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Abstract In this note we study the property (ω), a variant of Weyl’s theorem introduced

by Rakočevic̀, by means of the new spectrum. We establish for a bounded linear operator

defined on a Banach space a necessary and sufficient condition for which both property (ω) and

approximate Weyl’s theorem hold. As a consequence of the main result, we study the property

(ω) and approximate Weyl’s theorem for a class of operators which we call the λ-weak-H(p)

operators.
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1. Introduction

Weyl [18] examined the spectra of all compact perturbations of a hermitian operator on

Hilbert space and found in 1909 that their intersection consisted precisely of those points of

the spectrum which were not isolated eigenvalues of finite multiplicity. This “Weyl’s theorem”

has since been extended to hyponormal and to Toeplitz operators, to seminormal and other

operators and to Banach spaces operators. Variants have been discussed by Harte and Lee [6]

and Rakočevic̀ [11, 12]. In this note we show how property (ω) and approximate Weyl’s theorem

(abbrev. a-Weyl’s theorem) follow from the relation between Browder spectrum and a variant of

the essential approximate point spectrum.

Throughout this paper, X denotes an infinite dimensional complex Banach space, B(X)

the algebra of all bounded linear operators on X . For an operator T ∈ B(X) we shall denote

by n(T ) the dimension of the kernel N(T ), and by d(T ) the codimension of the range R(T ).

We call T ∈ B(X) an upper semi-Fredholm operator if n(T ) < ∞ and R(T ) is closed; But if

d(T ) < ∞ and R(T ) is closed, T is a lower semi-Fredholm operator. An operator T ∈ B(X)

is said to be Fredholm if R(T ) is closed and both the deficiency induces n(T ) and d(T ) are
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finite. If T ∈ B(X) is an upper (or a lower) semi-Fredholm operator, the index of T , ind(T ), is

defined to be ind(T ) = n(T ) − d(T ). The ascent of T , asc(T ), is the least non-negative integer

n such that N(T n) = N(T n+1) and the descent, des(T ), is the least non-negative integer n

such that R(T n) = R(T n+1). The operator T is Weyl if it is Fredholm of index zero, and T is

said to be Browder if it is Fredholm “of finite ascent and descent”. The upper semi-Fredholm

spectrum σSF+
(T ), the Weyl spectrum σw(T ) and the Browder spectrum σb(T ) of T are defined

respectively by:

σSF+
(T ) = {λ ∈ C : T − λI is not upper semi-Fredholm},

σw(T ) = {λ ∈ C : T − λI is not Weyl},

σb(T ) = {λ ∈ C : T − λI is not Browder}.

Let ρ(T ) denote the resolvent set of the operator T and σ(T ) = C\ρ(T ) denote the usual spectrum

of T . We use π00(T ) to denote the set of isolated eigenvalues λ of T for which dim N(T−λI) < ∞.

Also πa
00(T ) is the set of λ ∈ C such that λ is an isolated point of σa(T ) and 0 < dimN(T −λI) <

∞, where σa(T ) denotes the approximate point set of the operator T ∈ B(X). We say that the

Browder’s theorem holds for T (see [6]) if

σw(T ) = σb(T ),

the Weyl’s theorem holds for T if

σ(T )\σw(T ) = π00(T ),

and the a-Weyl’s theorem holds for T (see [11]) if

σa(T )\σea(T ) = πa
00(T ),

where σea(T ) = {λ ∈ C : T − λI /∈ SF−

+ (X)} and SF−

+ (X) = {T ∈ B(X), T is upper semi-

Fredholm of ind(T ) ≤ 0}. The concept of a-Weyl’s theorem was introduced by Rakočevic̀:

a-Weyl’s theorem for T =⇒ Weyl’s theorem for T , but the converse is generally false [11].

