On the Reduced Minimum Modulus of Projections and the Angle between Two Subspaces

Xiu Hong SUN¹, Yuan LI^{2,*}

1. School of Science, Xi'an University of Science and Technology, Shaanxi, 710054, P. R. China;

2. College of Mathematics and Information Science, Shaanxi Normal University,

Shaanxi 710062, P. R. China

Abstract Let \mathcal{M} and \mathcal{N} be nonzero subspaces of a Hilbert space \mathcal{H} , and $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ denote the orthogonal projections on \mathcal{M} and \mathcal{N} , respectively. In this note, an exact representation of the angle and the minimum gap of \mathcal{M} and \mathcal{N} is obtained. In addition, we study relations between the angle, the minimum gap of two subspaces \mathcal{M} and \mathcal{N} , and the reduced minimum modulus of $(I - P_{\mathcal{N}})P_{\mathcal{M}}$.

Keywords subspace; angle between two subspaces; reduced minimum modulus.

Document code A MR(2010) Subject Classification 46C05; 46C07 Chinese Library Classification 0177.2

1. Introduction

Throughout this note, a subspace is a closed linear manifold of a separable Hilbert space \mathcal{H} with inner product and norm denoted by $\langle x, y \rangle$ and $||x|| = \sqrt{\langle x, x \rangle}$, respectively. If \mathcal{M} is a subspace of \mathcal{H} , the orthogonal complement of \mathcal{M} is denoted by \mathcal{M}^{\perp} and the orthogonal projection on \mathcal{M} is denoted by $P_{\mathcal{M}}$. In recent years, the variety of quantities involving two subspaces have been studied by a number of researchers in the wide literatures [2–11]. In this note, using the technique of block-operators, some results about minimum gap and the angle between two closed subspaces of a Hilbert space are improved which are obtained by Deng in [3] and other results concerning two subspaces of a Hilbert space are obtained. The angle [6, 7, 9] between \mathcal{M} and \mathcal{N} is an angle in $[0, \frac{\pi}{2}]$ whose cosine is defined by

$$c(\mathcal{M},\mathcal{N}) = \sup\{|\langle x \rangle y| : x \in \mathcal{M} \cap (\mathcal{M} \cap \mathcal{N})^{\perp}, y \in \mathcal{N} \cap (\mathcal{M} \cap \mathcal{N})^{\perp} \text{ and } \|x\| = \|y\| = 1\}.$$
(1)

By this formula $c(\mathcal{M}, \mathcal{N})$ is defined only when \mathcal{M} is not a subspace of \mathcal{N} and \mathcal{N} is not a subspace of \mathcal{M} . If $\mathcal{M} \subseteq \mathcal{N}$ or $\mathcal{N} \subseteq \mathcal{M}$, we let $c(\mathcal{M}, \mathcal{N}) = 0$. The minimal angle [7] between \mathcal{M} and \mathcal{N} is an angle in $[0, \frac{\pi}{2}]$ whose cosine is defined by

$$c_0(\mathcal{M}, \mathcal{N}) = \sup\{|\langle x \rangle y| : x \in \mathcal{M}, y \in \mathcal{N} \text{ and } \|x\| = \|y\| = 1\}.$$
(2)

Received December 20, 2008; Accepted June 30, 2009

* Corresponding author

Supported by the National Natural Science Foundation of China (Grant No. 10871224) and the Fundamental Research Funds for the Central Universities (Grant No. GK 200902049).

E-mail address: liyuan0401@yahoo.com.cn (Y. LI)

Recall that the minimum gap $\gamma(\mathcal{M}, \mathcal{N})$ between two closed subspaces \mathcal{M} and \mathcal{N} of a Hilbert space has been defined [3,9] by

$$\gamma(\mathcal{M}, \mathcal{N}) = \inf_{x \in \mathcal{M}, x \notin \mathcal{N}} \frac{\operatorname{dist}(x, \mathcal{N})}{\operatorname{dist}(x, \mathcal{M} \cap \mathcal{N})}.$$
(3)

By this formula $\gamma(\mathcal{M}, \mathcal{N})$ is defined only when \mathcal{M} is not a subspace of \mathcal{N} . If $\mathcal{M} \subseteq \mathcal{N}$, we set $\gamma(\mathcal{M}, \mathcal{N}) = 1$. Obviously, $\gamma(\mathcal{M}, \mathcal{N}) = 1$, if $\mathcal{N} \subseteq \mathcal{M}$.

Before proving the main results in this paper, let us introduce some notations and terminology which are used in the later. The set of all bounded linear operators on \mathcal{H} is denoted by $\mathcal{B}(\mathcal{H})$. For an operator $A \in \mathcal{B}(\mathcal{H})$, the adjoint, the range, the null-space and the spectrum of A are denoted by A^* , $\mathcal{R}(A)$, $\mathcal{N}(A)$ and $\sigma(A)$, respectively. An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be self-adjoint if $A = A^*$. An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be positive if $(Ax, x) \geq 0$ for $x \in \mathcal{H}$. If A is a positive operator, the unique square root of A is denoted by $A^{\frac{1}{2}}$. An operator A is said to be a contraction (strict contraction) if $|| A || \leq 1$ (|| A || < 1). The reduced minimum modulus $\gamma(A)$ of $A \in \mathcal{B}(\mathcal{H})$ (see [1,9]) is defined by

$$\gamma(A) = \begin{cases} \inf\{\|Ax\| : \operatorname{dist}(x, \mathcal{N}(A)) = 1\}, & A \neq 0; \\ 0, & A = 0. \end{cases}$$

It is well known that for $A \neq 0$, $\mathcal{R}(A)$ is closed if and only if $\gamma(A) > 0$.

