On the Reduced Minimum Modulus of Projections and the Angle between Two Subspaces

Xiu Hong SUN ${ }^{1}$, Yuan $\mathbf{L I}^{2, *}$
1. School of Science, Xi'an University of Science and Technology, Shaanxi, 710054, P. R. China;
2. College of Mathematics and Information Science, Shaanxi Normal University,
Shaanxi 710062, P. R. China

Abstract

Let \mathcal{M} and \mathcal{N} be nonzero subspaces of a Hilbert space \mathcal{H}, and $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ denote the orthogonal projections on \mathcal{M} and \mathcal{N}, respectively. In this note, an exact representation of the angle and the minimum gap of \mathcal{M} and \mathcal{N} is obtained. In addition, we study relations between the angle, the minimum gap of two subspaces \mathcal{M} and \mathcal{N}, and the reduced minimum modulus of $\left(I-P_{\mathcal{N}}\right) P_{\mathcal{M}}$.

Keywords subspace; angle between two subspaces; reduced minimum modulus.
Document code A
MR(2010) Subject Classification 46C05; 46C07
Chinese Library Classification O177.2

1. Introduction

Throughout this note, a subspace is a closed linear manifold of a separable Hilbert space \mathcal{H} with inner product and norm denoted by $\langle x, y\rangle$ and $\|x\|=\sqrt{\langle x, x\rangle}$, respectively. If \mathcal{M} is a subspace of \mathcal{H}, the orthogonal complement of \mathcal{M} is denoted by \mathcal{M}^{\perp} and the orthogonal projection on \mathcal{M} is denoted by $P_{\mathcal{M}}$. In recent years, the variety of quantities involving two subspaces have been studied by a number of researchers in the wide literatures [2-11]. In this note, using the technique of block-operators, some results about minimum gap and the angle between two closed subspaces of a Hilbert space are improved which are obtained by Deng in [3] and other results concerning two subspaces of a Hilbert space are obtained. The angle [6, 7, 9] between \mathcal{M} and \mathcal{N} is an angle in $\left[0, \frac{\pi}{2}\right]$ whose cosine is defined by

$$
\begin{equation*}
c(\mathcal{M}, \mathcal{N})=\sup \left\{|\langle x\rangle y|: x \in \mathcal{M} \cap(\mathcal{M} \cap \mathcal{N})^{\perp}, y \in \mathcal{N} \cap(\mathcal{M} \cap \mathcal{N})^{\perp} \quad \text { and } \quad\|x\|=\|y\|=1\right\} \tag{1}
\end{equation*}
$$

By this formula $c(\mathcal{M}, \mathcal{N})$ is defined only when \mathcal{M} is not a subspace of \mathcal{N} and \mathcal{N} is not a subspace of \mathcal{M}. If $\mathcal{M} \subseteq \mathcal{N}$ or $\mathcal{N} \subseteq \mathcal{M}$, we let $c(\mathcal{M}, \mathcal{N})=0$. The minimal angle [7] between \mathcal{M} and \mathcal{N} is an angle in $\left[0, \frac{\pi}{2}\right]$ whose cosine is defined by

$$
\begin{equation*}
c_{0}(\mathcal{M}, \mathcal{N})=\sup \{|\langle x\rangle y|: x \in \mathcal{M}, y \in \mathcal{N} \text { and }\|x\|=\|y\|=1\} \tag{2}
\end{equation*}
$$

[^0]Recall that the minimum $\operatorname{gap} \gamma(\mathcal{M}, \mathcal{N})$ between two closed subspaces \mathcal{M} and \mathcal{N} of a Hilbert space has been defined $[3,9]$ by

$$
\begin{equation*}
\gamma(\mathcal{M}, \mathcal{N})=\inf _{x \in \mathcal{M}, x \notin \mathcal{N}} \frac{\operatorname{dist}(x, \mathcal{N})}{\operatorname{dist}(x, \mathcal{M} \cap \mathcal{N})} \tag{3}
\end{equation*}
$$

By this formula $\gamma(\mathcal{M}, \mathcal{N})$ is defined only when \mathcal{M} is not a subspace of \mathcal{N}. If $\mathcal{M} \subseteq \mathcal{N}$, we set $\gamma(\mathcal{M}, \mathcal{N})=1$. Obviously, $\gamma(\mathcal{M}, \mathcal{N})=1$, if $\mathcal{N} \subseteq \mathcal{M}$.

Before proving the main results in this paper, let us introduce some notations and terminology which are used in the later. The set of all bounded linear operators on \mathcal{H} is denoted by $\mathcal{B}(\mathcal{H})$. For an operator $A \in \mathcal{B}(\mathcal{H})$, the adjoint, the range, the null-space and the spectrum of A are denoted by $A^{*}, \mathcal{R}(A), \mathcal{N}(A)$ and $\sigma(A)$, respectively. An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be self-adjoint if $A=A^{*}$. An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be positive if $(A x, x) \geq 0$ for $x \in \mathcal{H}$. If A is a positive operator, the unique square root of A is denoted by $A^{\frac{1}{2}}$. An operator A is said to be a contraction (strict contraction) if $\|A\| \leq 1(\|A\|<1)$. The reduced minimum modulus $\gamma(A)$ of $A \in B(\mathcal{H})($ see $[1,9])$ is defined by

$$
\gamma(A)= \begin{cases}\inf \{\|A x\|: \operatorname{dist}(x, \mathcal{N}(A))=1\}, & A \neq 0 \\ 0, & A=0\end{cases}
$$

It is well known that for $A \neq 0, \mathcal{R}(A)$ is closed if and only if $\gamma(A)>0$.