Sufficient conditions for an operator T ∈ B(X) to satisfy property (ω) and a-Weyl’s theorem

have been considered by a number of authors in the recent past [1, 2]. The rest of the paper is

organized as follows. In Section 2, we prove our main results and give the necessary and sufficient

conditions for T such that both property (ω) and a-Weyl’s theorem hold. In Section 3, we show

the property (ω) and a-Weyl’s theorem for λ-weak-H(p) operators.

2. Property (ω) and a-Weyl’s theorem

The following variant of Weyl’s theorem has been introduced by Rakočevic̀ [12]

Definition 2.1 T ∈ B(X) is said to satisfy property (ω) if

σa(T )\σea(T ) = π00(T ).

Unlike a-Weyl’s theorem, the study of property (ω) has been rather neglected, although,

exactly like a-Weyl’s theorem, property (ω) implies Weyl’s theorem, a-Browder’s theorem and
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Browder’s theorem. But what is the relation between a-Weyl’s theorem and property (ω)?

Remark 2.2 (1) “a-Weyl’s theorem” does not imply “property (ω)”.

For example, A ∈ B(ℓ2) is defined by

A(x1, x2, x3, . . .) = (x1, 0, 0, x3, x4, . . .),

then

(I) σa(A) = {λ ∈ C : |λ| = 1} ∪ {0}, and σea(A) = {λ ∈ C : |λ| = 1};

(II) π00(A) = ∅, and πa
00(A) = {0}.

So σa(A)\σea(A) = πa
00(A), but σa(A)\σea(A) 6= π00(A), which means that a-Weyl’s theorem

holds for A, but property (ω) fails for A.

(2) “property (ω)” does not imply “a-Weyl’s theorem”.

For example, B ∈ B(ℓ2) is defined by

B(x1, x2, x3, . . .) = (0, 0,
x2

2
,
x3

3
, . . . ,

xn

n
, . . .),

and let T = A ⊕ B ∈ B(ℓ2 ⊕ ℓ2), where A ∈ B(ℓ2) is the operator defined in (1). Then

(I) σa(T ) = σea(T ) = {0} ∪ {λ ∈ C : |λ| = 1};

(II) π00(T ) = ∅ and πa
00(T ) = {0}.

This implies that property (ω) holds for T but a-Weyl’s theorem fails for T .

We hope that both property (ω) and a-Weyl’s theorem hold for an operator T or property

(ω) and a-Weyl’s theorem are equivalent. We turn to a variant of the essential approximate point

spectrum, involving a condition introduced by saphar [14] and the zero jump condition of Kato

[7]. Recall that T ∈ B(X) is a saphar operator iff N(T ) ⊆
⋂

∞

n=1 R(T n), i.e., the kernel of T

is contained in the hyper-range. We might describe the set of λ for which T − λI fails to be a

saphar operator as the Saphar spectrum σS(T ) of T . If we also write σG(T ) for the Goldberg

spectrum of T , collecting [5, Definition VI.7.1] λ ∈ C for which T − λI does not have closed

range, then neither σG nor σS behaves well, while their union σG ∪σS is a sort of Kate spectrum

σk, enjoying most of the good spectral properties, such as spectral mapping theorem. The new

spectrum set is defined as follows. Let

ρ1(T ) = {λ ∈ C : dimN(T − λI) < ∞ and there exists ǫ > 0 such that T − µI ∈ SF−

+ (X)

and N(T − µI) ⊆
∞⋂

n=1

R[(T − µI)n] if 0 < |µ − λ| < ǫ}

and let σ1(T ) = C\ρ1(T ). Then

σ1(T ) ⊆ σea(T ) ⊆ σb(T ) ⊆ σ(T ).

We recall that an “ a-isoloid ” operator is one of the isolated points whose approximate point

spectrum are all eigenvalues.

Theorem 2.3 σb(T ) = σ1(T ) ∪ [σ(T ) ∩ ρa(T )] if and only if T is a-isoloid and both property

(ω) and a-weyl’s theorem hold for T .
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Proof Suppose that σb(T ) = σ1(T ) ∪ [σ(T ) ∩ ρa(T )].

