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Abstract Tilting pair was introduced by Miyashita in 2001 as a generalization of tilting module.

In this paper, we construct a tilting left EndΛ(C)-right EndΛ(T )-bimodule for a given tilting

pairs (C, T ) in mod Λ, where Λ is an Artin algebra.
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0. Introduction

The notion of a tilting module over an Artin algebra Λ was introduced by Brenner and Butler

[1]. Tilting modules have been investigated by many authors since then. Tilting theory plays

an important role in the representation theory of Artin algebra. Miyashita [2] introduced the

notion of tilting pairs in constructing tilting modules with a left tilting series of ideals of an Artin

algebra. It is a useful tool in the tilting theory.

In this paper, our aim is to investigate some properties of tilting pairs. For a given n-

tilting pair (C, T ) in mod Λ, we obtain that HomΛ(C, T ) is a tilting left EndΛ(C)-right EndΛ(T )-

bimodule of projective dimension ≤ n on both sides.

1. Preliminaries

Throughout this paper, all algebras Λ are Artin algebras and mod Λ denotes the category of

finitely generated left Λ-modules. We usually view a right Λ-module as a left Λop-module. By

a subcategory of mod Λ, we always mean a full subcategory closed under isomorphisms. For a

Λ-module T , we denote by add T the subcategory of all direct summands of finite sum of copies

of T .
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For a subcategory C of mod Λ, we denote by Ĉ the subcategory of mod Λ whose objects are

the Λ-modules M for which there is a finite exact sequence 0 → Cn → · · · → C0 → M → 0 with

Ci ∈ C , and denote by dimC (M) the minimal integer n such that there is an exact sequence

0 → Cn → · · · → C0 → M → 0 with Ci ∈ C , and (Ĉ )n the category of all M ∈ Ĉ with

dimC (M) ≤ n. Dually we denote by Č the subcategory of mod Λ whose objects are the Λ-

modules M which admit a finite exact sequence 0 → M → C0 → · · · → Cn → 0 with Ci ∈ C .

Similarly, codimC (M) and (Č )n can be defined dually.

Now we recall the notion of tilting and cotilting modules in [3, 4]. A Λ-module T is called

n-tilting if (1) pdΛT ≤ n, (2) T is selforthogonal, i.e., Exti
Λ(T, T ) = 0 for all i > 0, and (3) there

is a projective generator P such that P ∈ ( ˇadd T )n. Dually, a Λ-module C is called n-cotilting

if (1) idΛC ≤ n, (2) C is selforthogonal, and (3) there is an injective cogenerator I such that

I ∈ ( ˆadd C)n.

For a subcategory C (a module T ), we define

⊥
C =

⋂

i≥1

KerExti
Λ(−, C ) = {M ∈ mod Λ

∣

∣ExtiΛ(M, C) = 0 for all C ∈ C and i ≥ 1};

C
⊥ =

⋂

i≥1

KerExtiΛ(C ,−); ⊥T =
⋂

i≥1

KerExtiΛ(−, T ); T⊥ =
⋂

i≥1

KerExti
Λ(T,−).

For a selforthogonal Λ-module T , we denote by TX the subcategory of T⊥ whose objects are

the Λ-modules X such that there is an exact sequence · · · → Tm
fm

→ Tm−1 → · · · → T0
f0
→ X → 0

with Ti ∈ addT and Imfi ∈ T⊥ for all i ≥ 0.

For convenience, we often denote Hom(A, B) by (A, B), specially in some commutative dia-

grams.

2. Orthogonality of modules

The orthogonality of modules is needed for our discussion.

Lemma 2.1 Assume that T is a selforthogonal module. Then for any X ∈ mod Λ, Y ∈ ˇaddT ,

we have

HomEndΛ(T )op(HomΛ(Y, T ), HomΛ(X, T )) ∼= HomΛ(X, Y ).

In particular, (a) if X ∈ addT , then

EndEndΛ(T )op(HomΛ(X, T )) ∼= EndΛ(X);

(b) For Y ∈ ˇaddT , we have

HomEndΛ(T )op(HomΛ(Y, T ), T ) ∼= HomΛ(Λ, Y ) ∼= Y.

Proof (1) Suppose that Y ∈ addT . By the additivity of eT = HomΛ(−, T ), we can easily see

that

eT : HomΛ(X, Y ) → HomEndΛ(T )op(HomΛ(Y, T ), HomΛ(X, T ))

is an isomorphism for X ∈ mod Λ (see [5, Lemma 3.3]).
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(2) Suppose that Y ∈ ˇaddT . Then there exists an exact sequence

0 → Y → T0
f1
→ T1

f2
→ · · · → Tn−1

fn

→ Tn → 0

with Ti ∈ addT . Since T is selforthogonal, by dimension shifting we have Kerfi ∈ ⊥T for

i = 1, 2, . . . , n. So we have an exact sequence

0 → Y → T0
f1
→ T1

with Imf1, Cokerf1 ∈ ⊥T . Then we have an exact sequence

HomΛ(T1, T ) → HomΛ(T0, T ) → HomΛ(Y, T ) → 0.