2. Main results

Lemma $1([4,8])$ Let \mathcal{M} and \mathcal{N} be two closed subspaces of \mathcal{H}. If $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ denote the orthogonal projections on \mathcal{M} and \mathcal{N}, respectively, then $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ have the operator matrices

$$
\begin{equation*}
P_{\mathcal{M}}=I_{1} \oplus I_{2} \oplus 0 I_{3} \oplus 0 I_{4} \oplus I_{5} \oplus 0 I_{6} \tag{4}
\end{equation*}
$$

and

$$
P_{\mathcal{N}}=I_{1} \oplus 0 I_{2} \oplus I_{3} \oplus 0 I_{4} \oplus\left(\begin{array}{cc}
Q & Q^{\frac{1}{2}}\left(I_{5}-Q\right)^{\frac{1}{2}} D \tag{5}\\
D^{*} Q^{\frac{1}{2}}\left(I_{5}-Q\right)^{\frac{1}{2}} & D^{*}\left(I_{5}-Q\right) D
\end{array}\right)
$$

with respect to the space decomposition $\mathcal{H}=\bigoplus_{i=1}^{6} \mathcal{H}_{i}$, respectively, where $\mathcal{H}_{1}=\mathcal{M} \cap \mathcal{N}$, $\mathcal{H}_{2}=\mathcal{M} \cap \mathcal{N}^{\perp}, \mathcal{H}_{3}=\mathcal{M}^{\perp} \cap \mathcal{N}, \mathcal{H}_{4}=\mathcal{M}^{\perp} \cap \mathcal{N}^{\perp}, \mathcal{H}_{5}=\mathcal{M} \ominus\left(\mathcal{H}_{1} \oplus \mathcal{H}_{2}\right)$ and $\mathcal{H}_{6}=\mathcal{H} \ominus\left(\bigoplus_{j=1}^{5} \mathcal{H}_{j}\right)$, Q is a positive contraction on $\mathcal{H}_{5}, 0$ and 1 are not eigenvalues of Q, and D is a unitary from \mathcal{H}_{6} onto $\mathcal{H}_{5} . I_{i}$ is the identity on $\mathcal{H}_{i}, i=1, \ldots, 5$.

For convenience, in the sequel, we always assume that $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ have the operator matrices (4) and (5), also the zero operator on \mathcal{H}_{i} is denoted by $0 I_{i}, i=1, \ldots, 6$.

First, we give some necessary and sufficient conditions for $\mathcal{H}_{5}=\mathcal{H}_{6}=\{0\}$.
Lemma 2 Let \mathcal{M} and \mathcal{N} be two closed subspaces of \mathcal{H}. The following statements are equivalent:
(a) $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ commute: $P_{\mathcal{M}} P_{\mathcal{N}}=P_{\mathcal{N}} P_{\mathcal{M}}$;
(b) $P_{\mathcal{M}} P_{\mathcal{N}}=P_{\mathcal{N} \cap \mathcal{M}}$;
(c) $P_{\mathcal{M}} P_{\mathcal{N}}$ is an orthogonal projections;
(d) $P_{\mathcal{M}} P_{\mathcal{N}}$ is an idempotent;
(e) $P_{\mathcal{M}} P_{\mathcal{N}} P_{\mathcal{M}}=P_{\mathcal{N}} P_{\mathcal{M}} P_{\mathcal{N}}$;
(f) $\mathcal{H}=\mathcal{M} \cap \mathcal{N} \oplus \mathcal{M} \cap \mathcal{N}^{\perp} \oplus \mathcal{M}^{\perp} \cap \mathcal{N} \oplus \mathcal{N}^{\perp} \cap \mathcal{M}^{\perp}$;
(g) $\mathcal{M}=\mathcal{M} \cap \mathcal{N} \oplus \mathcal{M} \cap \mathcal{N}^{\perp}$.

Proof Since $\left\|P_{\mathcal{M}} P_{\mathcal{N}}\right\| \leq 1$, it is clear that $(\mathrm{c}) \Longleftrightarrow$ (d).
(c) $\Longrightarrow(\mathrm{f})$. By Lemma 1, $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ have the operator matrices (4) and (5). It is easy to calculate that

$$
P_{\mathcal{M}} P_{\mathcal{N}}=I_{1} \oplus 0 I_{2} \oplus 0 I_{3} \oplus 0 I_{4} \oplus\left(\begin{array}{cc}
Q & Q^{\frac{1}{2}}\left(I_{5}-Q\right)^{\frac{1}{2}} D \\
0 & 0
\end{array}\right)
$$

and

$$
\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{2}=I_{1} \oplus 0 I_{2} \oplus 0 I_{3} \oplus 0 I_{4} \oplus\left(\begin{array}{cc}
Q^{2} & Q^{\frac{3}{2}}\left(I_{5}-Q\right)^{\frac{1}{2}} D \\
0 & 0
\end{array}\right) .
$$