By definition of ρ1(T ), we know that σa(T )\σea(T ) ∪ π00(T ) ⊆ ρ1(T )\ρa(T ) and πa
00(T ) ⊆

ρ1(T )\ρa(T ), then σa(T )\σea(T ) ∪ π00(T ) ⊆ C\σb(T ) and πa
00(T ) ⊆ C\σb(T ), and hence both

property (ω) and a-Weyl’s theorem hold for T . Let λ0 ∈ isoσa(T ). If N(T − λ0I) = {0}, then

λ0 /∈ σ1(T )∪ [σ(T )∩ρa(T )], which means that λ0 /∈ σb(T ). This tells us that T −λ0I is Browder,

then T − λ0I is invertible. It is in contradiction to the fact that λ0 ∈ isoσa(T ). We now have

that N(T − λ0I) 6= {0}, which means that T is a-isoloid.

For the converse, we only need to prove that σb(T ) ⊆ σ1(T ) ∪ [σ(T ) ∩ ρa(T )]. Let λ0 /∈

σ1(T )∪ [σ(T )∩ρa(T )]. Then n(T −λ0I) < ∞ and there exists ǫ > 0 such that T −λI ∈ SF−

+ (X)

and N(T − λI) ⊆
⋂

∞

n=1 R[(T − λI)n] if 0 < |λ − λ0| < ǫ. We claim that T − λI is bounded

from below if 0 < |λ − λ0| < ǫ. In fact, if n(T − λ1I) > 0 and 0 < |λ1 − λ0| < ǫ, then

λ1 ∈ σa(T )\σea(T ). Since T satisfies property (ω), it follows that λ1 ∈ π00(T ). Then T − λ1I

is Browder, which means that asc(T − λ1I) < ∞. From Lemma 3.4 in [17], we know that

N(T − λ1I) = N(T − λ1I) ∩
⋂

∞

n=1 R[(T − λ1I)n] = {0}, it is a contradiction. Hence T − λI

is bounded from below if 0 < |λ − λ0| < ǫ, that is λ0 ∈ isoσa(T ) ∪ ρa(T ). If λ0 ∈ isoσa(T ),

then λ0 ∈ πa
00(T ), since T is a-isoloid. Since T has the property (ω) and a-Weyl’s theorem

holds for T , it follows that T − λ0I is Browder. This induces that λ0 /∈ σb(T ). If λ0 ∈ ρa(T ),

from the fact λ0 /∈ [σ(T ) ∩ ρa(T )], T − λ0I is invertible. Also, λ0 /∈ σb(T ). This proves that

σb(T ) = σ1(T ) ∪ [σ(T ) ∩ ρa(T )].

T ∈ B(X) is called left Drazin invertible if asc(T ) < ∞ and R(T asc(T )+1) is closed. The left

Drazin spectrum σLD(T ) = {λ ∈ C : T −λI is not left Drazin invertible}. If T −λI is left Drazin

invertible, λ is called the left pole point of T . T is called a-polaroid if all the isolated points of

σa(T ) are left poles. a-polaroid operators are a-isoloid. 2

Corollary 2.4 Suppose that T is a-polaroid, then the following statements are equivalent:

(1) σb(T ) = σ1(T ) ∪ [σ(T ) ∩ ρa(T )];

(2) Property (ω) holds for T ;

(3) π00(T ) = πa
00(T ) and a-Weyl’s theorem holds for T .

Proof (1)⇒(2). See Theorem 2.3.

(2)⇒(1). From Theorem 2.3, we need to prove that a-Weyl’s theorem holds for T . Since

property (ω) holds for T , it follows that σa(T )\σea(T ) ⊆ πa
00(T ). Let λ0 ∈ πa

00(T ). Then T −λ0I

is left Drazin invertible since T is a-polaroid. Therefore R[(T−λ0I)n] is closed for some integer n.

