
Journal of Mathematical Research & Exposition

Jan., 2011, Vol. 31, No. 1, pp. 129–141

DOI:10.3770/j.issn:1000-341X.2011.01.015

Http://jmre.dlut.edu.cn

Trigonometric Widths and Best N-Term Approximations
of the Generalized Periodic Besov Classes B

Ω
p,θ

Li Qin DUAN1,∗, Gen Sun FANG2

1. Institute of Mathematics, Hangzhou Dianzi University, Zhejiang 310018, P. R. China;

2. School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and

Complex Systems, Ministry of Education, Beijing, 100875, P. R. China

Abstract In this paper, we determine the estimates exact in order for the trigonometric widths

and the best n-term trigonometric approximations of the generalized classes of periodic functions

BΩ
p,θ in the space Lq for some values of parameters p, q.

Keywords trigonometric width; best n-term approximation; generalized Besov classes.

Document code A

MR(2010) Subject Classification 41A46; 41A50; 42A10

Chinese Library Classification O174.41

1. Introduction

The aim of this paper is to study the two approximation characters by trigonometric poly-

nomials, i.e., trigonometric widths and best n-term trigonometric approximations. As other

approximation characters, the two approximation characters have been widely investigated and

some estimates exact in order of many classes of functions have been obtained. For best n-term

trigonometric approximation, the most general form was introduced by Stechkin [1] in the study

of the convergence of orthogonal series. The first estimates of the best trigonometric approxi-

mations for certain specific functions of one variable were obtained by Ismagilov [2]. For more

results, one can refer to the papers cited in this paper and the references therein.

It is well known that, for the Sobolev, the Hölder-Nikol’skii, and the Besov classes, the

behavior of the Kolmogorov widths in the sense of weak asymptotic order coincides with the

behavior of trigonometric widths in all cases where exact orders of these widths are established.

Recently, the corresponding different extensions of the Hölder-Nikol’skii, and the Besov classes

have been introduced by some researchers. In 1994, Pustovoitov [3] introduced the function class

HΩ
q (T d). He first used a standard function Ω(t), a prototype of which is Ω(t) = tr := tr1

1 · · · trd

d

as a majorant function for the mixed modulus of smoothness of order l of functions f ∈ Lq

instead of the standard function tr and obtained the estimates of best approximations of classes
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HΩ
q with some special Ω(t1, . . . , td). In 1997, Wang [4] introduced the Besov class BΩ

q,θ(T
d)

by means of Ω(t), i.e., an extension of the Besov class Sr

q,θ(T
d), which was introduced first by

Amanov [5] and gave the asymptotic estimates for Kolmogorov n-width of this class under the

condition Ω(t) = ω(t1, . . . , td). Similar to [3] and [4], Xu [6] introduced the generalized Besov

class BΩ
p,θ(T

d) which is an extension of the usual Besov space Bα
p,θ(T

d) with Ω(t) = tα and

obtained the estimates exact in order for the Kolmogorov, the Gel’fand and the linear widths

of the classes BΩ
p,θ(T

d) in the space Lq(T
d) for 1 ≤ p, q ≤ ∞. Stasyuk already studied the

trigonometric widths and the best n-term approximations of the classes BΩ
q,θ(T

d) given by Wang

[4] in the space Lq for some values of parameters p, q in [7–9], respectively. In this paper, we shall

investigate the behavior of trigonometric widths and best n-term trigonometric approximations

of the classes BΩ
p,θ(T

d) given by Xu [6].

Throughout this paper, we will use the following notations ≪ and ≍. For two sequences

{an}n∈N and {bn}n∈N of positive real numbers, we write an ≪ bn provided that an ≤ cbn for

some c > 0. If, furthermore, also bn ≪ an, then we write an ≍ bn.

This paper is organized as follows: In Section 2, we recall some notations and definitions

on trigonometric width and best n-term approximation. Our main results will be stated in this

section. In Section 3, we will give the proofs of the main results.

2. Preliminary and main results

In this section, we first recall some notations and definitions which will be used in the for-

mulation and proofs of the main results.

