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Abstract In 2005, Garcia, Perez-Villala and Portal gave the regular and irregular sampling
formulas in shift invariant space Vi, via a linear operator T between L?(0,1) and L*(R). In this
paper, in terms of bases for L?(0, «), two sampling theorems for aZ-shift invariant spaces with
a single generator are obtained.
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1. Introduction

Before proceeding, we introduce some notations and notions. Let Z and N be the set of
all integers and the set of all positive integers, respectively. Given « > 0. For an a-periodic

measurable function f, define

[£llo = essinfyc (o, o)/ (£)] and [| flloc = esssupe o, o) £ (2)]-

We denote by ¢o(Z) the set of all finitely supported sequences. For f € L*(R), define its Fourier

transform by
fO = [ def@ee

The Fourier transforms of the functions in L?(R) are understood as the unitary extension of the
above. For an infinite matrix M = {my, x }n rez defining a bounded operator in ¢%(Z), we write
[Mll2:= sup [ Mc|lp2z).

e z2(z):1

In [6], in terms of Riesz bases in L%(0, 1), the authors investigated sampling in integer-shift
invariant subspaces generated by a single function in L?(R). Inspired by their work, this paper

addresses sampling in aZ-shift invariant subspaces generated by a single function in L?(R). Given
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¢ € L2(R). Let { (- —an) : n € Z} be a Riesz basis for its closed linear span Vg

Vg :=Span{p(- —an): n€Z}, (1.1)

i.e., there exist 0 < Cy < (5 < 400 such that
C1 Y _lanl> <D anp(- —an)|3 < C2 > lan|®
nez nez nez

for a € ¢*(Z). This paper addresses sampling in V. Let us begin with the following proposition.

Proposition 1.1 Given 1 < ng € N and zg € R. Let 6 be a measurable function supported on
(0,0 + no) such that, for some 0 < A < B < 0o, A < 10(-)| < B a.e., on (zg, o + no). Define

@; via its Fourier transform by

—2mij-

@i(-) =0()e ™o

forj € {0,1,2,...,n0 —1}. Assume that T is an ng-periodic function such that, for some 0 <
C<D<oo,C<|7r(-)| £ D a.e., onR, and that ¢ is defined via its Fourier transform by ¢(-) =
7(-)%0(+). Then {¢(- ——) k € Z} is a Riesz basis for Span{ ¢;(- — k) : 0<j<no—1, k€ Z}.

Proof It is easy to check that, for d € o(Z),

no—1 no—1
nok + j
DU PRI o o FRNURNEILES [ o o PRSNA
lEZ 7=0 keZ 7=0 keZ
Write V(po) = Span{ ¢o(- — ) k € Z}. To prove the proposition, it suffices to prove that

{o(- = n—o) keZ} is a Riesz ba81s for V(o). For ¢ € £y(Z), we have

lk{ R
1S exl- ——H2 /( ae] S ene 2 S (E + nok) 2,
)n()

kEZ kEZ kEZ

/( d¢| Z cre e 2 =ny Z lex |2
O,no

kEZZ kEZZ

It follows that {¢(- — ﬁo) : k € Z} is a Riesz basis for V(p) = Span{ (- — —) keZ} if
and only if Y, ;7 [3(- + nok)|? is of positive bound from below and above. Observing that

C < |7(-)] £ D, we have V(¢) = V(po), and that Y, |¢(- + nok)|? is of positive bound from
| is of positive bound from below and above.
2

below and above if and only if >°, -, |¢o(- 4+ nok)
However, by the definition of @, >,y [o(- + n0k)|* is positively bounded from below and
above. The proposition therefore follows. O

Generally speaking, sampling in integer-shift invariant subspaces generated by more than
one function is not as easy as in invariant subspaces generated by one function. Proposition 1.1
shows that, under some hypotheses, an integer-shift invariant subspace generated by more than
one function can be transformed into an aZ-shift invariant subspace generated by one function
for some a > 0. It is why we are interested in sampling in aZ-shift invariant subspaces generated

by one function. The fundamentals of sampling in shift invariant subspaces can be found in [6, 8].
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There are many references in this area [1-5]. We will investigate sampling theorems of the form
= Z f(tn)(p( - an)
nez
for f € Vi, where { ¢(- —an): n € Z } is a Riesz basis for V¥, a is a given positive number.
The case of ¢, = a + an with a given 0 < a < «a is called regular sampling, and the case
of t, = a+ an + 6, with {4, } being a sequence in (—a, «)) is called irregular sampling. In
Section 2, we will give some necessary lemmas. Section 3 will be devoted to regular and irregular

sampling theorems.