This induces that (T −λ0I)n is upper semi-Fredholm, and hence T −λ0I is upper semi-Fredholm.

Since λ0 ∈ πa
00(T ), it follows that ind(T − λ0I) ≤ 0, which means that λ0 ∈ σa(T )\σea(T ). This

proves that generalized a-Weyl’s theorem holds for T .

(1)⇔ (3). See Theorem 2.3. 2

Remark 2.5 (1) The condition “T is a-isoloid” is essential in Theorem 2.3.

For example, T ∈ B(ℓ2) is defined by

T (x1, x2, x3, . . .) = (0, x1,
x2

2
,
x3

3
, . . .),
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then

σa(T ) = σea(T ) = σb(T ) = {0}, π00(T ) = πa
00(T ), and σ1(T ) ∪ [σ(T ) ∩ ρa(T )] = ∅,

which says that both property (ω) and a-Weyl’s theorem hold for T while T is not a-isoloid. But

σb(T ) 6= σ1(T ) ∪ [σ(T ) ∩ ρa(T )].

(2) The condition “T satisfies property (ω)” is essential in Theorem 2.3.

For example, let T be the operator A defined in Remark 2.2. Then T is a-isoloid and a-Weyl’s

theorem holds for T while T has not property (ω). Also a straightforward calculation shows that

σ1(T ) ∪ [σ(T ) ∩ ρ(T )] = {λ ∈ C : 0 < |λ| ≤ 1}, σb(T ) = {λ ∈ C : |λ| ≤ 1},

which implies that σb(T ) 6= σ1(T ) ∪ [σ(T ) ∩ ρa(T )].

(3) The condition “a-Weyl’s theorem holds for T ” is essential in Theorem 2.3.

Let T be defined as operator T in Remark 2.2 (2). Then T is a-isoloid and satisfies property

(ω) while a-Weyl’s theorem fails for T . But σb(T ) 6= σ1(T )∪ [σ(T )∩ρa(T )] since σ1(T )∪ [σ(T )∩

ρa(T )] = {λ ∈ C : 0 < |λ| ≤ 1} and σb(T ) = {λ ∈ C : |λ| ≤ 1}.

In the following, let H(T ) be the class of all complex-valued functions which are analytic on

a neighborhood of σ(T ) and are not constant on any component of σ(T ).

Theorem 2.6 If T ∈ B(X), then

ind(T − λI) · ind(T − µI) ≥ 0 for each pair λ, µ ∈ C\σSF+
(T )

if and only if

f(σ1(T )) ⊆ σ1(f(T )) for any f ∈ H(T ).

Proof Suppose that ind(T − λI) · ind(T − µI) ≥ 0 for each pair λ, µ ∈ C\σSF+
(T ).

For any f ∈ H(T ), let µ0 /∈ σ1(f(T )). Then dimN(f(T ) − µ0I) < ∞ and there exists ǫ > 0

such that f(T ) − µI ∈ SF−

+ (X) and N(f(T ) − µI) ⊆
⋂

∞

n=1 R[(f(T ) − µI)n] if 0 < |µ − µ0| < ǫ.

Therefore µ is not in σk(f(T )) = f(σk(T )) (see [16, Satz 6]) if 0 < |µ − µ0| < ǫ, where σk(T ) =

σG(T ) ∪ σS(T ).

Let f(T ) − µ0I = (T − λ1I)n1(T − λ2I)n2 · · · (T − λkI)nkg(T ), where λi 6= λj and g(T )

is invertible. Since N [f(T ) − µ0I] ⊇ N [(T − λiI)ni ] and n(f(T ) − µ0I) < ∞, it follows that

n(T − λiI) < ∞ for every λi, 1 ≤ i ≤ k. In what follows, we will prove that λi /∈ σ1(T ) for all

1 ≤ i ≤ k. By continuity of f(λ) and the fact that the solutions of equation f(λ) = f(λi) = µ0

are finite, for every λi, there exists δi > 0 such that 0 < |f(λ) − f(λi)| = |f(λ) − µ0| < ǫ if