Let X be a normed linear space and A a subset of X , and Xn be an n-dimensional subspace

of X . The quantity

E(A, X) = sup
f∈A

e(f, Xn)

is called the deviation of A from Xn, where e(f, Xn) = infg∈Xn
‖f(·) − g(·)‖X . Thus E(A, Xn)

measures the extent to which the “worst element” of A can be approximated from Xn.

The n-width, in the sense of Kolmogorov, of A in X is given by

dn(A, X) = inf
Xn

sup
f∈A

inf
g∈Xn

‖f(·) − g(·)‖X ,

where the leftmost infimum is taken over all subspaces Xn ⊂ X of dimension ≤ n. A subspace

Xn of X of dimension at most n for which

dn(A, X) = E(A, Xn)

is called an optimal subspace for dn(A, X).

The trigonometric width of A in X is defined by

dT
n (A, X) = inf

Θn

sup
f∈A

inf
t(Θn,x)

‖f(·) − t(Θn, ·)‖X ,

where t(Θn,x) =
∑n

j=1 cje
i(kj ,x), Θn = {kj}n

j=1 is an arbitrary collection of vectors kj =

(kj
1, . . . , k

j
d) from the integer lattice Zd.
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The best n-term trigonometric approximation of A in X is given by

en(A, X) = sup
f∈A

inf
Θn

inf
P (Θn,x)

‖f(·) − P (Θn, ·)‖X ,

where P (Θn,x) are polynomials of the form P (Θn,x) =
∑n

j=1 cje
i(kj ,x), Θn = {kj}n

j=1 is a

system of vectors kj = (kj
1, . . . , k

j
d) from the integer lattice Zd, and cj are arbitrary coefficients.

From the above definitions, it is obvious that

dn(A, X) ≤ dT
n (A, X); en(A, X) ≤ dT

n (A, X). (1)

We now describe the classes BΩ
p,θ(T

d) introduced by Xu [6] that will be investigated in

this paper. Let Lp(T
d) (1 ≤ p ≤ ∞) denote the normed space of measurable functions on

T d = (−π, π]d, which is 2π-periodic with respect to each variable with the usual norm ‖ · ‖p.

Suppose that k ∈ N , and h ∈ Rd. For each f ∈ Lp(T
d),

∆k
h
f(x) =

k
∑

l=0

(−1)l+k

(

k

l

)

f(x + lh)

is the kth difference of the function f at the point x with step h. The order k modulus of

smoothness Ωk(f, t)p of f is defined by

Ωk(f, t)p := sup
|h|≤t

‖∆k
hf‖p.

Definition 1 Let Ω denote a non-negative function on R+ ={t : t ≥ 0}. We say that Ω(t) ∈ Φ∗
k

if it satisfies:

1) Ω(0) = 0; Ω(t) > 0 for any t > 0;

2) Ω(t) is continuous;

3) Ω(t) is almost increasing, i.e., for any two points t, τ with 0 ≤ t ≤ τ , we have Ω(t) ≤
CΩ(τ), where C ≥ 1 is a constant independent of t and τ ;

4) For any n ∈ Z+, Ω(nt) ≤ CnkΩ(t), where k ≥ 1 is a fixed positive integer, C > 0 is a

constant independent of n and t;

5) There exists α > 0 such that Ω(t)/tα is almost increasing;

6) There exists β, 0 < β < k, such that Ω(t)/tβ is almost decreasing, i.e., there exists C > 0

such that for any two points 0 < t ≤ τ there always holds Ω(t)/tβ ≥ CΩ(τ)/τβ .

Definition 2 Let k ∈ N , Ω(t) ∈ Φ∗
k, 1 ≤ θ ≤ ∞, and 1 ≤ p ≤ ∞. We say f ∈ BΩ

p,θ(T
d) if f

satisfies the following conditions:

1) f ∈ Lp(T
d);

2) ‖f‖bΩ
p,θ

(T d) < ∞, where

‖f‖bΩ
p,θ

(T d) =







{
∫ +∞

0 (
Ωk(f,t)p

Ω(t) )θ dt
t }1/θ, 1 ≤ θ < ∞,

sup
t>0

Ωk(f,t)p

Ω(t) , θ = ∞.

