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Abstract In 2005, Garcia, Perez-Villala and Portal gave the regular and irregular sampling

formulas in shift invariant space Vϕ via a linear operator T between L2(0, 1) and L2(R). In this

paper, in terms of bases for L2(0, α), two sampling theorems for αZ-shift invariant spaces with

a single generator are obtained.
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1. Introduction

Before proceeding, we introduce some notations and notions. Let Z and N be the set of

all integers and the set of all positive integers, respectively. Given α > 0. For an α-periodic

measurable function f , define

‖f‖0 = essinft∈(0, α)|f(t)| and ‖f‖∞ = esssupt∈(0, α)|f(t)|.

We denote by ℓ0(Z) the set of all finitely supported sequences. For f ∈ L1(R), define its Fourier

transform by

f̂(·) =

∫

R

dxf(x)e−2πix·.

The Fourier transforms of the functions in L2(R) are understood as the unitary extension of the

above. For an infinite matrix M = {mn,k}n,k∈Z defining a bounded operator in ℓ2(Z), we write

‖M‖2 := sup
‖c‖

ℓ2(Z)=1

‖Mc‖ℓ2(Z).

In [6], in terms of Riesz bases in L2(0, 1), the authors investigated sampling in integer-shift

invariant subspaces generated by a single function in L2(R). Inspired by their work, this paper

addresses sampling in αZ-shift invariant subspaces generated by a single function in L2(R). Given
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φ ∈ L2(R). Let {ϕ(· − αn) : n ∈ Z } be a Riesz basis for its closed linear span V α
ϕ :

V α
ϕ := Span{ϕ(· − αn) : n ∈ Z }, (1.1)

i.e., there exist 0 < C1 ≤ C2 < +∞ such that

C1

∑

n∈Z

|an|
2 ≤ ‖

∑

n∈Z

anϕ(· − αn)‖2
2 ≤ C2

∑

n∈Z

|an|
2

for a ∈ ℓ2(Z). This paper addresses sampling in V α
ϕ . Let us begin with the following proposition.

Proposition 1.1 Given 1 < n0 ∈ N and x0 ∈ R. Let θ be a measurable function supported on

(x0, x0 + n0) such that, for some 0 < A ≤ B < ∞, A ≤ |θ(·)| ≤ B a.e., on (x0, x0 + n0). Define

ϕj via its Fourier transform by

ϕ̂j(·) = θ(·)e
−2πij·

n0

for j ∈ { 0, 1, 2, . . . , n0 − 1 }. Assume that τ is an n0-periodic function such that, for some 0 <

C ≤ D < ∞, C ≤ |τ(·)| ≤ D a.e., on R, and that ϕ is defined via its Fourier transform by ϕ̂(·) =

τ(·)ϕ̂0(·). Then {ϕ(·− k
n0

) : k ∈ Z } is a Riesz basis for Span {ϕj(· − k) : 0 ≤ j ≤ n0 − 1, k ∈ Z }.

Proof It is easy to check that, for d ∈ ℓ0(Z),

∑

l∈Z

dlϕ0(· −
l

n0
) =

n0−1∑

j=0

∑

k∈Z

dn0k+jϕ0(· −
n0k + j

n0
) =

n0−1∑

j=0

∑

k∈Z

dn0k+jϕj(· − k).

Write V (ϕ0) = Span{ϕ0(· −
k
n0

) : k ∈ Z }. To prove the proposition, it suffices to prove that

{ϕ(· − k
n0

) : k ∈ Z } is a Riesz basis for V (ϕ0). For c ∈ ℓ0(Z), we have

‖
∑

k∈Z

ckϕ(· −
k

n0
)‖2 =

∫

(0, n0)

dξ|
∑

k∈Z

cke
−2πikξ

n0 |2
∑

k∈Z

|ϕ̂(ξ + n0k)|2,

∫

(0, n0)

dξ|
∑

k∈ZZ

cke
−2πikξ

n0 |2 = n0

∑

k∈ZZ

|ck|
2.

It follows that {ϕ(· − k
n0

) : k ∈ Z } is a Riesz basis for V (ϕ) = Span{ϕ(· − k
n0

) : k ∈ Z } if

and only if
∑

k∈ZZ
|ϕ̂(· + n0k)|2 is of positive bound from below and above. Observing that

C ≤ |τ(·)| ≤ D, we have V (ϕ) = V (ϕ0), and that
∑

k∈Z
|ϕ̂(· + n0k)|2 is of positive bound from

below and above if and only if
∑

k∈Z
|ϕ̂0(· + n0k)|2 is of positive bound from below and above.