Therefore, if $\mathcal{H}_{5} \neq\{0\}$, then $Q^{2}=Q$, so $\sigma(Q)=\{0,1\}$, hence 0 and 1 are eigenvalues of Q. It is a contradiction to Lemma 1 , so $\mathcal{H}_{5}=\{0\}$, then $\mathcal{H}_{6}=\{0\}$. Thus $\mathcal{H}=\mathcal{M} \cap \mathcal{N} \oplus \mathcal{M} \cap \mathcal{N}^{\perp} \oplus$ $\mathcal{M}^{\perp} \cap \mathcal{N} \oplus \mathcal{N}^{\perp} \cap \mathcal{M}^{\perp}$.
$(\mathrm{e}) \Longrightarrow(\mathrm{f})$. By a similar calculation as above, we have $P_{\mathcal{M}} P_{\mathcal{N}} P_{\mathcal{M}}=P_{\mathcal{N}} P_{\mathcal{M}} P_{\mathcal{N}}$ which implies $\mathcal{H}_{5}=\mathcal{H}_{6}=\{0\}$.

It is obvious that $(\mathrm{f}) \Longrightarrow(\mathrm{g}) \Longrightarrow(\mathrm{a}) \Longleftrightarrow(\mathrm{b}) \Longleftrightarrow(\mathrm{c})$.
The following lemma was obtained in [1].
Lemma 3 ([1]) Let $T \in B(\mathcal{H})$. Then

$$
\gamma(T)=\gamma\left(T^{*}\right)=\left(\inf \left\{\sigma\left(T T^{*}\right) \backslash\{0\}\right\}\right)^{\frac{1}{2}}=\left(\inf \left\{\sigma\left(T^{*} T\right) \backslash\{0\}\right\}\right)^{\frac{1}{2}} .
$$

From above lemmas, we give the specific representation of $\gamma\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)$.
Theorem 4 Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H}. Then

$$
\gamma\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)=\left\{\begin{array}{l}
1, \text { if } P_{\mathcal{M}} P_{\mathcal{N}} \text { is a nonzero orthogonal projection; } \\
0, \text { if } P_{\mathcal{M}} P_{\mathcal{N}}=0 ; \\
\left(1-\left\|I_{5}-Q\right\|\right)^{\frac{1}{2}}, \text { if } P_{\mathcal{M}} P_{\mathcal{N}} \text { is not an orthogonal projection }
\end{array}\right.
$$

Proof If $P_{\mathcal{M}} P_{\mathcal{N}}$ is not an orthogonal projection, then $\mathcal{H}_{5} \neq\{0\}$ and $\mathcal{H}_{6} \neq\{0\}$. It follows from Lemma 1 that

$$
P_{\mathcal{M}} P_{\mathcal{N}}\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{*}=I_{1} \oplus 0 I_{2} \oplus I_{3} \oplus 0 I_{4} \oplus\left(\begin{array}{cc}
Q & 0 \\
0 & 0
\end{array}\right) .
$$

Since 0 is not an eigenvalue of $Q, 0$ is not an isolated point of $\sigma(Q)$. Hence by Lemma 2, $\gamma\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)=(\inf \{\sigma(Q) \backslash\{0\}\})^{\frac{1}{2}}=(\inf \{\sigma(Q)\})^{\frac{1}{2}}$. Thus

$$
\begin{aligned}
\gamma\left(P_{\mathcal{M}} P_{\mathcal{N}}\right) & =\inf \{\lambda \in \mathbb{C}: \lambda \in \sigma(Q)\}^{\frac{1}{2}} \\
& =\left(1-\sup \left\{\lambda \in \mathbb{C}: \lambda \in \sigma\left(I_{5}-Q\right)\right\}\right)^{\frac{1}{2}}=\left(1-\left\|I_{5}-Q\right\|\right)^{\frac{1}{2}} .
\end{aligned}
$$

It is well-known that

$$
\sup \{\sigma(T)\}=\lim _{n \rightarrow \infty}\left\|\left(T^{n}\right)\right\|^{\frac{1}{n}}
$$

and if T is invertible, then

$$
\lim _{k \rightarrow \infty} \gamma\left(T^{k}\right)^{\frac{1}{k}}=\inf \{\sigma(T)\}
$$

Similarly, we have following conclusion for $T=P_{\mathcal{M}} P_{\mathcal{N}}$.
Theorem 5 Let $T \neq 0$ be product of two orthogonal projections. Then

$$
\lim _{k \rightarrow \infty} \gamma\left(T^{k}\right)^{\frac{1}{k}}=\inf \{\sigma(T) \backslash\{0\}\}
$$

Proof If T is an orthogonal projection, then $\lim _{k \rightarrow \infty} \gamma\left(T^{k}\right)^{\frac{1}{k}}=1$, the conclusion is clear.
If T is not an orthogonal projection, then let $T=P_{\mathcal{M}} P_{\mathcal{N}}$, where $P_{\mathcal{M}}$ and $P_{\mathcal{N}}$ have the operator matrices (4) and (5). By Lemma $1, \mathcal{H}_{5} \neq\{0\}$ and $\mathcal{H}_{6} \neq\{0\}$. It is easy to calculate that

$$
\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{k}=I_{1} \oplus 0 I_{2} \oplus I_{3} \oplus 0 I_{4} \oplus\left(\begin{array}{cc}
Q^{k} & Q^{\frac{2 k-1}{2}}\left(I_{5}-Q\right)^{\frac{1}{2}} D \\
0 & 0
\end{array}\right)
$$

and

$$
\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{k}\left(\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{*}\right)^{k}=I_{1} \oplus 0 I_{2} \oplus I_{3} \oplus 0 I_{4} \oplus\left(\begin{array}{cc}
Q^{2 k-1} & 0 \\
0 & 0
\end{array}\right)
$$