The space BΩ
p,θ(T

d) is a normed linear space with the norm

‖f‖BΩ
p,θ

(T d) := ‖f‖p + ‖f‖bΩ
p,θ

(T d).
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When Ω(t) = tα, BΩ
p,θ(T

d) is the usual Besov space Bα
p,θ(T

d). Let

SΩ
p,θ(T

d) := {f ∈ Lp(T
d) : ‖f‖BΩ

p,θ
(T d) ≤ 1}.

Now we are in a position to state our main results of this paper.

Theorem 1 Suppose that k ∈ N , Ω(t) ∈ Φ∗
k, 1 ≤ p, q, θ ≤ ∞, Ω(t)/tα is almost increasing and

α > d. Then

dT
n (SΩ

p,θ(T
d), Lq(T

d)) ≍











Ω(n−1/d), 1 ≤ q ≤ p ≤ ∞;

Ω(n−1/d)n1/p−1/2, 1 ≤ p < 2 ≤ q < p/(p − 1);

Ω(n−1/d)n1/p−1/q , 1 ≤ p ≤ q ≤ 2.

Theorem 2 Suppose that k ∈ N , Ω(t) ∈ Φ∗
k, 1 ≤ θ ≤ ∞, Ω(t)/tα is almost increasing and

α > d. Then

en(SΩ
p,θ(T

d), Lq(T
d)) ≍























Ω(n−1/d), 2 < q < p < ∞;

Ω(n−1/d), 2 < p ≤ q < ∞;

Ω(n−1/d)n1/p−1/2, 1 < p ≤ 2 < q < ∞;

Ω(n−1/d)n1/p−1/q , 1 < p ≤ q ≤ 2.

3. Proofs of main results

In this section, we will give the proofs of our main results. To this end, we need the following

notations and auxiliary lemmas.

Let

Vm(t) = 1 + 2

m
∑

k=1

cos kt + 2

2m
∑

k=m+1

((2m − k)/m) coskt

be the de la Vallée Poussin kernel. Then, the multi-dimensional de la Vallée Poussin kernel is

defined by

Vm(x) :=

d
∏

j=1

Vm(xj)

for m ∈ N . For functions f on T d, we consider the convolution operator Vmf := f ∗Vm defining

the de la Vallée Poussin sum of f . The differences of successive de la Vallée Poussin sums are

defined by

Φ0f := V1f, Φsf := V2sf − V2s−1f, s = 1, 2, . . . .

For a vector s = (s1, . . . , sd) with nonnegative integer coordinates, we associate the set ρ(s)

of vectors k with integer coordinates

ρ(s) = {k = (k1, . . . , kd) : [2sj−1] ≤ |kj | < 2sj , j = 1, . . . , d}.

Below, we present several statements, which will be used in the proofs of our main results.

Lemma 1 ([6]) If k ∈ N , Ω(t) ∈ Φ∗
k, 1 ≤ p, θ ≤ ∞, and f ∈ BΩ

p,θ(T
d), then f can be represented
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in the form of a series

f =

∞
∑

s=0

Φsf

converging to it in the sense of Lp(T
d), and

‖f‖BΩ
p,θ

(T d) ≍











{
∑

s∈Z+

(
‖Φsf‖p

Ω(2−s) )θ}1/θ, 1 ≤ θ < ∞,

sup
s∈Z+

‖Φsf‖p

Ω(2−s) , θ = ∞.

Lemma 2 ([6]) Suppose that k ∈ N , Ω(t) ∈ Φ∗
k, 1 ≤ p, q, θ ≤ ∞, Ω(t)/tα, is almost increasing,

and α > dmax(3 1
2 − 3

p , 1
2 + 3

q , 1
p − 1

q ). Then

dn(SΩ
p,θ(T

d), Lq(T
d)) ≍























Ω(n−1/d), 1 ≤ q ≤ p ≤ ∞;

Ω(n−1/d), 2 ≤ p ≤ q ≤ ∞;

Ω(n−1/d)n1/p−1/2, 1 ≤ p ≤ 2 ≤ q ≤ ∞;

Ω(n−1/d)n1/p−1/q, 1 ≤ p ≤ q ≤ 2.