0 < |λ − λi| < δi. Then f(T ) − f(λ)I ∈ SF−

+ (X) and f(λ) is not in σk(f(T )) = f(σk(T )),

which means that λ /∈ σk(T ). For any λ such that 0 < |λ − λi| < δi, let f(T ) − f(λ)I =

(T −λI)mλ(T −λ′

1I)m1(T −λ′

2I)m2 · · · (T −λ′

tI)mth(T ), where λ′

i 6= λ′

j(i 6= j), λ′

i 6= λ, and h(T )

is invertible. Since f(T )− f(λ)I ∈ SF−

+ (X), it follows that T − λ′

iI and T − λI are upper semi-

Fredholm operators for all λi, i = 1, 2, . . . , t. Thus ind[(T −λI)mλ ]+
∑t

i=1 ind[(T −λ′

iI)mi ] ≤ 0.

So by condition, ind(T − λI) ≤ 0. We get that T − λI ∈ SF−

+ (X). Now we have proved that:

dimN(T − λiI) < ∞ and there exists δi > 0 such that T − λI ∈ SF−

+ (X) and N(T − λI) ⊆
⋂

∞

n=1 R[(T − λI)n] if 0 < |λ − λi| < δi. Then λi /∈ σ1(T ), and hence µ0 /∈ f(σ1(T )).
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If conversely there exist λ0, µ0 ∈ C\σSF+
(T ) for which

ind(T − λ0I) = −m < 0 < k = ind(T − µ0I),

let f(T ) = (T − λ0I)k (λ − µ0)
m if k is finite or else let f(T ) = (T − λ0)(T − µ0I). Then

0 /∈ σ1(f(T )), and hence 0 /∈ f(σ1(T )). This implies that λ0 /∈ σ1(T ) and µ0 /∈ σ1(T ). But

by perturbation theorem of upper semi-Fredholm operator, we know that λ0 ∈ σ1(T ). It is a

contradiction. 2

We can prove that if σb(T ) = σ1(T )∪[σ(T )∩ρa(T )], then ind(T −λI)ind(T −µI) ≥ 0 for each

pair λ, µ ∈ C\σSF+
(T ) if and only if f(σ1(T )) = σ1(f(T )) for any f ∈ H(T ). If σb(T ) = σ1(T ),

then for any λ ∈ C\σSF+
(T ), ind(T − λI) ≥ 0. In fact, If there exists λ ∈ C\σSF+

(T ) such that

ind(T −λI) < 0, then λ ∈ σ1(T ) and hence T −λI is Browder. This means that ind(T −λI) = 0,

leading to a contradiction. Thus if σb(T ) = σ1(T ), we have that f(σ1(T )) = σ1(f(T )) for any

f ∈ H(T ). In this case, we have that σb(f(T )) = f(σb(T )) = f(σ1(T )) = σ1(f(T )). Using

Theorem 2.3, we know that for any f ∈ H(T ), f(T ) is a-isoloid and both property (ω) and

a-Weyl’s theorem hold for f(T ). That is:

Theorem 2.7 Suppose σb(T ) = σ1(T ), then

(1) f(σ1(T ) = σ1(f(T )) for any f ∈ H(T );

(2) For any f ∈ H(T ), f(T ) is a-isoloid and both property (ω) and a-Weyl’s theorem hold

for f(T ).

Example 2.8 Let T ∈ B(ℓ2) be defined by

T (x1, x2, x3, . . .) = (x2, x3, x4, . . .).

Then σb(T ) = σ1(T ) = {λ ∈ C : |λ| ≤ 1}. Using Theorem 2.7, we see that for any f ∈ H(T ),

f(T ) is a-isoloid and both property (ω) and a-Weyl’s theorem hold for f(T ).

Theorem 2.9 Let σb(T ) = σ1(T ) and F be a finite rank operator that commutes with T . Then

T + F is a-isoloid and satisfies property (ω) and a-Weyl’s theorem.