However, by the definition of ϕ0,
∑

k∈Z
|ϕ̂0(· + n0k)|2 is positively bounded from below and

above. The proposition therefore follows. 2

Generally speaking, sampling in integer-shift invariant subspaces generated by more than

one function is not as easy as in invariant subspaces generated by one function. Proposition 1.1

shows that, under some hypotheses, an integer-shift invariant subspace generated by more than

one function can be transformed into an αZ-shift invariant subspace generated by one function

for some α > 0. It is why we are interested in sampling in αZ-shift invariant subspaces generated

by one function. The fundamentals of sampling in shift invariant subspaces can be found in [6, 8].



A note on shift-invariant spaces admitting a single generator 125

There are many references in this area [1–5]. We will investigate sampling theorems of the form

f(·) =
∑

n∈Z

f(tn)ϕ(· − αn)

for f ∈ V α
ϕ , where { ϕ(· − αn) : n ∈ Z } is a Riesz basis for V α

ϕ , α is a given positive number.

The case of tn = a + αn with a given 0 ≤ a < α is called regular sampling, and the case

of tn = a + αn + δn with { δn } being a sequence in (−α, α)) is called irregular sampling. In

Section 2, we will give some necessary lemmas. Section 3 will be devoted to regular and irregular

sampling theorems.

2. Some necessary lemmas

Now, we will show some supported lemmas.

Lemma 2.1 Given α > 0 and ϕ ∈ L2(R). Assume that ϕ is a continuous function satisfying

|ϕ(·)| ≤ C
(1+|·|)β on R for some C > 0 and some β > 1

2 . Then
∑

n∈Z
anϕ(· −αn) is continuous on

R for every a ∈ ℓ2(Z).

Proof Note that ϕ is continuous. It suffices to prove that
∑

n∈Z
|anϕ(·−αn)| converges uniformly

on an arbitrary set [−Mα, Mα] with M > 0. For n2 > n1 > 2M , t ∈ [−Mα, Mα],

|
∑

n1≤|n|≤n2

anϕ(t − αn)| ≤ (
∑

n1≤|n|≤n2

|an|
2)

1
2 (

∑

n1≤|n|≤n2

|ϕ(t − αn)|2)
1
2

≤ C(
∑

n1≤|n|≤n2

|an|
2)

1
2 (

∑

n1≤|n|≤n2

|
1

(1 + α
2 |n|)

2β
|)

1
2 −→ 0

as n1 −→ ∞. It follows that
∑

n∈Z
anϕ(· − αn) converges uniformly on [−Mα, Mα]. The proof

is completed. 2

Lemma 2.2 Let F be a measurable function on (0, α). Then {F (·)e2πin ·

α : n ∈ Z} is a Riesz

basis for L2(0, α) if and only if 0 < ‖F‖0 ≤ ‖F‖∞ < ∞.

Proof Necessity. Suppose {F (·)e2πin ·

α : n ∈ Z} is a Riesz basis for L2(0, α). Then, there exist

0 < A ≤ B < +∞ such that

A
∑

n∈Z

|cn|
2 ≤

∫

(0,α)

dx|
∑

n∈Z

cnF (x)e2πin x
α |2 ≤ B

∑

n∈Z

|cn|
2,

equivalently,

A

∫

(0,α)

dx|
∑

n∈Z

cnα− 1
2 e2πin x

α |2 ≤

∫

(0,α)

dx|F (x)|2|
∑

n∈Z

cne2πin x
α |2

≤ B

∫

(0,α)

dx|
∑

n∈Z

cnα− 1
2 e2πin x

α |2.

It follows that A
α
≤ |F (·)| ≤ B

α
a.e., on (0, α).

Sufficiency. Suppose that 0 < ‖F‖0 ≤ ‖F‖∞ < ∞. Define T (L2(0, α) → L2(0, α)) by

T (f) = α
1
2 F (·)f . Then T is a bounded invertible operator. Note that {α− 1

2 e2πin ·

α : n ∈ Z} is
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an orthonormal basis for L2(0, α) and Tα− 1
2 e2πin ·

α = F (·)e2πin ·

α . It follows that {F (·)e2πin ·

α }

is a Riesz basis for L2(0, α). 2

Lemma 2.3 Given α > 0 and ϕ ∈ L2(R). Assume that {ϕ(· − αn) : n ∈ Z} is a Riesz basis for

V α
ϕ , where V α

ϕ is defined as in (1.1). Define

T : L2(0, α) → V α
ϕ by Tf(·) =

∑

n∈Z

〈f(·), α− 1
2 e2πin ·

α 〉ϕ(· − αn).