Lemma 3 ([10]) Assume that 2 ≤ q < ∞. Then for each trigonometric polynomial

P (ΩM ;x) =

M
∑

j=1

ei(kj ,x)

and each N ≤ M there exists a trigonometric polynomial P (ΩN ;x) containing at most N terms

such that

‖P (ΩM ;x) − P (ΩN ;x)‖q ≪ MN−1/2;

in addition ΩN ⊂ ΩM and all the coefficients of P (ΩN ;x) are equal and have the estimate

MN−1.

Let t(ΩNs
;x) be the trigonometric polynomial approximating the “block” ts(x) =

∑

k∈ρ(s) ei(k,x)

in accordance with Lemma 3. Consider the linear operator Ts acting on f(x) by the formula

(Tsf)(x) = f(x) ∗ (
∑

k∈ρ(s)

ei(k,x) − t(ΩNs
;x)).

Lemma 4 ([11]) Assume that 1 < p < 2 < q < p/(p − 1). Then the norm of the operator Ts

from Lp into Lq (‖Ts‖p→q) has the following estimate:

‖Ts‖p→q = sup
‖f‖p≤1

‖Tsf‖q ≪ 2(s,1)N−(1/2+1/p′)
s

,

where p′ = p/(p − 1).

Lemma 5 ([12]) Let 2 < q < ∞. For any trigonometric polynomial P (ΘN , ·) that contains at

most N harmonics and for any M < N , there exists a trigonometric polynomial P (ΘM , ·) that

has at most M nonzero coefficients and is such that

‖P (ΘN , ·) − P (ΘM , ·)‖q ≤ C

√

N

M
‖P (ΘN , ·)‖2

and furthermore, ΘM ⊂ ΘN and C > 0.
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Lemma 6 ([13], The Hausdorff-Young theorem) Let 1 < p ≤ 2. Then for any f ∈ Lp,

(
∑

k

|f̂(k)|p′

)1/p′ ≤ ‖f‖p.

If a sequence {ck} is such that
∑

k
|ck|p < ∞, then there exists a function f ∈ Lp′ for which

f̂(k) = ck and

‖f‖p′ ≤ (
∑

k

|f̂(k)|p)1/p,

where f̂(k) are Fourier coefficients of f and 1/p + 1/p′ = 1.

With the help of the above auxiliary lemmas, we can establish our main results. First, let us

prove Theorem 1.

Proof of Theorem 1 We begin with the estimates of the lower bounds. From the relation (1)

and the corresponding estimates of the Kolmogorov widths dn(SΩ
p,θ(T

d), Lq(T
d)), i.e., Lemma 2,

we can obtain the required lower bounds.

Now we pass to the estimates of the upper bounds. We will prove the upper bounds respec-

tively.

Firstly, for the cases 1 ≤ q ≤ p ≤ ∞ and 1 ≤ p ≤ q ≤ 2, we can obtain the required upper

bounds following the proof of the linear widths given in [6].

Secondly, we prove the upper bounds for 1 ≤ p < 2 ≤ q < p/(p− 1).

Let f(x) be an arbitrary function in the class SΩ
p,θ(T

d). By Lemma 1, we can represent it in

the following form:

f(x) =
∞
∑

s=0

Φsf(x).

Let n be fixed. Taking into account the condition 2md ≍ n, we choose m ∈ N . Set β =

(α − d(1/p − 1/2))/(α − d(1/p − 1/q)). For each s satisfying m ≤ s < βm, we associate the

quantity

Ns = [Ω−1(2−m)Ω(2−s)2sd] + 1,

where [a] is the integer part of a. It is easy to see that the quantities Ns, m ≤ s < βm satisfy

the estimate
∑

m≤s<βm

Ns ≪ 2md ≪ n.

We consider the approximation of the function f(x) by the polynomial

t(x) =
∑

0≤s<m

Φsf(x) +
∑

m≤s<βm

(t(ΩNs
;x) + t(ΩNs+1 ;x)) ∗ Φsf(x)

where t(ΩNs
;x), t(ΩNs+1 ;x) are the trigonometric polynomials approximating the “blocks”

ts(x) =
∑

k∈ρ(s) ei(k,x) and ts+1(x) =
∑

k∈ρ(s+1) ei(k,x) in accordance with Lemma 3 and

ρ(s) = {k = (k1, . . . , kd) ∈ Zd : 2s−1 ≤ |kj | < 2s, j = 1, . . . , d}.
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We can verify that t(x) brings about the required estimate of the approximation for f(x). In

fact, we have

‖f(x) − t(x)‖q

≤ ‖
∑

m≤s<βm

(Φsf(x) − Φsf(x) ∗ (t(ΩNs
;x) + t(ΩNs+1 ;x)))‖q + ‖

∑

s≥βm

Φsf(x)‖q

:= J1 + J2.