2. Main results

Lemma 1 ([4,8]) Let \mathcal{M} and \mathcal{N} be two closed subspaces of \mathcal{H} . If $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ denote the orthogonal projections on \mathcal{M} and \mathcal{N} , respectively, then $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ have the operator matrices

$$P_{\mathcal{M}} = I_1 \oplus I_2 \oplus 0I_3 \oplus 0I_4 \oplus I_5 \oplus 0I_6 \tag{4}$$

and

$$P_{\mathcal{N}} = I_1 \oplus 0I_2 \oplus I_3 \oplus 0I_4 \oplus \begin{pmatrix} Q & Q^{\frac{1}{2}}(I_5 - Q)^{\frac{1}{2}}D \\ D^*Q^{\frac{1}{2}}(I_5 - Q)^{\frac{1}{2}} & D^*(I_5 - Q)D \end{pmatrix}$$
(5)

with respect to the space decomposition $\mathcal{H} = \bigoplus_{i=1}^{6} \mathcal{H}_{i}$, respectively, where $\mathcal{H}_{1} = \mathcal{M} \cap \mathcal{N}$, $\mathcal{H}_{2} = \mathcal{M} \cap \mathcal{N}^{\perp}$, $\mathcal{H}_{3} = \mathcal{M}^{\perp} \cap \mathcal{N}$, $\mathcal{H}_{4} = \mathcal{M}^{\perp} \cap \mathcal{N}^{\perp}$, $\mathcal{H}_{5} = \mathcal{M} \ominus (\mathcal{H}_{1} \oplus \mathcal{H}_{2})$ and $\mathcal{H}_{6} = \mathcal{H} \ominus (\bigoplus_{j=1}^{5} \mathcal{H}_{j})$, Q is a positive contraction on \mathcal{H}_{5} , 0 and 1 are not eigenvalues of Q, and D is a unitary from \mathcal{H}_{6} onto \mathcal{H}_{5} . I_{i} is the identity on \mathcal{H}_{i} , i = 1, ..., 5.

For convenience, in the sequel, we always assume that $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ have the operator matrices (4) and (5), also the zero operator on \mathcal{H}_i is denoted by $0I_i$, $i = 1, \ldots, 6$.

First, we give some necessary and sufficient conditions for $\mathcal{H}_5 = \mathcal{H}_6 = \{0\}$.

Lemma 2 Let \mathcal{M} and \mathcal{N} be two closed subspaces of \mathcal{H} . The following statements are equivalent:

- (a) $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ commute: $P_{\mathcal{M}}P_{\mathcal{N}} = P_{\mathcal{N}}P_{\mathcal{M}}$;
- (b) $P_{\mathcal{M}}P_{\mathcal{N}} = P_{\mathcal{N}\cap\mathcal{M}};$
- (c) $P_{\mathcal{M}}P_{\mathcal{N}}$ is an orthogonal projections;
- (d) $P_{\mathcal{M}}P_{\mathcal{N}}$ is an idempotent;

- (e) $P_{\mathcal{M}}P_{\mathcal{N}}P_{\mathcal{M}} = P_{\mathcal{N}}P_{\mathcal{M}}P_{\mathcal{N}};$
- (f) $\mathcal{H} = \mathcal{M} \cap \mathcal{N} \oplus \mathcal{M} \cap \mathcal{N}^{\perp} \oplus \mathcal{M}^{\perp} \cap \mathcal{N} \oplus \mathcal{N}^{\perp} \cap \mathcal{M}^{\perp};$
- $(g) \ \mathcal{M} = \mathcal{M} \cap \mathcal{N} \oplus \mathcal{M} \cap \mathcal{N}^{\perp}.$

Proof Since $||P_{\mathcal{M}}P_{\mathcal{N}}|| \leq 1$, it is clear that (c) \iff (d).

(c) \Longrightarrow (f). By Lemma 1, $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ have the operator matrices (4) and (5). It is easy to calculate that

$$P_{\mathcal{M}}P_{\mathcal{N}} = I_1 \oplus 0I_2 \oplus 0I_3 \oplus 0I_4 \oplus \left(\begin{array}{cc} Q & Q^{\frac{1}{2}}(I_5 - Q)^{\frac{1}{2}}D \\ 0 & 0 \end{array}\right)$$

and

$$(P_{\mathcal{M}}P_{\mathcal{N}})^2 = I_1 \oplus 0I_2 \oplus 0I_3 \oplus 0I_4 \oplus \left(\begin{array}{cc} Q^2 & Q^{\frac{3}{2}}(I_5 - Q)^{\frac{1}{2}}D\\ 0 & 0 \end{array}\right)$$

Therefore, if $\mathcal{H}_5 \neq \{0\}$, then $Q^2 = Q$, so $\sigma(Q) = \{0, 1\}$, hence 0 and 1 are eigenvalues of Q. It is a contradiction to Lemma 1, so $\mathcal{H}_5 = \{0\}$, then $\mathcal{H}_6 = \{0\}$. Thus $\mathcal{H} = \mathcal{M} \cap \mathcal{N} \oplus \mathcal{M} \cap \mathcal{N}^{\perp} \oplus \mathcal{M}^{\perp} \cap \mathcal{N} \oplus \mathcal{N}^{\perp} \cap \mathcal{M}^{\perp}$.