Thus

$$
\begin{aligned}
\gamma\left(\left(P_{\mathcal{M}} P_{\mathcal{N}}\right)^{k}\right) & =\inf \left\{\sigma\left(Q^{2 k-1}\right) \backslash\{0\}\right\}^{\frac{1}{2}} \\
& =\left(\inf \left\{\sigma(Q)^{2 k-1} \backslash\{0\}\right\}\right)^{\frac{1}{2}}(\text { by Spectra Mapping Theorem }) \\
& =\left(\inf \left\{\sigma(Q)^{2 k-1}\right\}\right)^{\frac{1}{2}}\left(\text { since } 0 \text { is not an eigenvalues of } Q^{2 k-1}\right) \\
& =(\inf \{\sigma(Q)\})^{\frac{2 k-1}{2}} .
\end{aligned}
$$

Hence $\lim _{k \rightarrow \infty} \gamma\left(T^{k}\right)^{\frac{1}{k}}=\inf \{\sigma(Q)\}$. It is easy to see that

$$
\sigma(Q) \subseteq \sigma(T)=\sigma\left(P_{\mathcal{M}} P_{\mathcal{N}}\right) \subseteq\{1,0\} \cup \sigma(Q)
$$

so $\inf \{\sigma(T) \backslash\{0\}\}=\inf \{\sigma(Q) \backslash\{0\}\}=\inf \{\sigma(Q)\}$. Therefore,

$$
\lim _{k \rightarrow \infty} \gamma\left(T^{k}\right)^{\frac{1}{k}}=\inf \{\sigma(T) \backslash\{0\}\}
$$

In Lemma 2.10 of [7], the following results were obtained. To make this work complete, we include a proof.

Lemma 6 Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H}. Then

$$
c_{0}(\mathcal{M}, \mathcal{N})=\left\|P_{\mathcal{M}} P_{\mathcal{N}}\right\|=\left\|P_{\mathcal{M}} P_{\mathcal{N}} P_{\mathcal{M}}\right\|^{\frac{1}{2}}
$$

and

$$
c(\mathcal{M}, \mathcal{N})=\left\|P_{\mathcal{M}} P_{\mathcal{N}} P_{(\mathcal{M} \cap \mathcal{N})^{\perp}}\right\| .
$$

Proof

$$
\begin{aligned}
c_{0}(\mathcal{M}, \mathcal{N}) & =\sup \{|\langle x\rangle y|: x \in \mathcal{M}, y \in \mathcal{N} \text { and }\|x\|=\|y\|=1\} \\
& =\sup \left\{\left|\left\langle P_{\mathcal{M}} x, P_{\mathcal{N}} y\right\rangle\right|: x, y \in \mathcal{H} \text { and }\|x\|=\|y\|=1\right\} \\
& =\sup \left\{\left|\left\langle x, P_{\mathcal{M}} P_{\mathcal{N}} y\right\rangle\right|: x, y \in \mathcal{H} \text { and }\|x\|=\|y\|=1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\|P_{\mathcal{M}} P_{\mathcal{N}}\right\| . \\
c(\mathcal{M}, \mathcal{N}) & =c_{0}\left(\mathcal{M} \cap(\mathcal{M} \cap \mathcal{N})^{\perp}, \mathcal{N} \cap(\mathcal{M} \cap \mathcal{N})^{\perp}\right) \\
& =\left\|P_{\mathcal{M} \cap(\mathcal{M} \cap \mathcal{N})^{\perp}} P_{\mathcal{N} \cap(\mathcal{M} \cap \mathcal{N})^{\perp}}\right\| \\
& =\left\|P_{\mathcal{M}} P_{(\mathcal{M} \cap \mathcal{N})^{\perp}} P_{\mathcal{N}} P_{(\mathcal{M} \cap \mathcal{N})^{\perp}}\right\| \\
& =\left\|P_{\mathcal{M}} P_{\mathcal{N}} P_{(\mathcal{M} \cap \mathcal{N})^{\perp}}\right\| . \square
\end{aligned}
$$

The following is an extension of Theorem 4 in [3].
Corollary 7 Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H}. Then

$$
c(\mathcal{M}, \mathcal{N})= \begin{cases}0, & \text { if } P_{\mathcal{M}} P_{\mathcal{N}} \text { is an orthogonal projection; } \\ \|Q\|^{\frac{1}{2}}, & \text { if } P_{\mathcal{M}} P_{\mathcal{N}} \text { is not an orthogonal projection }\end{cases}
$$

and

$$
c_{0}(\mathcal{M}, \mathcal{N})= \begin{cases}1, & \text { if } \mathcal{M} \cap \mathcal{N} \neq\{0\} \text { or } P_{\mathcal{M}} P_{\mathcal{N}} \text { is a nonzero orthogonal projection; } \\ 0, & \text { if } P_{\mathcal{M}} P_{\mathcal{N}}=0 \\ \|Q\|^{\frac{1}{2}}, & \text { otherwise }\end{cases}
$$