In order to continue the upper estimates, we need to estimate J1 and J2 separately.

First, let us estimate J2. For 1 < θ < ∞, we get

J2 ≤
∑

s≥βm

‖Φsf(x)‖q ≪
∑

s≥βm

‖Φsf(x)‖p2
sd(1/p−1/q)

≪ Ω(2−m)

2−αm
(
∑

s≥βm

2(sd(1/p−1/q)−αs)θ′

)1/θ′

(
∑

s≥βm

(
‖Φsf(x)‖p

Ω(2−s)
)θ)1/θ

≪ Ω(2−m)

2−αm
2(d(1/p−1/q)−α)βm, (2)

which together with β = (α − d(1/p− 1/2))/(α − d(1/p − 1/q)) and 2md ≍ n implies

J2 ≪ Ω(2−m)2md(1/p−1/2) ≪ Ω(n−1/d)n1/p−1/2.

For θ = 1,∞, the estimate (2) is also true.

Next, we proceed to estimate J1. For this purpose, for each s ∈ N satisfying m ≤ s < βm

we consider the linear operator Ts acting on f(x) by the formula

(Tsf)(x) = f(x) ∗ (
∑

k∈ρ(s)∪ρ(s+1)

ei(k,x) − t(ΩNs
;x) − t(ΩNs+1 ;x)).

We will divide two cases p > 1 and p = 1 to estimate J1.

In the case p > 1 and 1 < θ < ∞, according to Lemma 4 and 2md ≍ n, we can obtain

J1 ≤
∑

m≤s<βm

‖Φsf(x) − Φsf(x) ∗ (t(ΩNs
;x) + t(ΩNs+1 ;x))‖q

=
∑

m≤s<βm

‖Φsf(x) ∗ (
∑

k∈ρ(s)∪ρ(s+1)

ei(k,x) − t(ΩNs
;x) − t(ΩNs+1;x))‖q

≪
∑

m≤s<βm

‖Ts‖p→q‖Φsf(x)‖p

≪
∑

m≤s<βm

2sdN−(1/2+1/p′)
s ‖Φsf(x)‖p

≪ Ω1/2+1/p′

(2−m)
∑

m≤s<βm

2sd(1/p−1/2)Ω1/p−1/2(2−s)
‖Φsf(x)‖p

Ω(2−s)

≪ Ω(2−m)2md(1/p−1/2) ≪ Ω(n−1/d)n1/p−1/2. (3)

For θ = 1,∞, the estimate (3) also holds.

In the case p = 1, let p0 be a quantity such that 1 < p0 < 2, which we specify below. Then
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for J1 we can write (see (3))

J1 ≤
∑

m≤s<βm

‖Φsf(x) ∗ (
∑

k∈ρ(s)∪ρ(s+1)

ei(k,x) − t(ΩNs
;x) − t(ΩNs+1;x))‖q

≪
∑

m≤s<βm

‖Ts‖p0→q‖Φsf(x)‖p0

≪
∑

m≤s<βm

2sdN
−(1/2+1/p′

0)
s ‖Φsf(x)‖p0

≪
∑

m≤s<βm

2sdN
−(1/2+1/p′

0)
s 2sd(1−1/p0)‖Φsf(x)‖1

≪ Ω(2−m)

2−αm(1/2−1/p′
0)

∑

m≤s<βm

2s[d/2−α(1/2−1/p′
0)]

‖Φsf(x)‖1

Ω(2−s)
.

We now choose p0 such that d/2 − α(1/2 − 1/p′0) < 0. Clearly, there exists such p0 ∈ (1, 2) by

the hypothesis of Theorem 1. Then we have

J1 ≪ Ω(2−m)2md/2 ≪ Ω(n−1/d)n1/2.