Now applying the left exact functor HomEnd(ΛT )op(−, HomΛ(X, T )) to this exact sequence, we

obtain the following commutative diagram with exact rows

0 // HomΛ(X, Y )

g1

��

// HomΛ(X, T0)

g2

��

// HomΛ(X, T1)

g3

��

0 // ((Y, T ), (X, T )) // ((T0, T ), (X, T )) // ((T1, T ), (X, T )).

(2.1)

By (1) both g2, g3 are isomorphisms. From Diagram (2.1), we have g1 is an isomorphism. That

is,

HomEnd(ΛT )op(HomΛ(Y, T ), HomΛ(X, T )) ∼= HomΛ(X, Y )

for any X ∈ mod Λ and any Y ∈ ˇaddT . 2

Now we can prove the following results.

Lemma 2.2 Assume that T is a selforthogonal module. Then for any X ∈ ⊥T and any

Y ∈ ˇaddT , we have an isomorphism

ExtiEnd(T )op(HomΛ(Y, T ), HomΛ(X, T )) ∼= ExtiΛ(X, Y )

for all i ≥ 1.

Proof Since Y ∈ ˇaddT , there exists an exact sequence

0 → Y → T0
f1
→ T1

f2
→ · · · → Tn−1

fn

→ Tn → 0

with Ti ∈ addT . It is easy to know Imfi ∈ ⊥T for i = 1, 2, . . . , n. Then the sequence

0 → HomΛ(Imf1, T ) → HomΛ(T0, T ) → HomΛ(Y, T ) → 0 is exact. Note that HomΛ(T0, T )

is EndΛ(T )
op

-projective. Thus

Ext1End(T )op(HomΛ(T0, T ), HomΛ(X, T )) = 0.

Since T0, Imf1 ∈ ˇaddT , both g1 and g2 in the commutative diagram

HomΛ(X, T0)

g1

��

// HomΛ(X, Imf1)

g2

��

// Ext1Λ(X, Y )

��

// 0

((T0, T ), (X, T )) // ((Imf1, T ), (X, T )) // Ext1End(T )op((Y, T ), (X, T )) // 0
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are isomorphisms by Lemma 2.1. It follows that

Ext1End(T )op((Y, T ), (X, T )) ∼= Ext1Λ(X, Y ).

Now the result follows from a dimension shifting. 2

Corollary 2.3 Assume that T is a selforthogonal module. Then for any C ∈ ˇaddT , we have

Exti
End(T )op(HomΛ(C, T ), T ) = 0.

Proof Let X = Λ ∈ ⊥T and C = Y ∈ ˇaddT . By Lemma 2.2, we have

Exti
End(T )op(HomΛ(C, T ), HomΛ(Λ, T )) ∼= Exti

Λ(Λ, C) = 0. 2

3. Tilting bimodules

We first recall the notion of tilting pairs.

Definition 3.1 ([2, Section 2]) A pair (C, T ) is called a tilting pair if the following conditions

hold:

(1) C is selforthogonal; (2) T is selforthogonal; (3) T ∈ ˆaddC and (4) C ∈ ˇaddT .

We say that (C, T ) is a n-tilting pair ( or a tilting pair of dimension n) if (C, T ) is a tilting

pair such that dimadd C(T ) ≤ n.

Let Λ be an Artin algebra over a commutative Artin ring R, that is, Λ is an Artin R-algebra.

Denote the Artin algebra duality HomR(−, E(R/J(R))) by D, where J(R) is Jacobson radical

of R and E(R/J(R)) is the injective envelope of R/J(R). Note that D(Λ) is a finitely generated

two-sided injective cogenerator [6, Section 3.2].

Lemma 3.2 Assume that C, T ∈ mod Λ. Then the following conditions hold:

(1) T is a n-tilting module if and only if (Λ, T ) is an n-tilting pair;

(2) C is a n-cotilting module if and only if (C, D(Λ)) is a n-tilting pair.

