r}=\lambda_{r} x_{r} ;(\mathrm{B})$ There exists a unique $z \in \stackrel{\circ}{P}$ such that $A z=z$. Set $\xi_{r}=x_{r} \frac{1}{m}, x^{*}=z^{\frac{1}{m}}$, then $\lambda_{r}{\xi_{r}}^{m}=A \xi_{r}{ }^{m}=T \xi_{r}{ }^{m-1}, x^{* m}=A\left(x^{*}\right)^{m}=T\left(x^{*}\right)^{m-1}$. The proof is completed.

Remark 3.3 Let $T=\left(t_{i j}\right)_{n \times n}$, where $t_{i i}>0$ for $i=1,2, \ldots, n$ and $t_{i j}=0$ for $i \neq j$. Consider the following equation

$$
\begin{equation*}
x^{2}=T x . \tag{3.2}
\end{equation*}
$$

Take $x_{0}=\operatorname{col}\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{i}>0(i=1,2, \ldots, n)$ and set $u_{0}=T x_{0}{ }^{\frac{1}{2}}$, then the sequence

$$
\left\{u_{0}, T\left(u_{k}\right)^{\frac{1}{2}}\right\}_{k=0}^{\infty}=\left\{\operatorname{col}\left(\left(t_{11}\right)^{2-\frac{1}{2^{k-1}}} x_{1}^{\frac{1}{2^{k}}},\left(t_{22}\right)^{2-\frac{1}{2^{k-1}}} x_{2}^{\frac{1}{2^{k}}}, \ldots,\left(t_{n n}\right)^{2-\frac{1}{2^{k-1}}} x_{n} \frac{1}{2^{k}}\right)\right\}_{k=1}^{\infty}
$$

has a limit point $\operatorname{col}\left(t_{11}{ }^{2}, t_{22}{ }^{2}, \ldots, t_{n n}{ }^{2}\right) \in \stackrel{\circ}{P}$. By Theorem 3.2, the equation (3.2) has a unique positive solution x^{*} in $\stackrel{\circ}{P}$. It is easy to see that $x^{*}=\operatorname{col}\left(t_{11}, t_{22}, \ldots, t_{n n}\right)$.

References

[1] KRASNOSELSKII M A, VAINIKKO G M, ZABREIKO P P. et al. Approximate Solution of Operator Equations [M]. Wolters-Noordhoff Publishing, Groningen, 1972.
[2] BUSHELL P J. Hilbert's metric and positive contraction mappings in a Banach space [J]. Arch. Rational Mech. Anal., 1973, 52: 330-338.
[3] BUSHELL P J. On a class of Volterra and Fredholm non-linear integral equations [J]. Math. Proc. Cambridge Philos. Soc., 1976, 79(2): 329-335.
[4] CHEN Yongzhuo. Inhomogeneous iterates of contraction mappings and nonlinear ergodic theorems [J]. Nonlinear Anal., 2000, 39(1): 1-10.
[5] EZZINBI K, HACHIMI M A. Existence of positive almost periodic solutions of functional equations via Hilbert's projective metric [J]. Nonlinear Anal., 1996, 26(6): 1169-1176.
[6] POTTER A J B. Existence theorem for a non-linear integral equation [J]. J. London Math. Soc. (2), 1975, 11(1): 7-10.
[7] BUSHELL P J. On solutions of the matrix equation $T^{\prime} A T=A^{2}[J]$. Linear Algebra and Appl., 1974, 8: 465-469.
[8] KOUFANY K. Application of Hilbert's projective metric on symmetric cones [J]. Acta Math. Sin. (Engl. Ser.), 2006, 22(5): 1467-1472.
[9] NUSSBAUM R D. Iterated Nonlinear Maps and Hilbert's Projective Metric: a Summary [M]. Springer, Berlin, 1987.
[10] GUO Dajun, LAKSHMIKANTHAM V. Nonlinear Problems in Abstract Cones [M]. Academic Press, Inc., Boston, MA, 1988.
[11] SCHAEFER H H. Topogical Vector Spaces [M]. Springer-Verlag, New York-Berlin, 1971.
[12] KRASNOSELSKII M A. Positive Solutions of Operator Equations [M]. Noordhoff Ltd. Groningen, 1964.
[13] EDELSTEIN M. On fixed and periodic points under contractive mappings [J]. J. London Math. Soc., 1962, 37: 74-79.

[^0]: Received December 2, 2008; Accepted January 18, 2010
 Supported by the Natural Science Foundation of Shanxi Province (Grant No. 20041003) and the Youth Science Foundation of Shanxi Province (Grant No. 2010021002-1).

 * Corresponding author

 E-mail address: cbzhai@sxu.edu.cn (C. B. ZHAI)