The required upper estimates are established. This completes the proof of Theorem 1. �

In the following, we give the proof of Theorem 2.

Proof of Theorem 2 We start with the estimates of the upper bounds. For 1 < p ≤ q ≤ 2,

according to the relation (1) and Theorem 1, we have

en(SΩ
p,θ(T

d), Lq(T
d)) ≪ Ω(n−1/d)n1/p−1/q.

For the remaining three cases, by the relation

en(SΩ
p,θ(T

d), Lq(T
d)) ≤ en(SΩ

2,θ(T
d), Lq(T

d)), p ≥ 2,

note that it suffices to prove the upper bounds for 1 < p ≤ 2 < q < ∞.

Let f(x) be an arbitrary function from the class SΩ
p,θ(T

d). We represent it in the following

form:

f(x) =
∑

s<m

Φsf(x) +
∑

m≤s<βm

Φsf(x) +
∑

s≥βm

Φsf(x), (4)

where β > 1 is a certain real number (we fix it below).

Let n ∈ N be fixed. We choose m such that 2md ≍ n. For each s ∈ N satisfying m ≤ s < βm

we associate the quantity

Ns = [Ω−1(2−m)Ω(2−s)2sd] + 1,

where [a] is the integer part of a and show that
∑

m≤s<βm

Ns ≪ 2md ≪ n.

We consider the approximation of the function f(x) by the polynomial

P (Θn,x) =
∑

s<m

Φsf(x) +
∑

m≤s<βm

P (ΘNs
,x), (5)
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in which, according to Lemma 5, for every Φsf(x), there exists a polynomial P (ΘNs
,x) such

that

‖Φsf(x) − P (ΘNs
,x)‖q ≪ (

2sd

Ns
)1/2‖Φsf(x)‖2.

Taking into account (4) and (5), we have

‖f(x) − P (Θn,x)‖q = ‖
∑

s≥m

Φsf(x) −
∑

m≤s<βm

P (ΘNs
,x)‖q

≤ ‖
∑

m≤s<βm

(Φsf(x) − P (ΘNs
,x))‖q + ‖

∑

s≥βm

Φsf(x)‖q

:= I1 + I2. (6)

Further, we estimate each term in (6) separately. For the second term, taking β = (α −
d(1/p − 1/2))/(α − d(1/p− 1/q)), just as the estimate of J2 in Theorem 1, we have

I2 ≪ Ω(2−m)2md(1/p−1/2) ≪ Ω(n−1/d)n1/p−1/2.

Now let us estimate I1. According to Lemma 5, the Nikolskii inequality of different metrics

for Φsf(x) and 2md ≍ n, we get

I1 ≤
∑

m≤s<βm

‖Φsf(x) − P (ΘNs
,x)‖q

≪ Ω(2−m)

2−αm/2

∑

m≤s<βm

2s[d(1/p−1/2)−α/2] ‖Φsf(x)‖p

Ω(2−s)

≪ Ω(2−m)2md(1/p−1/2) ≪ Ω(n−1/d)n1/p−1/2.

In the proof of the lower bounds, we use the following duality relation ([14, p. 42]):

en(f)q = inf
Θn

sup
P∈L⊥(Θn)
‖P‖

q′
≤1

∫

T d

f(x)P (x)dx, (7)

where L⊥(Θn) is the set of functions orthogonal to the subspace of trigonometric polynomials

with “indices” of harmonics from the set Θn = {kj}n
j=1 and 1/q + 1/q′ = 1. We will divide our

consideration into three cases.

Firstly, for 1 < p ≤ 2 < q < ∞, note that it suffices to establish the lower bounds in the case

q = 2. In this case, we need to construct a special function which belongs to the class SΩ
p,θ(T

d)

and a concrete function P (x) which satisfies the conditions of the right-side of relation (7). For

this purpose, we need the following notations.

For fixed n ∈ N , we can choose m ∈ N such that for the number of elements of the set

ρ(m) = {k = (k1, . . . , kd) ∈ Zd : 2m−1 ≤ |kj | < 2m, j = 1, . . . , d},

we have |ρ(m)| ≥ 2n and |ρ(m)| = 2md ≍ n. Consider the polynomial

Dm(x) =
∑

k∈ρ(m)

ei(k,x).