Then T is a bounded and invertible operator.

Proof Define T1 : L2(0, α) → ℓ2(Z) by T1f = 〈f(·), α− 1
2 e2πin ·

α 〉n∈Z for f ∈ L2(0, α), and

T2 : ℓ2(Z) → V α
ϕ by T2c =

∑
n∈Z

cnϕ(· − αn). Then it is easy to check that both T1 and T2 are

bounded and invertible. Also observing T = T2T1 leads to this Lemma. 2

Lemma 2.4 Let F (·) =
∑

k∈Z
ake−2πik ·

α ∈ L2(0, α) satisfy that 0 ≤ ‖F (·)‖0 ≤ ‖F (·)‖∞ ≤

∞, and let {Fn}n∈Z be a sequence of functions in L2(0, α) with Fourier expansions Fn(·) =
∑

k∈Z
ak(n)e−2πik x

α . Define the infinite matrix D = {dn,k}n,k∈Z by dn,k := an−k(n) − an−k,

n, k ∈ Z. Assume that ‖D‖2 < α
1
2 ‖F (·)‖0. Then the sequence {Fn(·)e2πin ·

α }n∈Z is a Riesz basis

for L2(0, α).

Proof To this end we use the following proposition, which can be found in [5, p. 354]:

Let H be a Hilbert space, and let {fk}
∞
k=1 be a Riesz basis for H with Riesz bounds C1 and

C2. Assume that {gk}
∞
k=1 is a sequence in H, and that there exists a constant R < C1 such that

∞∑

k=1

|〈fk − gk, f〉|2 ≤ R‖f‖2

for f ∈ H. Then {gk}
∞
k=1 is a Riesz basis for H.

By Lemma 2.2, {F (·)e2πin ·

α }n∈Z is a Riesz basis for L2(0, α) with framebounds α‖F‖0 and

α‖F‖∞. For f(·) =
∑

j∈Z
cje

2πij ·

α in L2(0, α), it is easy to check that
∑

n∈Z

|〈Fn(·)e2πin ·

α − F (·)e2πin ·

α , f〉|2 = α2
∑

n∈Z

|
∑

k∈Z

(an−k(n) − an−k)ck|
2

= α2‖Dc‖2
ℓ2(Z) ≤ ‖D‖2

2α
2‖c‖2

ℓ2(Z) = ‖D‖2
2‖f‖

2.

Also observing that ‖D‖2 < α
1
2 ‖F (·)‖0 leads to the lemma. 2

3. Sampling theorems in V
α
ϕ

We are in a position to give the main results.

Theorem 3.1 Given α > 0, 0 ≤ a < α and ϕ ∈ L2(R). Assume that ϕ is a continuous

function satisfying |ϕ(·)| ≤ C
(1+|·|)β for some C > 0 and some β > 1

2 , where V α
ϕ is defined

as in (1.1). Assume further that {ϕ(· − αn) : n ∈ Z} is a Riesz basis for V α
ϕ . Define that

K̃a(·) = α− 1
2

∑
n∈Z

ϕ(a − αn)e2πin ·

α . Then the following conditions are equivalent:

(1) 0 < ‖K̃a‖0 ≤ ‖K̃a‖∞ < +∞;
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(2) There exists Sa ∈ V α
ϕ such that {Sa(· − αn) : n ∈ Z} is a Riesz basis for V α

ϕ and

f(·) = α−1
∑

n∈Z

f(a + αn)Sa(· − αn).

In this case, Sa = T ( 1

K̃a

), where T is defined in Lemma 2.3.

Proof We first prove that (1) implies (2). Define Sa = T ( 1

K̃a

). By Lemma 2.2, both { α−1

K̃a(·)
e2πin ·

α :

n ∈ Z} and {K̃a(·)e
2πin ·

α : n ∈ Z} are Riesz basis for L2(0, α), and it is obvious that they are

mutually dual. Also observing that T is bounded and invertible, we have

T−1f = α−1
∑

n∈Z

〈T−1f, K̃a(·)e2πin ·

α 〉
1

K̃a(·)
e2πin ·

α , f ∈ V α
ϕ . (3.1)

By the definition of T , Tg = 〈g(·), K̃t(·)〉 for g ∈ L2(0, α). It follows that

Tg(t + αn) = 〈g(·), K̃t(·)e
2πin ·

α 〉 = T (e−2πin ·

α g(·))(t). (3.2)

Put g = T−1f . Then 〈T−1f, K̃a(·)e2πin ·

α 〉 = f(a + αn) for n ∈ Z. So, it follows from (3.1) and

(3.2) that

f(·) = α−1
∑

n∈Z

f(a + αn)Sa(· − αn), f ∈ V α
ϕ .

