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Abstract The aim of this paper is to apply a perturbation approach to deal with Fenchel-

Lagrange duality based on weak efficiency to a constrained vector optimization problem. Un-

der the stability criterion, some relationships between the solutions of primal problem and the

Fenchel-Lagrange duality are discussed. Moreover, under the same condition, two saddle-points

theorems are proved.
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1. Introduction

Conjugate duality provides a unified framework to duality in optimization and was fully

developed in scalar optimization by Rockafellar [4, 5]. Conjugate duality was extended to vector

optimization in finite dimensional spaces by Tanino and Sawaragi [6], and in infinite dimensional

spaces by Postolica [12], and in partially ordered topological vector space based on weak efficiency

by Tanino [10]. Moreover, in [10] Tanino obtained the weak and strong duality (i.e., stability

criterion) assertions in vector optimization.

By considering some special perturbation functions, Wanka and Boţ [11] (see also Boţ et al.

[2]) proposed three conjugate dual problems for a primal scalar optimization problem, namely

the Lagrange, Fenchel and Fenchel-Lagrange dual problems. The relations between the optimal

objective functions of these dual problems have been completely investigated. Inspired by the

scalar case, Altangerel et al. [1] constructed three conjugate duality problems to a constrained

vector optimization problem and obtained set-valued gap functions for the vector variational

inequality by using the conjugate duality based on efficiency introduced in [3, 6]. However, so

far, few authors intensively studied saddle-points theorem by using the conjugate duality based

on weak efficiency introduced in [10].
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Motivated by the work reported in [1, 6–8, 10, 11], we define the Fenchel-Lagrange duality

for a constrained vector optimization problem based on weak efficiency. Furthermore, under the

stability criterion, we focus on discussing the relationships between the primal problem and the

dual problem, and some saddle-points theorems.

The paper is organized as follows. In Section 2, we recall some notions and their proper-

ties. In Section 3, Fenchel-Lagrange dual problem based on weak efficiency for a constrained

vector optimization problem is introduced. Moreover, under stability criterion, we discuss some

relationships of the primal-dual problem. In Section 4, under stability criterion, we prove two

saddle-points theorems.

2. Mathematical preliminaries

Let Y be a real topological vector space which is partially ordered by a pointed closed convex

cone C with intC 6= ∅. For any y1, y2 ∈ Y , we use the following ordering relations:

y1 > y2 ⇐⇒ y1 − y2 ∈ intC, y1 6> y2 ⇐⇒ y1 − y2 6∈ intC.

We add two imaginary points +∞ and −∞ to Y and denote the extended space by Ȳ . These

two points are defined as the points which satisfy the following: For any y ∈ Y ,

−∞ < y < +∞, (±∞) + y = y + (±∞) = ±∞ and (±∞) + (±∞) = ±∞.

Assume that −(±∞) = ∓∞. The sum +∞−∞ is not considered since it can be avoided.

Given a set Z ⊂ Ȳ , we define the set A(Z) of all points above Z, and the set B(Z) of all

points below Z by

A(Z) = {y ∈ Ȳ | y > y′ for some y′ ∈ Z}

and

B(Z) = {y ∈ Ȳ | y < y′ for some y′ ∈ Z},

respectively. Clearly, A(Z) ⊂ Y ∪ {+∞}, B(Z) ⊂ Y ∪ {−∞} and B(Z) = −A(−Z).

Definition 2.1 ([10]) (i) A point ŷ ∈ Ȳ is said to be a maximal point of Z ⊂ Ȳ if ŷ ∈ Z and

ŷ 6∈ B(Z), that is, if ŷ ∈ Z and there is no y′ ∈ Z such that ŷ < y′. The set of all maximal

points of Z is called the maximum of Z and is denoted by MaxZ. The minimum of Z, MinZ, is

defined analogously.

(ii) A point ŷ ∈ Ȳ is said to be a supremal point of Z ⊂ Ȳ if ŷ 6∈ B(Z) and B({ŷ}) ⊂ B(Z),

that is, if there is no y ∈ Z such that ŷ < y and if the relation y′ < ŷ implies the existence of

some y ∈ Z such that y′ < y. The set of all supremal points of Z is called the supremum of Z

and is denoted by SupZ. The infimum of Z, InfZ, is defined analogously.

Proposition 2.1 ([10]) (i) For Z ⊂ Ȳ , A(Z) = A(InfZ) and B(Z) = B(SupZ).

(ii) Let Z1 ⊂ Ȳ and Z2 ⊂ Ȳ . Then

Sup
⋃

x∈X

[Z1 + Z2] = Sup
⋃

x∈X

[Z1 + SupZ2],
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where the sum +∞−∞ is assumed not to occur.