It is known that the convolution operator Vm (see [13, p. 92]) is bounded, i.e.,

‖Vm‖p→p ≤ 3d, 1 ≤ p ≤ ∞.
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From this, it is easy to find that the operators Φs, s ∈ Z+ are also bounded.

Taking into account the relation [15, p. 214]

‖
l
∑

k=n

cos kx‖p ≍ (l − n)1−1/p, ∀n, l ∈ N, l > n, p ∈ (1,∞),

and ‖Φs‖p→p ≪ 3d, we get

‖Dm‖BΩ
p,θ

(T d) ≍ {(‖Φm−1Dm‖p

Ω(2−(m−1))
)θ + (

‖ΦmDm‖p

Ω(2−m)
)θ}1/θ

≪ ‖Dm‖p

Ω(2−m)
≪ 2md(1−1/p)/Ω(2−m).

For θ = ∞, we also have

‖Dm‖BΩ
p,∞(T d) ≪ 2md(1−1/p)/Ω(2−m).

The above estimates imply that the function

f0(x) = CΩ(2−m)2md(1/p−1)Dm(x), C > 0, 1 ≤ θ ≤ ∞, (8)

belongs to the classes SΩ
p,θ(T

d).

Now we construct a function P (x) that satisfies the conditions of the right-side of relation

(7). Consider the polynomial

F (x) = Dm(x) −
∑

kj∈Θn

′
ei(kj ,x),

where the prime means that the summation is carried out only over kj ∈ Θn that are contained

in ρ(m). If 2 < q < ∞, then 1 < q′ < 2 and

‖F (·)‖q′ ≤ ‖F (·)‖2 ≤ ‖Dm(·)‖2 + ‖
∑

kj∈Θn

′
ei(kj ,·)‖2.

Further, let us estimate each term in the last inequality. By virtue of the Parsevale equality, we

have

‖
∑

kj∈Θn

′
ei(kj ,·)‖2 = (

∑

kj∈Θn

′
1)1/2 ≤

√
n

and

‖Dm(·)‖2 = |ρ(m)|1/2 ≍ 2md/2.

Hence we get

‖F (·)‖q′ ≪ 2md/2 +
√

n.

Let

P (x) = C1(2
md/2 +

√
n)−1F (x), C1 > 0, (9)

which satisfies the conditions ‖P (·)‖′q ≤ 1, P (·) ∈ L⊥(Θn).

Substituting (8) and (9) in (7), we obtain the following relation:

en(SΩ
p,θ(T

d), Lq(T
d)) ≥ en(SΩ

p,θ(T
d), L2(T

d))
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≫
∫

T d

Ω(2−m)2md(1/p−1)Dm(x)
Dm(x) −∑

kj∈Θn

′
ei(kj ,x)

2md/2 +
√

n
dx

=
Ω(2−m)2md(1/p−1)

2md/2 +
√

n
(

∫

T d

D2
m(x)dx +

∫

T d

Dm(x)
∑

kj∈Θn

′
ei(kj ,x)dx)

≫ Ω(2−m)2md(1/p−3/2)(‖Dm(·)‖2
2 − ‖

∑

kj∈Θn

′
ei(kj,·)‖2

2)

≫ Ω(2−m)2md(1/p−3/2)(2md − n)

≫ Ω(2−m)2md(1/p−1/2) ≫ Ω(n−1/d)n1/p−1/2.

We finish the proof of the lower bounds for 1 < p ≤ 2 < q < ∞.

Secondly, for 2 < q < p < ∞ and 2 < p ≤ q < ∞, we deal with the lower estimates using

the duality relation (7). The idea is similar to the above proof. In this case, we shall use the

following Rudin-Shaprio [16, p. 155] to construct the functions we need.

For every sj ∈ N , there exists a polynomial

Rsj
(xj) =

2sj−1
∑

kj=2sj−1

εkj
ei(kj ,xj), εkj

= ±1,

such that

‖Rsj
(xj)‖∞ ≪ 2sj/2. (10)

For given n ∈ N , we choose m such that, for the number of elements of the set Fm =
⋃

1≤s≤m ρ(s),

we have |Fm| ≥ 2n and |Fm| ≍ 2md ≍ n. Consider the function

g(x) =
∑

1≤s≤m

d
∏

j=1

Rs(xj).