(e) \Longrightarrow (f). By a similar calculation as above, we have $P_{\mathcal{M}}P_{\mathcal{N}}P_{\mathcal{M}} = P_{\mathcal{N}}P_{\mathcal{M}}P_{\mathcal{N}}$ which implies $\mathcal{H}_5 = \mathcal{H}_6 = \{0\}.$

It is obvious that $(f) \Longrightarrow (g) \Longrightarrow (a) \iff (b) \iff (c)$. \Box

The following lemma was obtained in [1].

Lemma 3 ([1]) Let $T \in B(\mathcal{H})$. Then

$$\gamma(T) = \gamma(T^*) = (\inf\{\sigma(TT^*) \setminus \{0\}\})^{\frac{1}{2}} = (\inf\{\sigma(T^*T) \setminus \{0\}\})^{\frac{1}{2}}.$$

From above lemmas, we give the specific representation of $\gamma(P_{\mathcal{M}}P_{\mathcal{N}})$.

Theorem 4 Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H} . Then

$$\gamma(P_{\mathcal{M}}P_{\mathcal{N}}) = \begin{cases} 1, & \text{if } P_{\mathcal{M}}P_{\mathcal{N}} \text{ is a nonzero orthogonal projection;} \\ 0, & \text{if } P_{\mathcal{M}}P_{\mathcal{N}} = 0; \\ (1 - \|I_5 - Q\|)^{\frac{1}{2}}, & \text{if } P_{\mathcal{M}}P_{\mathcal{N}} \text{ is not an orthogonal projection }. \end{cases}$$

Proof If $P_{\mathcal{M}}P_{\mathcal{N}}$ is not an orthogonal projection, then $\mathcal{H}_5 \neq \{0\}$ and $\mathcal{H}_6 \neq \{0\}$. It follows from Lemma 1 that

$$P_{\mathcal{M}}P_{\mathcal{N}}(P_{\mathcal{M}}P_{\mathcal{N}})^* = I_1 \oplus 0I_2 \oplus I_3 \oplus 0I_4 \oplus \begin{pmatrix} Q & 0 \\ 0 & 0 \end{pmatrix}.$$

Since 0 is not an eigenvalue of Q, 0 is not an isolated point of $\sigma(Q)$. Hence by Lemma 2, $\gamma(P_{\mathcal{M}}P_{\mathcal{N}}) = (\inf\{\sigma(Q) \setminus \{0\}\})^{\frac{1}{2}} = (\inf\{\sigma(Q)\})^{\frac{1}{2}}$. Thus

$$\gamma(P_{\mathcal{M}}P_{\mathcal{N}}) = \inf\{\lambda \in \mathbb{C} : \lambda \in \sigma(Q)\}^{\frac{1}{2}}$$
$$= (1 - \sup\{\lambda \in \mathbb{C} : \lambda \in \sigma(I_5 - Q)\})^{\frac{1}{2}} = (1 - \|I_5 - Q\|)^{\frac{1}{2}}. \square$$

It is well-known that

$$\sup\{\sigma(T)\} = \lim_{n \to \infty} \|(T^n)\|^{\frac{1}{n}},$$

and if T is invertible, then

$$\lim_{k \to \infty} \gamma(T^k)^{\frac{1}{k}} = \inf\{\sigma(T)\}.$$

Similarly, we have following conclusion for $T = P_{\mathcal{M}} P_{\mathcal{N}}$.

Theorem 5 Let $T \neq 0$ be product of two orthogonal projections. Then

$$\lim_{k \to \infty} \gamma(T^k)^{\frac{1}{k}} = \inf\{\sigma(T) \setminus \{0\}\}\$$

Proof If T is an orthogonal projection, then $\lim_{k\to\infty} \gamma(T^k)^{\frac{1}{k}} = 1$, the conclusion is clear.