Proof We only prove (2). ⇒. Assume that C is an n-cotilting module. Then there is an

injective cogenerator I such that I ∈ ( ˆadd C)n. By [7, Lemma 2.1], we know that ( ˆaddC)n =

{X ∈ CX|Extn+1
Λ (X, C⊥) = 0} is closed under extensions and direct summands. Note that

D(Λ) ∈ add I. We have D(Λ) ∈ ( ˆaddC)n. On the other hand, since idΛC ≤ n, there exists an

exact sequence

0 → C → I0 → I1 → · · · → In−1 → In → 0

with Ii injective. Since D(Λ) is an injective cogenerator, we have that Ii ∈ addD(Λ). Hence

C ∈ ( ˇadd D(Λ))n. It is now easy to check that (C, D(Λ)) is a n-tilting pair.

⇐. Assume that (C, D(Λ)) is a n-tilting pair. Since D(Λ) is an injective cogenerator, we have

that idΛC ≤ n from C ∈ ( ˇadd D(Λ))n. By [2, Proposition 2.3] we also have D(Λ) ∈ ( ˆaddC)n.

But ( ˆaddC)n is closed under extensions and direct summands. So we have that E ∈ ( ˆaddC)n

for every injective cogenerator E. Therefore, C is a n-cotilting module. 2

Now we can obtain a tilting bimodule from a given tilting pair.
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Theorem 3.3 Assume that (C, T ) is a n-tilting pair. Then HomΛ(C, T ) is a tilting left EndΛ(C)-

right EndΛ(T )-bimodule of projective dimension ≤ n on both sides.

Proof Since C ∈ ˇaddT , it follows immediately from the proof of Lemma 2.2 that there exists a

projective resolution of right EndΛ(T )-modules HomΛ(C, T ) of form

0 → (Tn, T ) → (Tn−1, T ) → · · · → (T1, T ) → (T0, T ) → (C, T ) → 0

with Ti ∈ addT . So we have pdEndΛ(T )HomΛ(C, T ) ≤ n.

On the other hand, since T ∈ ˆaddC, there exists an exact sequence

0 → Cn
fn

→ Cn−1
fn−1
→ · · · → C1

f1
→ C0

f0
→ T → 0 (3.1)

with Ci ∈ addC. Since C is selforthogonal, by a dimension shifting to this sequence, we know

that Imfi ∈ C⊥, in particular, T ∈ C⊥. Since T is selforthogonal, applying HomΛ(−, T ) to the

sequence above, we have that Imfi ∈
⊥T and then the sequence of right EndΛ(T )-module

0 → (T, T ) → (C0, T ) → (C1, T ) → · · · → (Cn−1, T ) → (Cn, T ) → 0

is exact. That is, EndΛ(T )EndΛ(T ) ∈ ˇadd (C, T ).

Moreover, since C ∈ ⊥T , C ∈ ˇaddT in a tilting pair (C, T ), by Lemma 2.2 we have

Exti
EndΛ(T )op((C, T ), (C, T )) ∼= Exti

Λ(C, C) = 0.

This means HomΛ(C, T ) is selforthogonal as a right EndΛ(T )-module. Therefore HomΛ(C, T ) is

a tilting module of projective dimension ≤ n as a right EndΛ(T )-module.

Finally, by [2, Proposition 2.3], HomΛ(C, T ) is also a tilting module of projective dimension

≤ n as a left EndΛ(C)-module. 2

Corollary 3.4 ([3, Theorem 1.5]) Assume that ΛT is a tilting module of projective dimension

≤ n. Then TEndΛ(T ) is a tilting module of projective dimension ≤ n.

Proof Setting C = Λ in Theorem 3.3, we get that

HomΛ(C, T )EndΛ(T ) = HomΛ(Λ, T )EndΛ(T )
∼= TEndΛ(T )

is a tilting module of projective dimension ≤ n. 2

Corollary 3.5 Assume that ΛC is a n-cotilting module. Then D(C) is n-tilting as a right

EndΛ(D(Λ))-module, i.e., a right Λ-module.

Proof Since ΛC is a n-cotilting module, by Lemma 3.2, (C, D(Λ)) is a n-tilting pair. Then by

adjoint isomorphism [8, Theorem 2.11] we have

HomΛ(C, D(Λ)) ∼= HomR(Λ ⊗Λ C, E(R/J(R))) ∼= HomR(C, E(R/J(R))) = D(C).

By Theorem 3.3, we have that D(C) ∼= HomΛ(C, D(Λ)) is n-tilting as a right EndΛ(D(C))-module.

Meanwhile, we have that

EndΛ(D(Λ)) ∼= HomΛ(HomR(Λ, E(R/J(R))), HomR(Λ, E(R/J(R))))
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∼= HomR(Λ ⊗Λ HomR(Λ, E(R/J(R))), E(R/J(R))) ∼= D
2(Λ) ∼= Λ.

Hence D(C) is a right n-tilting Λ-module. 2
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