Proof From Lemmas 6 and 2, it is easy to see that if $P_{\mathcal{M}} P_{\mathcal{N}}$ is an orthogonal projection, then $c(\mathcal{M}, \mathcal{N})=0$. If $P_{\mathcal{M}} P_{\mathcal{N}}$ is not an orthogonal projection, then $\mathcal{H}_{5} \neq 0$ and $\mathcal{H}_{6} \neq 0$. Note that $P_{(\mathcal{M} \cap \mathcal{N})^{\perp}}=0 I_{1} \oplus I_{2} \oplus I_{3} \oplus I_{4} \oplus I_{5} \oplus I_{6}$, so

$$
c(\mathcal{M}, \mathcal{N})=\left\|P_{\mathcal{M}} P_{\mathcal{N}} P_{(\mathcal{M} \cap \mathcal{N})^{\perp}}\right\|=\left\|P_{\mathcal{M}} P_{\mathcal{N}} P_{(\mathcal{M} \cap \mathcal{N})^{\perp}} P_{\mathcal{N}} P_{\mathcal{M}}\right\|^{\frac{1}{2}}=\|Q\|^{\frac{1}{2}} .
$$

From the relation of $c(\mathcal{M}, \mathcal{N})$ and $c_{0}(\mathcal{M}, \mathcal{N})$, the expression of $c_{0}(\mathcal{M}, \mathcal{N})$ is clear.
The following theorem is one of our main results.
Theorem 8 Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H}. Then
(a) If $\mathcal{M} \subseteq \mathcal{N}$, then $\gamma\left(P_{\mathcal{N} \perp} P_{\mathcal{M}}\right)=c(\mathcal{M}, \mathcal{N})=0$.
(b) If $\mathcal{M} \nsubseteq \mathcal{N}$, then $\gamma^{2}\left(P_{\mathcal{N} \perp} P_{\mathcal{M}}\right)+c^{2}(\mathcal{M}, \mathcal{N})=1$.

Proof (a) is clear.
(b) Case 1. If $P_{\mathcal{M}} P_{\mathcal{N}}$ is an orthogonal projection, then $P_{\mathcal{N}} \perp P_{\mathcal{M}}$ is a nonzero orthogonal projection, so $\gamma\left(P_{\mathcal{N} \perp} P_{\mathcal{M}}\right)=1$ and $c(\mathcal{M}, \mathcal{N})=0$, by Lemma 7 .

Case 2. If $P_{\mathcal{M}} P_{\mathcal{N}}$ is not an orthogonal projection, it follows from Lemma 2 that $\mathcal{H}_{5} \neq\{0\}$, then $\mathcal{H}_{6} \neq\{0\}$. By Lemma 1 , it is easy to calculate that

$$
P_{\mathcal{N}^{\perp}} P_{\mathcal{M}}=0 I_{1} \oplus I_{2} \oplus 0 I_{3} \oplus 0 I_{4} \oplus\left(\begin{array}{cc}
1-Q & 0 \\
D^{*}\left(I_{5}-Q\right)^{\frac{1}{2}} Q^{\frac{1}{2}} & 0
\end{array}\right)
$$

and

$$
P_{\mathcal{N} \perp} P_{\mathcal{M}}\left(P_{\mathcal{N} \perp} P_{\mathcal{M}}\right)^{*}=0 I_{1} \oplus I_{2} \oplus 0 I_{3} \oplus 0 I_{4} \oplus\left(\begin{array}{cc}
1-Q & 0 \\
0 & 0
\end{array}\right) .
$$

Thus by Lemma 3,

$$
\gamma\left(P_{\mathcal{N}^{\perp}} P_{\mathcal{M}}\right)=\inf \{\sigma(1-Q) \backslash\{0\}\}^{\frac{1}{2}}=(1-\sup \{\lambda \in \mathbb{C}: \lambda \in \sigma(Q)\})^{\frac{1}{2}}
$$

$$
=(1-\|Q\|)^{\frac{1}{2}}
$$

It follows from Corollary 7 that $\gamma^{2}\left(P_{\mathcal{N}^{\perp}} P_{\mathcal{M}}\right)+c^{2}(\mathcal{M}, \mathcal{N})=1$.
Consequently, we obtain some results of [2] and [7].
Corollary 9 ([7, Theorems 2.15, 2.16]) Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H}. Then
(a) $c(\mathcal{M}, \mathcal{N})=c\left(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}\right) ;$
(b) If $\mathcal{M} \cap \mathcal{N}=\{0\}$ and $\mathcal{M}+\mathcal{N}=\mathcal{H}$, then $c_{0}(\mathcal{M}, \mathcal{N})=c_{0}\left(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}\right)$.