If T is not an orthogonal projection, then let $T = P_{\mathcal{M}}P_{\mathcal{N}}$, where $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ have the operator matrices (4) and (5). By Lemma 1, $\mathcal{H}_5 \neq \{0\}$ and $\mathcal{H}_6 \neq \{0\}$. It is easy to calculate that

$$(P_{\mathcal{M}}P_{\mathcal{N}})^{k} = I_{1} \oplus 0I_{2} \oplus I_{3} \oplus 0I_{4} \oplus \begin{pmatrix} Q^{k} & Q^{\frac{2k-1}{2}}(I_{5}-Q)^{\frac{1}{2}}D \\ 0 & 0 \end{pmatrix}$$

and

$$(P_{\mathcal{M}}P_{\mathcal{N}})^{k}((P_{\mathcal{M}}P_{\mathcal{N}})^{*})^{k} = I_{1} \oplus 0I_{2} \oplus I_{3} \oplus 0I_{4} \oplus \left(\begin{array}{cc} Q^{2k-1} & 0\\ 0 & 0 \end{array}\right).$$

Thus

$$\gamma((P_{\mathcal{M}}P_{\mathcal{N}})^{k}) = \inf\{\sigma(Q^{2k-1}) \setminus \{0\}\}^{\frac{1}{2}}$$
$$= (\inf\{\sigma(Q)^{2k-1} \setminus \{0\}\})^{\frac{1}{2}} (\text{ by Spectra Mapping Theorem})$$
$$= (\inf\{\sigma(Q)^{2k-1}\})^{\frac{1}{2}} (\text{ since } 0 \text{ is not an eigenvalues of } Q^{2k-1})$$
$$= (\inf\{\sigma(Q)\})^{\frac{2k-1}{2}}.$$

Hence $\lim_{k\to\infty} \gamma(T^k)^{\frac{1}{k}} = \inf\{\sigma(Q)\}$. It is easy to see that

$$\sigma(Q) \subseteq \sigma(T) = \sigma(P_{\mathcal{M}}P_{\mathcal{N}}) \subseteq \{1,0\} \cup \sigma(Q),$$

so $\inf\{\sigma(T) \setminus \{0\}\} = \inf\{\sigma(Q) \setminus \{0\}\} = \inf\{\sigma(Q)\}$. Therefore,

$$\lim_{k \to \infty} \gamma(T^k)^{\frac{1}{k}} = \inf\{\sigma(T) \setminus \{0\}\}. \quad \Box$$

In Lemma 2.10 of [7], the following results were obtained. To make this work complete, we include a proof.

Lemma 6 Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H} . Then

$$c_0(\mathcal{M}, \mathcal{N}) = \|P_{\mathcal{M}} P_{\mathcal{N}}\| = \|P_{\mathcal{M}} P_{\mathcal{N}} P_{\mathcal{M}}\|^{\frac{1}{2}},$$

and

$$c(\mathcal{M}, \mathcal{N}) = \| P_{\mathcal{M}} P_{\mathcal{N}} P_{(\mathcal{M} \cap \mathcal{N})^{\perp}} \|.$$

Proof

$$c_{0}(\mathcal{M}, \mathcal{N}) = \sup\{|\langle x \rangle y| : x \in \mathcal{M}, y \in \mathcal{N} \text{ and } ||x|| = ||y|| = 1\}$$
$$= \sup\{|\langle P_{\mathcal{M}}x, P_{\mathcal{N}}y \rangle| : x, y \in \mathcal{H} \text{ and } ||x|| = ||y|| = 1\}$$
$$= \sup\{|\langle x, P_{\mathcal{M}}P_{\mathcal{N}}y \rangle| : x, y \in \mathcal{H} \text{ and } ||x|| = ||y|| = 1\}$$

$$= \|P_{\mathcal{M}}P_{\mathcal{N}}\|.$$

$$c(\mathcal{M}, \mathcal{N}) = c_0(\mathcal{M} \cap (\mathcal{M} \cap \mathcal{N})^{\perp}, \mathcal{N} \cap (\mathcal{M} \cap \mathcal{N})^{\perp})$$

$$= \|P_{\mathcal{M} \cap (\mathcal{M} \cap \mathcal{N})^{\perp}}P_{\mathcal{N} \cap (\mathcal{M} \cap \mathcal{N})^{\perp}}\|$$

$$= \|P_{\mathcal{M}}P_{(\mathcal{M} \cap \mathcal{N})^{\perp}}P_{\mathcal{N}}P_{(\mathcal{M} \cap \mathcal{N})^{\perp}}\|$$

$$= \|P_{\mathcal{M}}P_{\mathcal{N}}P_{(\mathcal{M} \cap \mathcal{N})^{\perp}}\|. \Box$$

The following is an extension of Theorem 4 in [3].

Corollary 7 Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H} . Then

$$c(\mathcal{M}, \mathcal{N}) = \begin{cases} 0, & \text{if } P_{\mathcal{M}} P_{\mathcal{N}} \text{ is an orthogonal projection;} \\ \|Q\|^{\frac{1}{2}}, & \text{if } P_{\mathcal{M}} P_{\mathcal{N}} \text{ is not an orthogonal projection,} \end{cases}$$

and

$$c_0(\mathcal{M}, \mathcal{N}) = \begin{cases} 1, & \text{if } \mathcal{M} \cap \mathcal{N} \neq \{0\} \text{ or } P_{\mathcal{M}} P_{\mathcal{N}} \text{ is a nonzero orthogonal projection;} \\ 0, & \text{if } P_{\mathcal{M}} P_{\mathcal{N}} = 0; \\ \|Q\|^{\frac{1}{2}}, & \text{otherwise }. \end{cases}$$