From Corollary 4.3 in [10], we have the following proposition.

Proposition 2.2 If W is a set-valued map from X to Ȳ , then

Sup
⋃

x∈X

W (x) = Sup
⋃

x∈X

SupW (x).

Let X be another real topological vector space and let L(X, Y ) be the space of all linear contin-

uous operators from X to Y . For x ∈ X and T ∈ L(X, Y ), Tx represents an element in Y .

Definition 2.2 ([10]) Let f be a vector-valued map from X to Ȳ .

(i) A set-valued mapping f∗ : L(X, Y ) → 2Ȳ defined by

f∗(T ) = Sup
⋃

x∈X

[Tx − f(x)], for T ∈ L(X, Y )

is called the conjugate mapping of f .

(ii) A set-valued mapping f∗∗ : X → 2Ȳ defined by

f∗∗(x) = Sup
⋃

T∈L(X,Y )

[Tx − f∗(T )], for x ∈ X

is called the biconjugate mapping of f .

Definition 2.3 Let W : X → Ȳ be a set-valued mapping. Let x̂ ∈ X and ŷ ∈ W (x̂). An

operator T ∈ L(X, Y ) is called a subgradient of W at (x̂; ŷ) if

T x̂ − ŷ ∈ Max
⋃

x∈X

[Tx − W (x)].

The set of all subgradients of W at (x̂; ŷ) is called the subdifferential of W at (x̂; ŷ) and is denoted

by ∂W (x̂; ŷ). If ∂W (x̂; ŷ) 6= ∅ for every ŷ ∈ W (x̂), then W is said to be subdifferentiable at x̂.

According to [7], we have the following definition especially to the vector-valued mapping

f : X → Ȳ .

Definition 2.4 A vector-valued mapping f : X → Y ∪ {+∞} is said to be C-convex, if for any

λ ∈ [0, 1] and x1, x2 ∈ X ,

λf(x1) ∩ Y + (1 − λ)f(x2) ∩ Y ∈ f(λx1 + (1 − λ)x2) + C.

3. A Fenchel-Lagrange dual problem

Let X be a real topological vector space, Y and Z be two real partially ordered topological

vector spaces, C ⊂ Y and D ⊂ Z be two pointed closed convex cones with nonempty interiors.

Let f : X → Y ∪ {+∞} and g : X → Z be two vector-valued mappings with domf := {x ∈

X | f(x) < +∞} 6= ∅. Let E ⊂ X be a nonempty set and E ⊂ domf . Consider the following

constrained vector optimization problem:

(P) min
x∈S

f(x), where S := {x ∈ E | g(x) ∈ −D}.



160 P. ZHAO and S. J. LI

In the following, we suppose always that the feasible set S 6= ∅. Solving this problem means to

find the set Inf(P ) = Inf{f(x) | x ∈ S} or the set Min(P ) = Min{f(x) | x ∈ S}.

In order to introduce the Fenchel-Lagrange dual form of (P ). So we introduce the perturba-

tion function as follows: ΦFL : X × X × Z → Y ∪ {+∞} be a vector-valued mapping defined

by

ΦFL(x, p, q) =

{

f(x + p), if x ∈ E, g(x) ∈ −(D + q),

+∞, otherwise,

with the perturbation parameters p ∈ X and q ∈ Z. Obviously, ΦFL(x, 0, 0) = f(x), for all

x ∈ E, g(x) ∈ −D. Now we consider the conjugate mapping of ΦFL:

Φ∗
FL(T, Γ, Λ) = Sup{Tx + Γp + Λq − ΦFL(x, p, q) | x ∈ X, p ∈ X, q ∈ Z}

= Sup{Tx + Γp + Λq − f(x + p) | x ∈ E, g(x) ∈ −(D + q), p ∈ X, q ∈ Z},

for T ∈ L(X, Y ), Γ ∈ L(X, Y ) and Λ ∈ L(Z, Y ). Let r = x + p ∈ X and s = g(x) + q ∈ −D.

Then, by Proposition 2.1(ii), we obtain that

−Φ∗
FL(0, Γ, Λ) = −Sup{Γ(r − x) + Λ(s − g(x)) − f(r) | x ∈ E, r ∈ X, s ∈ −D}

= Inf{f(r) − Γr + Γx + Λg(x) − Λs | x ∈ E, r ∈ X, s ∈ −D}

= Inf{{f(r) − Γr | r ∈ X} + {Γx + Λg(x) | x ∈ E} + {Λs | s ∈ D}}

= Inf{Inf{f(r) − Γr | r ∈ X} + {Γx + Λg(x) | x ∈ E} + {Λs | s ∈ D}}

= Inf{−f∗(Γ) + {Γx + Λg(x) | x ∈ E} + {Λs | s ∈ D}}.