Proof (a) Case 1. If $\mathcal{M} \subseteq \mathcal{N}$, then $\mathcal{N}^{\perp} \subseteq \mathcal{M}^{\perp}$, so by Lemma 7, $c(\mathcal{M}, \mathcal{N})=c\left(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}\right)=0$.
Case 2. If $\mathcal{M} \nsubseteq \mathcal{N}$, then $\mathcal{N}^{\perp} \nsubseteq \mathcal{M}^{\perp}$, by Theorem 8 ,

$$
\gamma^{2}\left(P_{\mathcal{N}^{\perp}} P_{\mathcal{M}}\right)+c^{2}(\mathcal{M}, \mathcal{N})=1 \text { and } \gamma^{2}\left(P_{\mathcal{M}} P_{\mathcal{N}^{\perp}}\right)+c^{2}\left(\mathcal{N}^{\perp}, \mathcal{M}^{\perp}\right)=1
$$

By Lemma 3, $\gamma\left(P_{\mathcal{N}^{\perp}} P_{\mathcal{M}}\right)=\gamma\left(P_{\mathcal{M}} P_{\mathcal{N}^{\perp}}\right)$, so $c(\mathcal{M}, \mathcal{N})=c\left(\mathcal{N}^{\perp}, \mathcal{M}^{\perp}\right)=c\left(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}\right)$.
(b) Since $\mathcal{M} \cap \mathcal{N}=\{0\}$, it is obvious that $c_{0}(\mathcal{M}, \mathcal{N})=c(\mathcal{M}, \mathcal{N})$. It follows from $\mathcal{M}+$ $\mathcal{N}=\mathcal{H}$ that $\mathcal{M}^{\perp} \cap \mathcal{N}^{\perp}=\{0\}$, so $c_{0}\left(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}\right)=c\left(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}\right)$. According to (a), $c_{0}(\mathcal{M}, \mathcal{N})=$ $c_{0}\left(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}\right)$.

Corollary 10 ([7, Theorem 2.13]) Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H}. Then the following statements are equivalent:
(a) $c(\mathcal{M}, \mathcal{N})<1$;
(b) $\mathcal{M}+\mathcal{N}$ is closed;
(c) $\mathcal{M}^{\perp}+\mathcal{N}^{\perp}$ is closed.

Proof If $\mathcal{M} \subseteq \mathcal{N}$, then the conclusion is clear. In the following proof, we assume $\mathcal{M} \nsubseteq \mathcal{N}$. It is easy to see that $\mathcal{M}+\mathcal{N}=\mathcal{N}+P_{\mathcal{N}^{\perp}}(\mathcal{M})$, where $P_{\mathcal{N}^{\perp}}(\mathcal{M}):=\left\{P_{\mathcal{N}^{\perp}} y: y \in \mathcal{M}\right\}$. Hence $\mathcal{M}+\mathcal{N}$ is closed if and only if $\mathcal{R}\left(P_{\mathcal{N} \perp}(\mathcal{M})\right)$ is closed. It is well-known that $\mathcal{R}\left(P_{\mathcal{N} \perp}(\mathcal{M})\right)$ is closed if and only if $\gamma\left(P_{\mathcal{N}^{\perp}} P_{\mathcal{M}}\right)>0$. Therefore, it follows from Theorem 8 that $(\mathrm{a}) \Longleftrightarrow(\mathrm{b})$. From Corollary $9, c(\mathcal{M}, \mathcal{N})<1 \Longleftrightarrow c\left(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}\right)<1 \Longleftrightarrow \mathcal{M}^{\perp}+\mathcal{N}^{\perp}$ is closed.

The following result is fundamental in [7]. A technical proof has been given in [7]. Here, we give a simple proof.

Corollary 11 ([7, Lemma 2.14]) Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H}. If $c_{0}(\mathcal{M}, \mathcal{N})<1$, then for any closed subspace X of \mathcal{H} which contains $\mathcal{M}+\mathcal{N}$, we have

$$
c_{0}(\mathcal{M}, \mathcal{N}) \leq c_{0}\left(\mathcal{M}^{\perp} \cap X, \mathcal{N}^{\perp} \cap X\right)
$$

Proof For convenience, we divide proof into three steps.
Step 1. If $\mathcal{M}^{\perp} \cap \mathcal{N}^{\perp} \cap X \neq\{0\}$, then $c_{0}\left(\mathcal{M}^{\perp} \cap X, \mathcal{N}^{\perp} \cap X\right)=1$, so $c_{0}(\mathcal{M}, \mathcal{N}) \leq c_{0}\left(\mathcal{M}^{\perp} \cap\right.$ $\left.X, \mathcal{N}^{\perp} \cap X\right)$.

Step 2. Let $X=\mathcal{H}$. Since $c_{0}(\mathcal{M}, \mathcal{N})<1$, we have $\mathcal{M} \cap \mathcal{N}=\{0\}$ and $\mathcal{M}+\mathcal{N}$ is closed. If $\mathcal{M}^{\perp} \cap \mathcal{N}^{\perp} \neq\{0\}$, then $c_{0}\left(\mathcal{M}^{\perp} \cap X, \mathcal{N}^{\perp} \cap X\right)=c_{0}\left(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}\right)=1$, so $c_{0}(\mathcal{M}, \mathcal{N}) \leq c_{0}\left(\mathcal{M}^{\perp} \cap\right.$ $\left.X, \mathcal{N}^{\perp} \cap X\right)$.

If $\mathcal{M}^{\perp} \cap \mathcal{N}^{\perp}=\{0\}$, then $\mathcal{M}+\mathcal{N}=\mathcal{H}$, since $\mathcal{M}+\mathcal{N}$ is closed. It follows from Corollary 9 that $c_{0}(\mathcal{M}, \mathcal{N})=c_{0}\left(\mathcal{M}^{\perp} \cap X, \mathcal{N}^{\perp} \cap X\right)$.