Proof Using Theorem 2.3, we need to prove that σb(T +F ) ⊆ σ1(T +F )∪[σ(T +F )∩ρa(T +F )].

Let λ0 /∈ σ1(T + F ) ∪ [σ(T + F ) ∩ ρa(T + F )]. Then n(T + F − λ0I) < ∞ and there exists

ǫ > 0 such that T + F − λI ∈ SF−

+ (X) and N(T + F − λI) ⊆
⋂

∞

n=1 R[(T + F − λI)n] if

0 < |λ − λ0| < ǫ. Then n(T − λ0I) < ∞ and T − λI ∈ SF−

+ (X) if 0 < |λ − λ0| < ǫ. Since

a-Weyl’s theorem holds for T , it follows that asc(T − λI) < ∞ if 0 < |λ − λ0| < ǫ. Then

T + F − λI has finite ascent [13], hence T + F − λI is bounded from below, which induces that

λ0 ∈ isoσa(T + F ) ∪ ρa(T + F ). If λ0 ∈ isoσa(T + F ), then λ0 ∈ isoσa(T ) ∪ ρa(T ). Then

λ0 /∈ σ1(T ), which means that T − λ0I is Browder. Therefore T + F − λ0I is Browder, that is,

λ0 /∈ σb(T +F ). If λ0 ∈ ρa(T +F ), then T +F−λ0I is invertible since λ0 /∈ [σ(T +F )∩ρa(T +F )].

Thus σb(T + F ) ⊆ σ1(T + F )∪ [σ(T + F )∩ ρa(T + F )], which means that T + F is a-isoloid and

satisfies property (ω) and a-Weyl’s theorem. 2
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3. Property (ω) and a-Weyl’s theorem for λ-weak-H(p) operators

In this section, X denotes an infinite dimensional Hilbert space. For operator A ∈ B(X), the

analytic core of A is the subspace

K(A) = {x ∈ X : Axn+1 = xn, Ax1 = x, ‖xn‖ ≤ cn‖x‖(n = 1, 2, . . .) for some c > 0, xn ∈ X},

and the quasi-nilpotent part of A is the subspace

H0(A) = {x ∈ X : lim
n→∞

‖Anx‖
1
n = 0}.

The spaces K(A) and H0(A) are hyperinvariant under A and satisfy N(An) ⊆ H0(A), K(A) ⊆

R(An) for all n ∈ N and AK(A) = K(A). We refer to the recent book of Aiena [3, 8, 9] for more

information about these subspaces.

Now let us introduce the class H(p) formed by the operators T ∈ B(X) such that for every

λ ∈ C there exists an integer dλ for which H0(T −λI) = N [(T −λI)dλ ]. This class is considerably

large since it contains every totally paranormal and subscalar operator, and consequently, every

M -hyponormal, p-hyponormal and log-hyponormal operator. We know that if T ∈ H(p), then

Weyl’s theorem holds for T and T ∗, where T ∗ is the adjoint of T (see [10, Theorem 3.1]).

Definition 3.1 Let λ ∈ C. T ∈ B(X) is called a λ-weak-H(p) operator if for any µ ∈ C, there

exists an integer dµ for which K(A− λI)∩H0(A− µI) = N [(A−µI)dµ ]. A ∈ B(X) is called an

analytic λ-weak-H(P ) operator if there exists some g ∈ H(A) such that for any µ ∈ C, there is

an integer dµ ≥ 1 for which K(A − λI) ∩ H0(g(A) − µI) = N [(g(A) − µI)dµ ] holds.

Let λ ∈ C\σ(T ). Then K(T −λI) = X , and hence H(P ) ⊆ λ-weak-H(P ). But if there exists

λ ∈ C\σ(T ) such that T is a λ-weak-H(P ) operator, then T ∈ H(P ).