Proof From Lemmas 6 and 2, it is easy to see that if $P_{\mathcal{M}}P_{\mathcal{N}}$ is an orthogonal projection, then $c(\mathcal{M}, \mathcal{N}) = 0$. If $P_{\mathcal{M}}P_{\mathcal{N}}$ is not an orthogonal projection, then $\mathcal{H}_5 \neq 0$ and $\mathcal{H}_6 \neq 0$. Note that $P_{(\mathcal{M} \cap \mathcal{N})^{\perp}} = 0I_1 \oplus I_2 \oplus I_3 \oplus I_4 \oplus I_5 \oplus I_6$, so

$$c(\mathcal{M},\mathcal{N}) = \|P_{\mathcal{M}}P_{\mathcal{N}}P_{(\mathcal{M}\cap\mathcal{N})^{\perp}}\| = \|P_{\mathcal{M}}P_{\mathcal{N}}P_{(\mathcal{M}\cap\mathcal{N})^{\perp}}P_{\mathcal{N}}P_{\mathcal{M}}\|^{\frac{1}{2}} = \|Q\|^{\frac{1}{2}}$$

From the relation of $c(\mathcal{M}, \mathcal{N})$ and $c_0(\mathcal{M}, \mathcal{N})$, the expression of $c_0(\mathcal{M}, \mathcal{N})$ is clear. \Box The following theorem is one of our main results.

Theorem 8 Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H} . Then

- (a) If $\mathcal{M} \subseteq \mathcal{N}$, then $\gamma(P_{\mathcal{N}^{\perp}}P_{\mathcal{M}}) = c(\mathcal{M}, \mathcal{N}) = 0$.
- (b) If $\mathcal{M} \not\subseteq \mathcal{N}$, then $\gamma^2(P_{\mathcal{N}^{\perp}}P_{\mathcal{M}}) + c^2(\mathcal{M}, \mathcal{N}) = 1$.

Proof (a) is clear.

(b) Case 1. If $P_{\mathcal{M}}P_{\mathcal{N}}$ is an orthogonal projection, then $P_{\mathcal{N}^{\perp}}P_{\mathcal{M}}$ is a nonzero orthogonal projection, so $\gamma(P_{\mathcal{N}^{\perp}}P_{\mathcal{M}}) = 1$ and $c(\mathcal{M}, \mathcal{N}) = 0$, by Lemma 7.

Case 2. If $P_{\mathcal{M}}P_{\mathcal{N}}$ is not an orthogonal projection, it follows from Lemma 2 that $\mathcal{H}_5 \neq \{0\}$, then $\mathcal{H}_6 \neq \{0\}$. By Lemma 1, it is easy to calculate that

$$P_{\mathcal{N}^{\perp}}P_{\mathcal{M}} = 0I_1 \oplus I_2 \oplus 0I_3 \oplus 0I_4 \oplus \left(\begin{array}{cc} 1-Q & 0\\ D^*(I_5-Q)^{\frac{1}{2}}Q^{\frac{1}{2}} & 0 \end{array}\right)$$

and

$$P_{\mathcal{N}^{\perp}}P_{\mathcal{M}}(P_{\mathcal{N}^{\perp}}P_{\mathcal{M}})^* = 0I_1 \oplus I_2 \oplus 0I_3 \oplus 0I_4 \oplus \begin{pmatrix} 1-Q & 0\\ 0 & 0 \end{pmatrix}$$

Thus by Lemma 3,

$$\gamma(P_{\mathcal{N}^{\perp}}P_{\mathcal{M}}) = \inf\{\sigma(1-Q) \setminus \{0\}\}^{\frac{1}{2}} = (1 - \sup\{\lambda \in \mathbb{C} : \lambda \in \sigma(Q)\})^{\frac{1}{2}}$$

$$= (1 - ||Q||)^{\frac{1}{2}}.$$

It follows from Corollary 7 that $\gamma^2(P_{\mathcal{N}^{\perp}}P_{\mathcal{M}}) + c^2(\mathcal{M}, \mathcal{N}) = 1.$

Consequently, we obtain some results of [2] and [7].

Corollary 9 ([7, Theorems 2.15, 2.16]) Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H} . Then

- (a) $c(\mathcal{M}, \mathcal{N}) = c(\mathcal{M}^{\perp}, \mathcal{N}^{\perp});$
- (b) If $\mathcal{M} \cap \mathcal{N} = \{0\}$ and $\mathcal{M} + \mathcal{N} = \mathcal{H}$, then $c_0(\mathcal{M}, \mathcal{N}) = c_0(\mathcal{M}^{\perp}, \mathcal{N}^{\perp})$.