Step 3. If $\mathcal{M}^{\perp} \cap \mathcal{N}^{\perp} \cap X=\{0\}$, then $(\mathcal{M}+\mathcal{N})^{\perp} \cap X=\{0\}$. Therefore, $X=\mathcal{M}+\mathcal{N}$, since $X \supseteq \mathcal{M}+\mathcal{N}$ and $\mathcal{M}+\mathcal{N}$ is closed. It is easy to see that $c_{0}(\mathcal{M}, \mathcal{N})=c_{0}(\mathcal{M} \cap X, \mathcal{N} \cap X)$, then we may replace \mathcal{H} by X. It follows from Step 2 that $c_{0}(\mathcal{M}, \mathcal{N}) \leq c_{0}\left(\mathcal{M}^{\perp} \cap X, \mathcal{N}^{\perp} \cap X\right)$.

The following result has been proved in [2, 7]. As an application of Theorem 8, we give an alternative proof.

Corollary $12([2,7])$ If A and B are bounded operators on \mathcal{H} with closed ranges, then the following statements are equivalent:
(a) $A B$ has closed range;
(b) $c(\mathcal{R}(B), \mathcal{N}(A))<1$;
(c) $\mathcal{R}(B)+\mathcal{N}(A)$ is closed.

Proof If $A B=0$, then the conclusion is clear. In the following proof, assume that $A B \neq 0$.
Since $\mathcal{R}(A)$ is closed, we have

$$
A=\left(\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right): \mathcal{N}(A)^{\perp} \oplus \mathcal{N}(A) \rightarrow \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}
$$

where A_{1} is invertible from $\mathcal{N}(A)^{\perp}$ onto $\mathcal{R}(A)$. It is easy to see that

$$
\mathcal{R}(A B)=\mathcal{R}\left(A_{1} P_{\mathcal{N}(A)^{\perp}} P_{\mathcal{R}(B)}\right)
$$

Since A_{1} is invertible, $\mathcal{R}(A B)$ is closed $\Longleftrightarrow \mathcal{R}\left(P_{\mathcal{N}(A)^{\perp}} P_{\mathcal{R}(B)}\right)$ is closed $\Longleftrightarrow \gamma\left(P_{\mathcal{N}(A)^{\perp}} P_{\mathcal{R}(B)}\right)>0$ $\Longleftrightarrow c(\mathcal{R}(B), \mathcal{N}(A))<1$, by Theorem 8 .

The following theorem is our another main result which is an extension of Theorem 8 of [3].
Theorem 13 Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H}. Then

$$
\gamma(\mathcal{M}, \mathcal{N})= \begin{cases}1, & \text { if } P_{\mathcal{M}} P_{\mathcal{N}} \text { is an orthogonal projection; } \\ (1-\|Q\|)^{\frac{1}{2}}, & \text { if } P_{\mathcal{M}} P_{\mathcal{N}} \text { is not an orthogonal projection }\end{cases}
$$

Especially, $\mathcal{M}+\mathcal{N}$ is closed if and only if $\gamma(\mathcal{M}, \mathcal{N})>0$.
Proof If $P_{\mathcal{M}} P_{\mathcal{N}}$ is an orthogonal projection, then $\mathcal{H}_{5}=\mathcal{H}_{6}=0$, so

$$
P_{\mathcal{M}}=I_{1} \oplus I_{2} \oplus 0 I_{3} \oplus 0 I_{4}, \text { and } P_{\mathcal{N}}=I_{1} \oplus 0 I_{2} \oplus I_{3} \oplus 0 I_{4} .
$$

Case 1 If $\mathcal{M} \cap \mathcal{N}^{\perp}=\{0\}$, then $\mathcal{M} \subseteq \mathcal{N}$, by the definition of $\gamma(\mathcal{M}, \mathcal{N})$, we have $\gamma(\mathcal{M}, \mathcal{N})=1$.
Case 2 If $\mathcal{M}^{\perp} \cap \mathcal{N}=\{0\}$, then $\mathcal{M} \supseteq \mathcal{N}$, so $\gamma(\mathcal{M}, \mathcal{N})=1$.
Case 3 If $\mathcal{M}^{\perp} \cap \mathcal{N} \neq\{0\}$ and $\mathcal{M} \cap \mathcal{N}^{\perp} \neq\{0\}$, let $x \in \mathcal{M} \backslash \mathcal{N}$. Then $x=x_{1}+x_{2}$, where $x_{1} \in \mathcal{M} \cap \mathcal{N}$ and $0 \neq x_{2} \in \mathcal{M} \cap \mathcal{N}^{\perp}$, since $P_{\mathcal{M}} P_{\mathcal{N}}$ is an orthogonal projection. It is easy to see that

$$
\begin{gathered}
\operatorname{dist}(x, \mathcal{N})=\inf \{\|x-y\|: y \in \mathcal{N}\}=\inf \left\{\left\|x_{2}-y\right\|: y \in \mathcal{N}\right\}=\left\|x_{2}\right\| \\
\operatorname{dist}(x, \mathcal{M} \cap \mathcal{N})=\inf \{\|x-y\|: y \in \mathcal{M} \cap \mathcal{N}\}=\inf \left\{\left\|x_{2}-y\right\|: y \in \mathcal{M} \cap \mathcal{N}\right\}=\left\|x_{2}\right\|
\end{gathered}
$$