Example 3.2 T ∈ B(ℓ2) is defined by

T (x1, x2, x3, . . .) = (0, x1,
1

2
x2,

1

3
x3,

1

4
x4, . . .),

then for any λ ∈ C, K(T ) ∩ H0(T − λI) = N(T − λI) = {0}, so A is a 0-weak-H(P ) operator.

We can prove that Weyl’s theorem holds for T but Weyl’s theorem fails for T ∗ since σ(T ∗) =

σw(T ∗) = {0}, π00(T
∗) = {0}.

From Example 3.2, strict inclusion can occur in H(P ) ⊆ λ-weak-H(P ). Also we know that

Weyl’s theorem does not transfer from T to T ∗ for operators in λ-weak-H(p).

Lemma 3.3 Let λ0 ∈ C, and A be an analytic λ0-weak-H(P ) operator. Then

(1) For any λ 6= λ0, asc(A − λI) < ∞;

(2) Let λ ∈ C such that A−λI is an upper semi-Fredholm operator. Then asc(A−λI) < ∞;

(3) Let λ ∈ isoσ(T ) and λ 6= λ0. Then there exists integer dλ ≥ 1 such that H0(T − λI) =

N [(T − λI)dλ ].

Proof Let g ∈ H(T ) satisfy that for any µ ∈ C, there exists integer dµ ≥ 1 such that K(A −

λ0I) ∩ H0(g(A) − µI) = N [(g(A) − µI)dµ ].

(1) For any λ 6= λ0, let g(A)−g(λ)I = (A−λI)nλp(A)h(A), where p is a complex polynomial,
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p(λ) 6= 0 and h(A) is invertible. First we claim that ∀m ∈ N, N [(A − λI)m] ⊆ K(A − λ0I).

In fact, suppose x ∈ N [(A − λI)m], that is, (A − λI)mx = 0. There exists polynomial f(·)

satisfying (λ − λ0)
mx = (A − λ0I)f(A)x, x = (A − λ0I)[ f(A)

(λ−λ0)m x]. Let c = ‖ f(A)
(λ−λ0)m ‖ + 1,

x1 = f(A)
(λ−λ0)m x, xn = [ f(A)

(λ−λ0)m ]nx, ∀n ∈ N. Then (A − λ0I)x1 = x, (A − λ0I)xn+1 = xn,

and ‖xn‖ ≤ cn‖x‖, which means that x ∈ K(A − λ0I). Let K(A − λ0I) ∩ H0[g(A) − g(λ)I] =

N [(g(A)−g(λ)I)d], where d ≥ 1 is integer. Since for any m ∈ N, N [(A−λI)m] ⊆ H0[g(A)−g(λ)I],

it follows that N [(A − λI)m] ⊆ K(A − λ0I) ∩ H0[g(A) − g(λ)I] = N [(g(A) − g(λ)I)d]. Then

N [(A − λI)m] ⊆ N [(A − λI)nλ ] ⊕ N [p(A)]. Using the fact that N [(A − λI)m] ∩ N [p(A)] = {0},

we know N [(A − λI)m] ⊆ N [(A − λI)nλ ]. Hence for any λ 6= λ0, asc(A − λI) < ∞.

(2) Let λ ∈ C and A−λI be upper semi-Fredholm. Then there exists ǫ > 0 such that µ 6= λ0,

A−µI is upper semi-Fredholm and N(A−µI) ⊆
⋂

∞

n=1 R[(A−µI)n] if 0 < |µ−λ| < ǫ. This tells

us that asc(A − µI) < ∞, and hence N(A − µI) = N(A − µI) ∩
⋂

∞

n=1 R[(A − µI)n] = {0} (see

[17, Theorem 3.4]), which means that T − λI is bounded from below if 0 < |µ − λ| < ǫ. Then

λ ∈ isoσa(A), and hence asc(A − λI) < ∞ (see [4, Theorem 11]).