We define the Fenchel-Lagrange dual problem to (P) as

(DFL) max
Γ∈L(X,Y )
Λ∈L(Z,Y )

Inf{−f∗(Γ) + {Γx + Λg(x) | x ∈ E} + {Λs | s ∈ D}}.

The dual problem (DFL) can be understood as a problem to obtain the set

Sup(DFL) = Sup
⋃

Γ∈L(X,Y )
Λ∈L(Z,Y )

[−Φ∗
FL(0, Γ, Λ)]

= Sup
⋃

Γ∈L(X,Y )
Λ∈L(Z,Y )

Inf{−f∗(Γ) + {Γx + Λg(x) | x ∈ E} + {Λs | s ∈ D}}.

From [10, Proposition 5.1], [10, Theorem 5.1] and [7, Theorem 3.1], one can state the weak

and strong duality assertions as follows.

Propostion 3.1 (Weak duality for (DFL)) For any x ∈ S, Γ ∈ L(X, Y ) and Λ ∈ L(Z, Y ),

f(x) 6∈ B(−Φ∗
FL(0, Γ, Λ)).

Theorem 3.1 (Strong duality for (DFL)) If the primal problem (P) is stable with respect to

ΦFL (i.e., the value mapping WFL(p, q) := Inf{ΦFL(x, p, q) | x ∈ X} is subdifferentiable at

(0X , 0Z)), then Min(P ) = Inf(P ) = Sup(DFL) = Max(DFL).

Every x̂ ∈ S satisfying the relationship f(x̂) ∈ Min(P ) is called a solution of the problem (P ).

Every (Γ̂, Λ̂) ∈ L(X, Y ) × L(Z, Y ) satisfying the relationship −Φ∗
FL(0, Γ̂, Λ̂) ∩ Max(DFL) 6= ∅ is
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called a solution of the problem (DFL).

In the following, we shall discuss the relationships between the solutions of (P) and (DFL).

Theorem 3.2 Suppose that the problem (P) is stable with respect to ΦFL. If x̂ is a solution of

(P), then there exists Γ̂ ∈ L(X, Y ) and Λ̂ ∈ L(Z, Y ) such that (Γ̂, Λ̂) is a solution of (DFL) with

f(x̂) ∈ −Φ∗
FL(0, Γ̂, Λ̂).

Proof Since (P) is stable with respect to ΦFL and x̂ is a solution of (P), by Theorem 3.1, we

have

f(x̂) ∈ Min(P ) ⊂ Max(DFL)

= Max
⋃

Γ∈L(X,Y )
Λ∈L(Z,Y )

[−Φ∗
FL(0, Γ, Λ)] ⊂

⋃

Γ∈L(X,Y )
Λ∈L(Z,Y )

[−Φ∗
FL(0, Γ, Λ)],

and there exist Γ̂ ∈ L(X, Y ) and Λ̂ ∈ L(Z, Y ) such that f(x̂) ∈ −Φ∗
FL(0, Γ̂, Λ̂).

Next, we shall prove (Γ̂, Λ̂) is a solution of (DFL). Assume that (Γ̂, Λ̂) is not a solution of

(DFL). Since f(x̂) ∈ −Φ∗
FL(0, Γ̂, Λ̂), f(x̂) 6∈ Max

⋃

Γ∈L(X,Y )
Λ∈L(Z,Y )

[−Φ∗
FL(0, Γ, Λ)]. Hence, there exist

Γ1 ∈ L(X, Y ), Λ1 ∈ L(Z, Y ) and y1 ∈ −Φ∗
FL(0, Γ1, Λ1) such that f(x̂) < y1. This shows that

f(x̂) ∈ B(−Φ∗
FL(0, Γ1, Λ1)), which contradicts Proposition 3.1. 2

Theorem 3.3 If (x̂, Γ̂, Λ̂) ∈ S × L(X, Y ) × L(Z, Y ) satisfies f(x̂) ∈ −Φ∗
FL(0, Γ̂, Λ̂), then x̂ is a

solution of (P ) and (Γ̂, Λ̂) is a solution of (DFL).

Proof Assume that x̂ is not a solution of (P ), then f(x̂) 6∈ Min(P ) = Min{f(x) | x ∈ S}.

Hence, there exists x1 ∈ S such that f(x1) < f(x̂). It follows from f(x̂) ∈ −Φ∗
FL(0, Γ̂, Λ̂) that

f(x1) ∈ B(−Φ∗
FL(0, Γ̂, Λ̂)), which contradicts Proposition 3.1.