Proof (a) Case 1. If $\mathcal{M} \subseteq \mathcal{N}$, then $\mathcal{N}^{\perp} \subseteq \mathcal{M}^{\perp}$, so by Lemma 7, $c(\mathcal{M}, \mathcal{N}) = c(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}) = 0$. Case 2. If $\mathcal{M} \not\subseteq \mathcal{N}$, then $\mathcal{N}^{\perp} \not\subseteq \mathcal{M}^{\perp}$, by Theorem 8,

$$\gamma^2(P_{\mathcal{N}^{\perp}}P_{\mathcal{M}}) + c^2(\mathcal{M}, \mathcal{N}) = 1 \text{ and } \gamma^2(P_{\mathcal{M}}P_{\mathcal{N}^{\perp}}) + c^2(\mathcal{N}^{\perp}, \mathcal{M}^{\perp}) = 1.$$

By Lemma 3, $\gamma(P_{\mathcal{N}^{\perp}}P_{\mathcal{M}}) = \gamma(P_{\mathcal{M}}P_{\mathcal{N}^{\perp}})$, so $c(\mathcal{M}, \mathcal{N}) = c(\mathcal{N}^{\perp}, \mathcal{M}^{\perp}) = c(\mathcal{M}^{\perp}, \mathcal{N}^{\perp})$.

(b) Since $\mathcal{M} \cap \mathcal{N} = \{0\}$, it is obvious that $c_0(\mathcal{M}, \mathcal{N}) = c(\mathcal{M}, \mathcal{N})$. It follows from $\mathcal{M} + \mathcal{N} = \mathcal{H}$ that $\mathcal{M}^{\perp} \cap \mathcal{N}^{\perp} = \{0\}$, so $c_0(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}) = c(\mathcal{M}^{\perp}, \mathcal{N}^{\perp})$. According to (a), $c_0(\mathcal{M}, \mathcal{N}) = c_0(\mathcal{M}^{\perp}, \mathcal{N}^{\perp})$. \Box

Corollary 10 ([7, Theorem 2.13]) Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H} . Then the following statements are equivalent:

- (a) $c(\mathcal{M}, \mathcal{N}) < 1;$
- (b) $\mathcal{M} + \mathcal{N}$ is closed;
- (c) $\mathcal{M}^{\perp} + \mathcal{N}^{\perp}$ is closed.

Proof If $\mathcal{M} \subseteq \mathcal{N}$, then the conclusion is clear. In the following proof, we assume $\mathcal{M} \not\subseteq \mathcal{N}$. It is easy to see that $\mathcal{M} + \mathcal{N} = \mathcal{N} + P_{\mathcal{N}^{\perp}}(\mathcal{M})$, where $P_{\mathcal{N}^{\perp}}(\mathcal{M}) := \{P_{\mathcal{N}^{\perp}}y : y \in \mathcal{M}\}$. Hence $\mathcal{M} + \mathcal{N}$ is closed if and only if $\mathcal{R}(P_{\mathcal{N}^{\perp}}(\mathcal{M}))$ is closed. It is well-known that $\mathcal{R}(P_{\mathcal{N}^{\perp}}(\mathcal{M}))$ is closed if and only if $\gamma(P_{\mathcal{N}^{\perp}}P_{\mathcal{M}}) > 0$. Therefore, it follows from Theorem 8 that (a) \iff (b). From Corollary 9, $c(\mathcal{M}, \mathcal{N}) < 1 \iff c(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}) < 1 \iff \mathcal{M}^{\perp} + \mathcal{N}^{\perp}$ is closed. \Box

The following result is fundamental in [7]. A technical proof has been given in [7]. Here, we give a simple proof.

Corollary 11 ([7, Lemma 2.14]) Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H} . If $c_0(\mathcal{M}, \mathcal{N}) < 1$, then for any closed subspace X of \mathcal{H} which contains $\mathcal{M} + \mathcal{N}$, we have

$$c_0(\mathcal{M}, \mathcal{N}) \le c_0(\mathcal{M}^{\perp} \cap X, \mathcal{N}^{\perp} \cap X).$$

Proof For convenience, we divide proof into three steps.

Step 1. If $\mathcal{M}^{\perp} \cap \mathcal{N}^{\perp} \cap X \neq \{0\}$, then $c_0(\mathcal{M}^{\perp} \cap X, \mathcal{N}^{\perp} \cap X) = 1$, so $c_0(\mathcal{M}, \mathcal{N}) \leq c_0(\mathcal{M}^{\perp} \cap X, \mathcal{N}^{\perp} \cap X)$.

Step 2. Let $X = \mathcal{H}$. Since $c_0(\mathcal{M}, \mathcal{N}) < 1$, we have $\mathcal{M} \cap \mathcal{N} = \{0\}$ and $\mathcal{M} + \mathcal{N}$ is closed. If $\mathcal{M}^{\perp} \cap \mathcal{N}^{\perp} \neq \{0\}$, then $c_0(\mathcal{M}^{\perp} \cap X, \mathcal{N}^{\perp} \cap X) = c_0(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}) = 1$, so $c_0(\mathcal{M}, \mathcal{N}) \leq c_0(\mathcal{M}^{\perp} \cap X, \mathcal{N}^{\perp} \cap X)$.

If $\mathcal{M}^{\perp} \cap \mathcal{N}^{\perp} = \{0\}$, then $\mathcal{M} + \mathcal{N} = \mathcal{H}$, since $\mathcal{M} + \mathcal{N}$ is closed. It follows from Corollary 9 that $c_0(\mathcal{M}, \mathcal{N}) = c_0(\mathcal{M}^{\perp} \cap X, \mathcal{N}^{\perp} \cap X)$.