2. Some necessary lemmas
Now, we will show some supported lemmas.

Lemma 2. 1 Given a > 0 and ¢ € L?(R). Assume that ¢ is a continuous function satisfying
lo()] < 1+\ e on R for some C > 0 and some 8 > 3. Then Y., ., ang(- — an) is continuous on
R for every a € (?(Z).

Proof Note that ¢ is continuous. It suffices to prove that ), |a,¢(-—an)| converges uniformly
on an arbitrary set [-Ma, Ma] with M > 0. For ng > nq > 2M,t € [-Ma, Ma],

Y aplt—an)[ < Y0 aa)EC Y] et —an)?)z

n1<|n|<ny n1<|n|<na 1 <|n|<ns
1 1
<ol Y P Y et —0
B a1,7)28
n1<|n|<n2 n1<|n|<ng (1+ 2|7’L|)

as ny — oo. It follows that ) _, a,o(- — an) converges uniformly on [-Ma, Ma]. The proof

is completed. O

Lemma 2.2 Let F be a measurable function on (0,«). Then {F(-)e*™™"s : n € Z} is a Riesz
basis for L?(0, «) if and only if 0 < ||F|lo < || F||ee < 0.

Proof Necessity. Suppose {F(-)e?™"a : n € Z} is a Riesz basis for L?(0, ). Then, there exist
0 < A < B < +oo such that
A feal? < / 42] 3 enP ()2 E 2 < BY [enl?,
nez (0, nez nez

equivalently,

A dx|cha_%62m"%|2 g/ dz|F(x)|? |Zc erming |
(0,a)

0.0)  pez nek
< B/ d:v|cha_%e2”"%|2.
(0,0) nez
It follows that 2 <|F()| < £ ae., on (0,w).
Sufficiency. Suppose that 0 < [|[F|lo < ||F|lc < o0o. Define T(L?(0,a) — L2(0,c)) by
T(f) = azF(-)f. Then T is a bounded invertible operator. Note that {a~2e?™" : n € Z} is
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an orthonormal basis for L2(0, ) and Ta~ze2™ns = F(.)e2™"5 . It follows that {F(-)e2 "z}
is a Riesz basis for L2(0, ). O

Lemma 2.3 Given a > 0 and ¢ € L*(R). Assume that {¢(- — an) : n € Z} is a Riesz basis for
V', where V.2t is defined as in (1.1). Define
T:L2(0,0) = Vg by Tf() =Y (f(),a" 2™ %)p(- —an).
neZ

Then T is a bounded and invertible operator.

Proof Define T} : L2(0,a) — (2(Z) by Tif = (f(-),a”2e2™"a ),y for f € L%(0,a), and
Ty : £%(Z) — V2 by Tac = Y,y cno(- — an). Then it is easy to check that both T} and Ty are
bounded and invertible. Also observing T' = T5T} leads to this Lemma. O

Lemma 2.4 Let F(-) = >, ., axe >"*s € L*(0,a) satisfy that 0 < [|[F(-)[lo < [[F(*)]lec <
oo, and let {F,},cz be a sequence of functions in L*(0,«) with Fourier expansions F,(-) =
> pez ak(n)e ?™ks - Define the infinite matrix D = {dp k}nkez by dnk = an_i(n) — an_x,
n,k € Z. Assume that ||D||2 < a2||F(-)||o. Then the sequence {F,(-)e*™" s },cz is a Riesz basis
for L(0, ).

Proof To this end we use the following proposition, which can be found in [5, p. 354]:
Let H be a Hilbert space, and let {fi},—, be a Riesz basis for H with Riesz bounds C and
C5. Assume that {gk}iozl is a sequence in H, and that there exists a constant R < C; such that

ST — 90, P < RIS

k=1
for f € H. Then {gx},-, is a Riesz basis for H.