Assume that (Γ̂, Λ̂) is not a solution of (DFL). Since f(x̂) ∈ −Φ∗
FL(0, Γ̂, Λ̂), we have

f(x̂) 6∈ Max(DFL) = Max
⋃

Γ∈L(X,Y ),Λ∈L(Z,Y )

[−Φ∗
FL(0, Γ, Λ)].

Hence, there exist Γ1 ∈ L(X, Y ), Λ1 ∈ L(Z, Y ) and y1 ∈ −Φ∗
FL(0, Γ1, Λ1) such that f(x̂) < y1.

This shows that f(x̂) ∈ B(−Φ∗
FL(0, Γ1, Λ1)), which contradicts Proposition 3.1 again. 2

Remark Under the condition of f(x̂) ∈ −Φ∗
FL(0, Γ̂, Λ̂), it is clear that x̂ is a solution of (P)

and (Γ̂, Λ̂) is a solution of (DFL). Thus, we only need to find (x̂, Γ̂, Λ̂) ∈ S ×L(X, Y )× L(Z, Y )

satisfying f(x̂) ∈ −Φ∗
FL(0, Γ̂, Λ̂) in order to obtain solutions of (P) and (DFL).

4. Saddle-point theorems

In this section, we define the Lagrangian maps and their saddle points for the problem (P)

and investigate their properties.

Definition 4.1 The set-valued map L : E × L(X, Y ) × L(Z, Y ) → 2Y ∪{+∞}, defined by

L(x, Γ, Λ) = Inf{−f∗(Γ) + Γx + Λg(x) + {Λs | s ∈ D}}
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is called the Lagrangian map of the problem (P) relative to the perturbation function ΦFL.

From Proposition 2.1(ii), obviously, we have the following result.

Proposition 4.1 For each Γ ∈ L(X, Y ) and Λ ∈ L(Z, Y ),

Inf
⋃

x∈E

L(x, Γ, Λ) = −Φ∗
FL(0, Γ, Λ).

Definition 4.2 A point (x̂, Γ̂, Λ̂) ∈ S ×L(X, Y )×L(Z, Y ) is called a saddle point of L(x, Γ, Λ)

if

L(x̂, Γ̂, Λ̂) ∩ [Sup
⋃

Γ∈L(X,Y )
Λ∈L(Z,Y )

L(x̂, Γ, Λ)] ∩ [Inf
⋃

x∈E

L(x, Γ̂, Λ̂)] 6= ∅.

Theorem 4.1 If (x̂, Γ̂, Λ̂) ∈ S×L(X, Y )×L(Z, Y ) satisfies f(x̂) ∈ −Φ∗
FL(0, Γ̂, Λ̂), then (x̂, Γ̂, Λ̂)

is a saddle point of L(x, Γ, Λ).

Proof By Propositions 4.1, we have

f(x̂) ∈ −Φ∗
FL(0, Γ̂, Λ̂) = Inf

⋃

x∈E

L(x, Γ̂, Λ̂). (1)

We first prove that f(x̂) ∈ L(x̂, Γ̂, Λ̂). It follows from (1), Proposition 2.2 and Proposition

2.1(ii) that

f(x̂) ∈ Inf
⋃

x∈E

Inf{−f∗(Γ̂) + Γ̂x + Λ̂g(x) + {Λ̂s | s ∈ D}}

= Inf
⋃

x∈E

{−f∗(Γ̂) + Γ̂x + Λ̂g(x) + {Λ̂s | s ∈ D}}

= Inf{{f(x) − Γ̂x | x ∈ X} + {Γ̂x + Λ̂g(x) | x ∈ E} + {Λ̂s | s ∈ D}}.

Thus, we have

f(x̂) 6∈ A({f(x) − Γ̂x | x ∈ X} + {Γ̂x + Λ̂g(x) | x ∈ E} + {Λ̂s | s ∈ D}). (2)

Note that −g(x̂) ∈ D and

f(x̂) = f(x̂) − Γ̂x̂ + Γ̂x̂ + Λ̂g(x̂) + Λ̂(−g(x̂)).

Suppose

f(x̂) 6∈ Min{{f(x) − Γ̂x | x ∈ X} + Γ̂x̂ + Λ̂g(x̂) + {Λ̂s | s ∈ D}}.