Step 3. If $\mathcal{M}^{\perp} \cap \mathcal{N}^{\perp} \cap X = \{0\}$, then $(\mathcal{M} + \mathcal{N})^{\perp} \cap X = \{0\}$. Therefore, $X = \mathcal{M} + \mathcal{N}$, since $X \supseteq \mathcal{M} + \mathcal{N}$ and $\mathcal{M} + \mathcal{N}$ is closed. It is easy to see that $c_0(\mathcal{M}, \mathcal{N}) = c_0(\mathcal{M} \cap X, \mathcal{N} \cap X)$, then we may replace \mathcal{H} by X. It follows from Step 2 that $c_0(\mathcal{M}, \mathcal{N}) \leq c_0(\mathcal{M}^{\perp} \cap X, \mathcal{N}^{\perp} \cap X)$. \Box

The following result has been proved in [2, 7]. As an application of Theorem 8, we give an alternative proof.

Corollary 12 ([2,7]) If A and B are bounded operators on \mathcal{H} with closed ranges, then the following statements are equivalent:

- (a) AB has closed range;
- (b) $c(\mathcal{R}(B), \mathcal{N}(A)) < 1;$
- (c) $\mathcal{R}(B) + \mathcal{N}(A)$ is closed.

Proof If AB = 0, then the conclusion is clear. In the following proof, assume that $AB \neq 0$. Since $\mathcal{R}(A)$ is closed, we have

$$A = \begin{pmatrix} A_1 & 0 \\ 0 & 0 \end{pmatrix} : \mathcal{N}(A)^{\perp} \oplus \mathcal{N}(A) \to \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp},$$

where A_1 is invertible from $\mathcal{N}(A)^{\perp}$ onto $\mathcal{R}(A)$. It is easy to see that

$$\mathcal{R}(AB) = \mathcal{R}(A_1 P_{\mathcal{N}(A)^{\perp}} P_{\mathcal{R}(B)}).$$

Since A_1 is invertible, $\mathcal{R}(AB)$ is closed $\iff \mathcal{R}(P_{\mathcal{N}(A)^{\perp}}P_{\mathcal{R}(B)})$ is closed $\iff \gamma(P_{\mathcal{N}(A)^{\perp}}P_{\mathcal{R}(B)}) > 0$ $\iff c(\mathcal{R}(B), \mathcal{N}(A)) < 1$, by Theorem 8. \Box

The following theorem is our another main result which is an extension of Theorem 8 of [3].

Theorem 13 Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H} . Then

$$\gamma(\mathcal{M}, \mathcal{N}) = \begin{cases} 1, & \text{if } P_{\mathcal{M}} P_{\mathcal{N}} \text{ is an orthogonal projection;} \\ (1 - \|Q\|)^{\frac{1}{2}}, & \text{if } P_{\mathcal{M}} P_{\mathcal{N}} \text{ is not an orthogonal projection.} \end{cases}$$

Especially, $\mathcal{M} + \mathcal{N}$ is closed if and only if $\gamma(\mathcal{M}, \mathcal{N}) > 0$.

Proof If $P_{\mathcal{M}}P_{\mathcal{N}}$ is an orthogonal projection, then $\mathcal{H}_5 = \mathcal{H}_6 = 0$, so

$$P_{\mathcal{M}} = I_1 \oplus I_2 \oplus 0I_3 \oplus 0I_4$$
, and $P_{\mathcal{N}} = I_1 \oplus 0I_2 \oplus I_3 \oplus 0I_4$.

Case 1 If $\mathcal{M} \cap \mathcal{N}^{\perp} = \{0\}$, then $\mathcal{M} \subseteq \mathcal{N}$, by the definition of $\gamma(\mathcal{M}, \mathcal{N})$, we have $\gamma(\mathcal{M}, \mathcal{N}) = 1$.

Case 2 If $\mathcal{M}^{\perp} \cap \mathcal{N} = \{0\}$, then $\mathcal{M} \supseteq \mathcal{N}$, so $\gamma(\mathcal{M}, \mathcal{N}) = 1$.

Case 3 If $\mathcal{M}^{\perp} \cap \mathcal{N} \neq \{0\}$ and $\mathcal{M} \cap \mathcal{N}^{\perp} \neq \{0\}$, let $x \in \mathcal{M} \setminus \mathcal{N}$. Then $x = x_1 + x_2$, where $x_1 \in \mathcal{M} \cap \mathcal{N}$ and $0 \neq x_2 \in \mathcal{M} \cap \mathcal{N}^{\perp}$, since $P_{\mathcal{M}}P_{\mathcal{N}}$ is an orthogonal projection. It is easy to see that

$$dist(x, \mathcal{N}) = \inf\{\|x - y\| : y \in \mathcal{N}\} = \inf\{\|x_2 - y\| : y \in \mathcal{N}\} = \|x_2\|,\$$

 $\operatorname{dist}(x, \mathcal{M} \cap \mathcal{N}) = \inf\{\|x - y\| : y \in \mathcal{M} \cap \mathcal{N}\} = \inf\{\|x_2 - y\| : y \in \mathcal{M} \cap \mathcal{N}\} = \|x_2\|.$

Hence $\gamma(\mathcal{M}, \mathcal{N}) = 1$.