Substituting g(·) = 1

K̃a(·)
into (3.2), we have Sa(t−αn) = T ( e

2πin ·

α

K̃a(·)
)(t) for n ∈ Z. Also observing

that { e
2πin ·

α

K̃a(·)
: n ∈ Z} is a Riesz basis for V α

ϕ by Lemma 2.3, we have {Sa(· − αn) : n ∈ Z} is a

Riesz basis for V α
ϕ .

Now we prove that (2) implies (1). Write h = T−1Sa. For F ∈ L2(0, α), we have TF (·) =

α−1
∑

n∈Z
TF (a + αn)Sa(· − αn). So by (3.2),

TF (·) = α−1
∑

n∈Z

〈F (·), K̃a(·)e2πin ·

α 〉T (h(·)e2πin ·

α ).

It follows that

F (·) = α−1
∑

n∈Z

〈F (·), K̃a(·)e2πin ·

α 〉h(·)e2πin ·

α , F ∈ L2(0, α). (3.3)

Since {Sa(·−αn) : n ∈ Z} is a Riesz basis for V α
ϕ , by (3.2) and Lemma 2.3, {h(·)e2πin ·

α : n ∈

Z} is a Riesz basis for L2(0, α). It together with (3.3) implies that {α−1K̃a(·)e2πin ·

α : n ∈ Z} is

also a Riesz basis dual to {h(·)e2πin ·

α : n ∈ Z} for L2(0, α). Then, by Lemma 2.2, 0 < ‖K̃a(·)‖0 ≤

‖K̃a(·)‖∞ < ∞. It is obvious that { 1

K̃a(·)
e2πin ·

α : n ∈ Z} is the dual of {α−1K̃a(·)e
2πin ·

α : n ∈ Z}.

We therefore have h(·) = 1

K̃a(·)
, and thus Sa = T ( 1

K̃a(·)
). The proof is completed. 2

Theorem 3.2 Given α > 0, 0 ≤ a < α and ϕ ∈ L2(R). Assume that ϕ is a continuous function

satisfying |ϕ(·)| ≤ C
(1+|·|)β for some c > 0 and some β > 1

2 , where V α
ϕ is defined as in (1.1), that

{ϕ(· − αn) : n ∈ Z} is a Riesz basis for V α
ϕ , and that ∆ = {δn}n∈Z is a sequence in (−α, α) such

that the infinite matrix D∆ = {dn,k}n∈Z whose entries are given by

dn,k := ϕ(a + α(n − k) + δn) − ϕ(a + α(n − k)), n, k ∈ Z,
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satisfies ‖D∆‖2 < α
1
2 ‖K̃a‖0. Then there exists a Riesz basis {Sn}n∈Z for V α

ϕ such that

f(·) =
∑

n∈Z

f(a + αn + δn)Sn(t)

for f ∈ V α
ϕ .

Proof Applying Theorem 3.1 to

K̃a(·) =
∑

k∈Z

ϕ(a + αk)α− 1
2 e−2πik ·

α

and

K̃a+δn
(x) =

∑

k∈Z

ϕ(a + αk + δn)α− 1
2 e−2πik ·

α , n ∈ Z,

we obtain that {K̃a+δn
(·)e−2πin ·

α }n∈Z = {K̃a+αn+δn
}n∈Z is a Riesz basis for L2(0, α). Denote

by {G̃n}n∈Z its dual Riesz basis. By Lemma 2.3, {Sn := T (G̃n)}n∈Z is a Riesz basis for V α
ϕ .

Now, given f ∈ V α
ϕ , we expand the function F = T−1(f) ∈ L2(0, α) with respect to {G̃n}n∈Z.

Thus,

F =
∑

n∈Z

〈F, K̃a+αn+δn
〉L2(0,α) =

∑

n∈Z

f(a + αn + δn)G̃n ∈ L2(0, α).

Applying the operator T , we get f =
∑

n∈Z
f(a + αn + δn)T (G̃n) in L2(R). 2
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