By Lemma 2.2, {F(-)e?™"a },cz is a Riesz basis for L?(0, ) with framebounds «||F||o and
a||F||o. For f(-) = Z;ezq e?™Js in L?(0,«), it is easy to check that

Z | 27r1n7 F( ) 27Tzn7,f — 042 Z | Z Qpy— k - anfk)ck|2

ne”z n€Z keZ
= o®||Del}2z) < D130 |lellf2z) = IR

Also observing that || D] < a2 ||F(-)|o leads to the lemma. O

3. Sampling theorems in V

We are in a position to give the main results.
Theorem 3.1 Given o > 0, 0 < a < «a and ¢ € L?(R). Assume that ¢ is a continuous
function satisfying |p(-)] < W for some C' > 0 and some 8 > 3, where Vg is defined
as in (1.1). Assume further that {¢(- — an) : n € Z} is a Riesz basis for V. Define that

Ko()=a"2 > ez pla —an)e*™a . Then the following conditions are equivalent:
(1) 0< HKa”O < HKaHoo < +00;
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(2) There exists S, € V' such that {S,(- — an) :n € Z} is a Riesz basis for V' and
=a! Z fla+ an)S,(- — an).
nez

In this case, S, = T(%), where T is defined in Lemma 2.3.

Proof We first prove that (1) implies (2). Define S, = T(%) By Lemma 2.2, both {f?‘;(l_)e?”i"é :
n € Z} and {K,(-)e?™"s : n € Z} are Riesz basis for L2(0,a), and it is obvious that they are
mutually dual. Also observing that T" is bounded and invertible, we have

1

1f — 0471 Z 1f; 27r1n > _ e27rina;, f c V;‘ (31)
nez Ka()
By the definition of T, Tg = (g(-), K;(-)) for g € L2(0, ). It follows that
Tg(t+an) = (g(-), Ki(-)e*™" %) = T(e >™"w g(-))(t). (32)

Put g = T-1f. Then (T'f, K,(-)e*™ %) = f(a + an) for n € Z. So, it follows from (3.1) and
(3.2) that
-1 a
=a Zf(a—i—om)S’a(- —an), feVg.
nez

2min

f(l(') into (3.2), we have S, (t —an) = T(el? (v)g )(t) for n € Z. Also observing

that {e : ;" :n € Z} is a Riesz basis for V' by Lemma 2.3, we have {S,(- —an):n € Z} is a
Riesz ba51s for V2.
Now we prove that (2) implies (1). Write h = T~1S,. For F € L?(0,«), we have TF(-) =
a 'Y s TF(a+ an)Sa(- — an). So by (3.2)7
712 e2ming >T(h(.)e27ring)'

neZ

Substituting g(-) =

It follows that

a™t Y (F( ) (e E, F e L0, ). (3.3)

nez
Since {S,(- —an) : n € Z} is a Riesz basis for V., by (3.2) and Lemma 2.3, {h(-)e*™""s :n €
Z} is a Riesz basis for L?(0, ). It together with (3.3) implies that {a 1K, (-)e*™™"a :n € Z} is
also a Riesz basis dual to {h(-)e>™ "% : n € Z} for L2(0, «). Then, by Lemma 2.2, 0 < || K,(-)|lo <
[ Ka()]|oe < 00. It is obvious that {; ming in € Z} is the dual of {a 1 K,(-)e*™"5 : n € Z}.
We therefore have h(-) = and thus So=T(=

). The proof is completed. O

K() K()

Theorem 3.2 Given a>0,0<a<aandy e L*R). Assume that ¢ is a continuous function

satisfying |p()] < for some ¢ > 0 and some 3 > %, where V' is defined as in (1.1), that

1+\ DK
{¢(-—an) :n € Z} is a Riesz basis for V', and that A = {0, }nez is a sequence in (—a, a) such

that the infinite matrix Da = {d,, x }nez whose entries are given by

dp i =pla+an—k)+6,) —pla+aln—k)), nkeZ,
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satisfies | Da s < a2||Kqallo. Then there exists a Riesz basis {Sp }nez for V' such that

FO) =) flatan+38,)Sa(t)

neZ
for f € Vg

Proof Applying Theorem 3.1 to

Ral) = Yo plat aRja e
keZ

and

Koss, (2) = Z ola+ ok + op)a"2e 2"ks pez,
kEZ

we obtain that {Kats, (1)e"2™"% }oez = {Katants, Incz is a Riesz basis for L2(0, ). Denote
by {én}nEZ its dual Riesz basis. By Lemma 2.3, {S, = T(én)}nez is a Riesz basis for V5.
Now, given f € V¥, we expand the function F' = T~(f) € L?(0, ) with respect to {én}nEZ-
Thus,

F = Z<F, Ra+an+5n>L2(0,a) = Z f(CL + an + 577,)611 S L2(0, OZ).
nez ne

Applying the operator T', we get f =3, f(a+an+ 6,)T(Gy) in LA(R). O
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