(3) Suppose λ ∈ isoσ(A) and λ 6= λ0, then X = H0(A − λI) ⊕ K(A − λI). Let A1 =

A|H0(A−λI), A2 = A|K(A−λI), where σ(A1) = {λ} and σ(A2) = σ(A)\{λ}. Thus A2 − λ0I is

invertible, we must have that (A1 − λ0I)H0(A− λI) = H0(A− λI). From Proposition 2 in [15],

H0(A − λI) ⊆ K(A1 − λ0I) ⊆ K(A − λ0I). Since H0(A − λI) ⊆ H0[g(A) − g(λ)I], there exists

integer d ≥ 1 such that H0(A−λI) ⊆ N [(g(A)−g(λ)I)d]. Let g(A)−g(λ)I = (A−λI)nλp(A)h(A),

where p is polynomial, p(λ) 6= 0, and h(A) is invertible. Then H0(A− λI) ∩N(p(A)) = {0} (see

[10, Lemma 3.5]). But since N [(g(A) − g(λ)I)d] = N [(A − λI)dnλ ] ⊕ N [p(A)d], it follows that

H0(A − λI) ⊆ N [(A − λI)dnλ ] ⊕ N [p(A)d]. Then H0(A − λI) = N [(A − λI)dnλ ]. 2

Theorem 3.4 Let T ∗ be a λ0-weak-H(p) operator for some λ0 and n(T ∗ − λ0I) > 0. Then for

any f ∈ H(T ), f(T ) is a-isoloid and both property (ω) and a-Weyl’s theorem hold for f(T ).

Proof Using Theorem 2.7, we only need to prove that σb(T ) = σ1(T ). The inclusion σ1(T ) ⊆

σb(T ) is clear. For the converse, let λ /∈ σ1(T ). Then n(T − λI) < ∞ and there exists ǫ > 0

such that T − µI ∈ SF−

+ (X), N(T − µI) ⊆
⋂

∞

n=1 R[(T − µI)n] and µ 6= λ0 if 0 < |µ − λ| < ǫ.

Then T ∗ − µI is lower semi-Fredholm and ind(T ∗ − µI) ≥ 0. Since asc(T ∗ − µI) < ∞ (Lemma

3.3), it follows that T ∗ − µI is a Weyl operator. But since asc(T ∗ − µI) < ∞ (Lemma 3.3),

we have that T ∗ − µI is Browder and hence T − µI is Browder. Then N(T − µI) = N(T −

µI) ∩
⋂

∞

n=1 R[(T − µI)n] = {0}, which means that T − µI is invertible if 0 < |µ − λ| < ǫ.

This shows that λ ∈ isoσ(T ) ∪ ρ(T ). Without loss of generality, we suppose that λ ∈ σ(T ).

We claim that λ 6= λ0. If not, let λ = λ0. Then λ ∈ isoσ(T ∗) and hence T ∗ has the single

valued extension property at λ. This means that K(T ∗ − λI) ∩ H0(T
∗ − λI) = {0}. From

the Definition 3.1, N(T ∗ − λI) = K(T ∗ − λI) ∩ H0(T
∗ − λI) = {0}. It is in contradiction to

the fact that n(T ∗ − λ0I) > 0. Then H0(T
∗ − λI) = N [(T ∗ − λI)dλ ] for some integer dλ ≥ 1

(Lemma 3.3). By the fact that λ ∈ isoσ(T ∗), there is the decomposition X = H0(T
∗ − λI) ⊕

K(T ∗ − λI) = N [(T ∗ − λI)dλ ] ⊕ K(T ∗ − λI) (see [15, Theorem 4]). Then λ is a pole of the

resolvent of T ∗ (see [15, Theorem 5]), which means that λ is also a pole of the resolvent of T . Let
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asc(T − λI) = des(T − λI) = p. Then X = N [(T − λI)p]⊕R[(T − λI)p]. Since n(T − λI) < ∞,

it follows that T − λI is Browder. Then λ0 /∈ σb(T ). It is proved that σb(T ) = σ1(T ). 2
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