For 1 ≤ θ < ∞, taking into account (10) and ‖Φs‖p→p ≪ 3d, we get

‖g‖BΩ
p,θ

(T d) ≍ {
∑

1≤s≤m

(
‖Φsg‖p

Ω(2−s)
)θ}1/θ

= {
∑

1≤s≤m

(Ω−1(2−s)‖Φs(

d
∏

j=1

Rs(xj) +

d
∏

j=1

Rs+1(xj))‖p)
θ}1/θ

≪ Ω−1(2−m){
∑

1≤s≤m

(‖
d
∏

j=1

Rs(xj)‖p + ‖
d
∏

j=1

Rs+1(xj)‖p)
θ}1/θ

≪ Ω−1(2−m){
∑

1≤s≤m

2sdθ/2}1/θ

≪ Ω−1(2−m)2md/2.

For θ = ∞, we have

‖g‖BΩ
p,∞(T d) ≍ sup

1≤s≤m

‖Φsg‖p

Ω(2−s)
= sup

1≤s≤m
Ω−1(2−s)‖Φs(

d
∏

j=1

Rs(xj) +
d
∏

j=1

Rs+1(xj))‖p
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≪ Ω−1(2−m) sup
1≤s≤m

‖
d
∏

j=1

Rs(xj)‖p

≪ Ω−1(2−m)2md/2.

Thus the function

f1(x) = C2Ω(2−m)2−md/2g(x), C2 > 0, 1 ≤ θ ≤ ∞, (11)

belongs to the classes SΩ
p,θ(T

d).

We now construct a function P (x). We set

F (x) = g(x) −
∑

1≤s≤m

′
d
∏

j=1

Rs(xj),

where the prime means that the sum contains only the harmonics of the function g(x) with

“indices” from Θn.

Taking into account that 1 < q′ < 2, we get

‖F (·)‖q′ ≤ ‖F (·)‖2 ≤ ‖g(·)‖2 + ‖
∑

1≤s≤m

′
d
∏

j=1

Rs(xj)‖2 ≪ 2md/2 +
√

n.

Then

P (x) = C3F (x)/(2md/2 +
√

n), C3 > 0, (12)

satisfies the conditions of the right-side of relation (7).

Substituting (11) and (12) into (7), we obtain

en(SΩ
p,θ(T

d), Lq(T
d)) ≥ Ω(2−m)2−md/2

2md/2 +
√

n
(

∫

T d

g2(x)dx −
∫

T d

g(x)
∑

1≤s≤m

′
d
∏

j=1

Rs(xj)dx)

≫ Ω(2−m)2−md·

(‖g(·)‖2
2 −

∫

T d

∑

1≤s≤m

kj∈Θn

d
∏

j=1

Rs(xj)
∑

1≤s≤m

kj∈Θn

d
∏

j=1

Rs(xj)dx −
∫

T d

(
∑

1≤s≤m

′
d
∏

j=1

Rs(xj))
2dx)

≫ Ω(2−m)2−md(2md − n) ≫ Ω(n−1/d).

Thirdly, for 1 < p ≤ q ≤ 2, we will give the lower estimates by the definition of best n-

term trigonometric approximation. By virtue of the function f0 = CΩ(2−m)2md(1/p−1)Dm(x) ∈
SΩ

p,θ(T
d) given above where Dm(x) =

∑

k∈ρ(m) ei(k,x) with |ρ(m)| ≥ 2n, |ρ(m)| ≍ 2md ≍ n and

Lemma 6, we can obtain

en(SΩ
p,θ(T

d), Lq(T
d)) ≥ en(f0, Lq(T

d)) = inf
Θn

inf
P (Θn,x)

‖f0(·) − P (Θn, ·)‖q

≥ inf
Θn

inf
P (Θn,x)

(
∑

k

|f̂0(k) − P̂ (Θn, k)|q′

)1/q′

≫ Ω(2−m)2md(1/p−1)2md/q′

≫ Ω(n−1/d)n1/p−1/q,
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where P̂ (Θn, k) denote Fourier coefficients of P (Θn, x).

The proof of Theorem 2 is completed. 2
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