Then there exists y1 ∈ {f(x) − Γ̂x | x ∈ X} + Γ̂x̂ + Λ̂g(x̂) + {Λ̂s | s ∈ D} such that y1 < f(x̂),

which contradicts (2). Consequently, we obtain that

f(x̂) ∈ Min{{f(x) − Γ̂x | x ∈ X} + Γ̂x̂ + Λ̂g(x̂) + {Λ̂s | s ∈ D}}

⊂ Inf{{f(x) − Γ̂x | x ∈ X} + Γ̂x̂ + Λ̂g(x̂) + {Λ̂s | s ∈ D}}

= Inf{Inf{f(x) − Γ̂x | x ∈ X} + Γ̂x̂ + Λ̂g(x̂) + {Λ̂s | s ∈ D}}

= Inf{−f∗(Γ̂) + Γ̂x̂ + Λ̂g(x̂) + {Λ̂s | s ∈ D}}

= L(x̂, Γ̂, Λ̂).
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Next, we prove that

f(x̂) ∈ Sup
⋃

Γ∈L(X,Y )
Λ∈L(Z,Y )

L(x̂, Γ, Λ).

Suppose it is false. Then

f(x̂) 6∈ Max
⋃

Γ∈L(X,Y )
Λ∈L(Z,Y )

L(x̂, Γ, Λ)

= Max
⋃

Γ∈L(X,Y )
Λ∈L(Z,Y )

Inf{−f∗(Γ) + Γx̂ + Λg(x̂) + {Λs | s ∈ D}}

= Max
⋃

Γ∈L(X,Y )
Λ∈L(Z,Y )

[Γx̂ + Λg(x̂) + Inf{−f∗(Γ) + {Λs | s ∈ D}}].

Since f(x̂) ∈ L(x̂, Γ̂, Λ̂) ⊂
⋃

Γ∈L(X,Y )
Λ∈L(Z,Y )

L(x̂, Γ, Λ), there exist Γ̄ ∈ L(X, Y ), Λ̄ ∈ L(Z, Y ) and

ȳ ∈ Inf{−f∗(Γ̄) + {Λ̄s | s ∈ D}} such that f(x̂) < Γ̄x̂ + Λ̄g(x̂) + ȳ, i.e.,

ȳ > f(x̂) − Γ̄x̂ + Λ̄(−g(x̂)).

Note that

f(x̂) − Γ̄x̂ + Λ̄(−g(x̂)) ∈ {f(x) − Γ̄x | x ∈ X} + {Λ̄s | s ∈ D}.

Therefore,

ȳ ∈ A({f(x) − Γ̄x | x ∈ X} + {Λ̄s | s ∈ D}). (3)

On the other hand, it follows from Proposition 2.1(ii) that

ȳ ∈ Inf{−f∗(Γ̄) + {Λ̄s | s ∈ D}}

= Inf{{f(x) − Γ̄x | x ∈ X} + {Λ̄s | s ∈ D}}.

Whence,

ȳ 6∈ A({f(x) − Γ̄x | x ∈ X} + {Λ̄s | s ∈ D}),

which contradicts (3). Hence, (x̂, Γ̂, Λ̂) is a saddle point of L(x, Γ, Λ). 2

From Theorem 4.1, we get readily the following result.

Theorem 4.2 Assume the problem (P) is stable with respect to ΦFL. If x̂ ∈ S is a solution

of (P ), then there exists (Γ̂, Λ̂) ∈ L(X, Y ) × L(Z, Y ) such that (x̂, Γ̂, Λ̂) is a saddle point of

L(x, Γ, Λ).

Proof Since (P) is stable with respect to ΦFL and x̂ ∈ S is a solution of (P), then by Theorem

3.1,

f(x̂) ∈ Min(P ) ⊂ Max(DFL) = Max
⋃

Γ∈L(X,Y )
Λ∈L(Z,Y )

[−Φ∗
FL(0, Γ, Λ)] ⊂

⋃

Γ∈L(X,Y )
Λ∈L(Z,Y )

[−Φ∗
FL(0, Γ, Λ)].

Hence, there exist Γ̂ ∈ L(X, Y ) and Λ̂ ∈ L(Z, Y ) such that

f(x̂) ∈ −Φ∗
FL(0, Γ̂, Λ̂).



164 P. ZHAO and S. J. LI

By Theorem 4.1, we get that (x̂, Γ̂, Λ̂) is a saddle point of L(X, Γ, Λ). 2

Remark 4.1 From Theorems 4.2, 4.1 and 3.2, we know that if x̂ ∈ S is a solution of (P) and

(Γ̂, Λ̂) ∈ L(X, Y )×L(Z, Y ) is a solution of (DFL) with f(x̂) ∈ −Φ∗
FL(0, Γ̂, Λ̂), then (x̂, Γ̂, Λ̂) is a

saddle point of L(x, Γ, Λ). However, the converse may not hold.
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