If $P_{\mathcal{M}}P_{\mathcal{N}}$ is not an orthogonal projection, then $\mathcal{H}_5 \neq 0$ and $\mathcal{H}_6 \neq 0$. For a vector $x \in \mathcal{M} \setminus \mathcal{N}$, x has the decomposition $x = x_1 + x_2 + x_5$ with $x_i \in \mathcal{H}_i, i = 1, 2, 5$, then $||x_2||^2 + ||x_5||^2 \neq 0$, so

$$\gamma(\mathcal{M}, \mathcal{N}) = \inf_{x \in \mathcal{M}, x \notin \mathcal{N}} \frac{\operatorname{dist}(x, \mathcal{N})}{\operatorname{dist}(x, \mathcal{M} \cap \mathcal{N})} = \inf_{x \in \mathcal{M}, x \notin \mathcal{N}} \sqrt{\frac{\|x_2\|^2 + \|(I_5 - Q)^{\frac{1}{2}} x_5\|^2}{\|x_2\|^2 + \|x_5\|^2}}$$
$$= \inf_{x \in \mathcal{M}, x \notin \mathcal{N}} \frac{\|(I_5 - Q)^{\frac{1}{2}} x_5\|}{\|x_5\|} = \inf_{x_5 \in \mathcal{H}_5 \setminus \{0\}} \frac{\|(I_5 - Q)^{\frac{1}{2}} x_5\|}{\|x_5\|}$$
$$(\text{ note that } x_5 \in \mathcal{H}_5 \text{ implies } x_5 \in \mathcal{M} \setminus \mathcal{N})$$
$$= \gamma((I_5 - Q)^{\frac{1}{2}}),$$

since $\mathcal{N}(I_5 - Q) = \{0\}$. It follows from Lemma 3 that

$$\gamma((I_5 - Q)^{\frac{1}{2}}) = (\inf\{\sigma(I_5 - Q) \setminus \{0\}\})^{\frac{1}{2}} = (\inf\{\sigma(I_5 - Q)\})^{\frac{1}{2}} = (1 - \sup\{\lambda \in \mathbb{C} : \lambda \in \sigma(Q)\})^{\frac{1}{2}} = (1 - \|Q\|)^{\frac{1}{2}}.$$

By Corollary 10 and Corollary 7, $\mathcal{M} + \mathcal{N}$ is closed $\iff c(\mathcal{M}, \mathcal{N}) < 1 \iff ||Q|| < 1 \iff \gamma(\mathcal{M}, \mathcal{N}) > 0$. \Box

Combining Theorem 8 and Theorem 13, we obtain the following result.

Corollary 14 Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H} . Then

- (a) If $\mathcal{M} \subseteq \mathcal{N}$, then $\gamma(P_{\mathcal{N}^{\perp}}P_{\mathcal{M}}) = 0$ and $\gamma(\mathcal{M}, \mathcal{N}) = 1$;
- (b) If $\mathcal{M} \not\subseteq \mathcal{N}$, then $\gamma(P_{\mathcal{N}^{\perp}} P_{\mathcal{M}}) = \gamma(\mathcal{M}, \mathcal{N})$;
- (c) $\gamma(\mathcal{M}, \mathcal{N}) = \gamma(\mathcal{N}^{\perp}, \mathcal{M}^{\perp}).$

References

- [1] APOSTOL C. The reduced minimum modulus [J]. Michigan Math. J., 1985, 32(3): 279-294.
- [2] BOULDIN R. The product of operators with closed range [J]. Tôhoku Math. J., 1973, **25**(2): 359–363.
- [3] DENG Chunyuan. On the minimum gap and the angle between two subspaces [J]. J. Comput. Appl. Math., 2007, 206(2): 625–630.
- [4] DENG Chunyuan, DU Hongke. Common complements of two subspaces and an answer to GroB's question
 [J]. Acta Math. Sinica (Chin. Ser.), 2006, 49(5): 1099–1112.
- [5] DU Hongke, DENG Chunyuan. A new characterization of gaps between two subspaces [J]. Proc. Amer. Math. Soc., 2005, 133(10): 3065–3070.
- [6] DUGGAL B P. Subspace gaps and range-kernel orthogonality of an elementary operator [J]. Linear Algebra Appl., 2004, 383: 93–106.
- [7] DEUTSCH F. The Angle between Subspaces of a Hilbert Space [M]. Kluwer Acad. Publ., Dordrecht, 1995.
- [8] HALMOS P R. Two subspaces [J]. Trans. Amer. Math. Soc., 1969, 144: 381–389.
- [9] KATO T. Perturbation Theory for Linear Operators [M]. Springer, New York, 1966.
- [10] TANG Waishing. Oblique projections, biorthogonal Riesz bases and multiwavelets in Hilbert spaces [J]. Proc. Amer. Math. Soc., 2000, 128(2): 463–473.
- [11] YAO Xiyan. A note on regular pairs of orthogonal projections [J]. Adv. Math. (China), 2005, 34(5): 631-636.