Hence $\gamma(\mathcal{M}, \mathcal{N})=1$.
If $P_{\mathcal{M}} P_{\mathcal{N}}$ is not an orthogonal projection, then $\mathcal{H}_{5} \neq 0$ and $\mathcal{H}_{6} \neq 0$. For a vector $x \in \mathcal{M} \backslash \mathcal{N}$, x has the decomposition $x=x_{1}+x_{2}+x_{5}$ with $x_{i} \in \mathcal{H}_{i}, i=1,2,5$, then $\left\|x_{2}\right\|^{2}+\left\|x_{5}\right\|^{2} \neq 0$, so

$$
\begin{aligned}
\gamma(\mathcal{M}, \mathcal{N})= & \inf _{x \in \mathcal{M}, x \notin \mathcal{N}} \frac{\operatorname{dist}(x, \mathcal{N})}{\operatorname{dist}(x, \mathcal{M} \cap \mathcal{N})}=\inf _{x \in \mathcal{M}, x \notin \mathcal{N}} \sqrt{\frac{\left\|x_{2}\right\|^{2}+\left\|\left(I_{5}-Q\right)^{\frac{1}{2}} x_{5}\right\|^{2}}{\left\|x_{2}\right\|^{2}+\left\|x_{5}\right\|^{2}}} \\
= & \inf _{x \in \mathcal{M}, x \notin \mathcal{N}} \frac{\left\|\left(I_{5}-Q\right)^{\frac{1}{2}} x_{5}\right\|}{\left\|x_{5}\right\|}=\inf _{x_{5} \in \mathcal{H}_{5} \backslash\{0\}} \frac{\left\|\left(I_{5}-Q\right)^{\frac{1}{2}} x_{5}\right\|}{\left\|x_{5}\right\|} \\
& \left(\text { note that } x_{5} \in \mathcal{H}_{5} \text { implies } x_{5} \in \mathcal{M} \backslash \mathcal{N}\right) \\
= & \gamma\left(\left(I_{5}-Q\right)^{\frac{1}{2}}\right),
\end{aligned}
$$

since $\mathcal{N}\left(I_{5}-Q\right)=\{0\}$. It follows from Lemma 3 that

$$
\begin{aligned}
\gamma\left(\left(I_{5}-Q\right)^{\frac{1}{2}}\right) & =\left(\inf \left\{\sigma\left(I_{5}-Q\right) \backslash\{0\}\right\}\right)^{\frac{1}{2}}=\left(\inf \left\{\sigma\left(I_{5}-Q\right)\right\}\right)^{\frac{1}{2}} \\
& =(1-\sup \{\lambda \in \mathbb{C}: \lambda \in \sigma(Q)\})^{\frac{1}{2}}=(1-\|Q\|)^{\frac{1}{2}}
\end{aligned}
$$

By Corollary 10 and Corollary $7, \mathcal{M}+\mathcal{N}$ is closed $\Longleftrightarrow c(\mathcal{M}, \mathcal{N})<1 \Longleftrightarrow\|Q\|<1 \Longleftrightarrow$ $\gamma(\mathcal{M}, \mathcal{N})>0$.

Combining Theorem 8 and Theorem 13, we obtain the following result.
Corollary 14 Let \mathcal{M} and \mathcal{N} be nonzero subspaces of \mathcal{H}. Then
(a) If $\mathcal{M} \subseteq \mathcal{N}$, then $\gamma\left(P_{\mathcal{N}^{\perp}} P_{\mathcal{M}}\right)=0$ and $\gamma(\mathcal{M}, \mathcal{N})=1$;
(b) If $\mathcal{M} \nsubseteq \mathcal{N}$, then $\gamma\left(P_{\mathcal{N} \perp} P_{\mathcal{M}}\right)=\gamma(\mathcal{M}, \mathcal{N})$;
(c) $\gamma(\mathcal{M}, \mathcal{N})=\gamma\left(\mathcal{N}^{\perp}, \mathcal{M}^{\perp}\right)$.

References

[1] APOSTOL C. The reduced minimum modulus [J]. Michigan Math. J., 1985, 32(3): 279-294.
[2] BOULDIN R. The product of operators with closed range [J]. Tôhoku Math. J., 1973, 25(2): 359-363.
[3] DENG Chunyuan. On the minimum gap and the angle between two subspaces [J]. J. Comput. Appl. Math., 2007, 206(2): 625-630.
[4] DENG Chunyuan, DU Hongke. Common complements of two subspaces and an answer to GroB's question [J]. Acta Math. Sinica (Chin. Ser.), 2006, 49(5): 1099-1112.
[5] DU Hongke, DENG Chunyuan. A new characterization of gaps between two subspaces [J]. Proc. Amer. Math. Soc., 2005, 133(10): 3065-3070.
[6] DUGGAL B P. Subspace gaps and range-kernel orthogonality of an elementary operator [J]. Linear Algebra Appl., 2004, 383: 93-106.
[7] DEUTSCH F. The Angle between Subspaces of a Hilbert Space [M]. Kluwer Acad. Publ., Dordrecht, 1995.
[8] HALMOS P R. Two subspaces [J]. Trans. Amer. Math. Soc., 1969, 144: 381-389.
[9] KATO T. Perturbation Theorty for Linear Operators [M]. Springer, New York, 1966.
[10] TANG Waishing. Oblique projections, biorthogonal Riesz bases and multiwavelets in Hilbert spaces [J]. Proc. Amer. Math. Soc., 2000, 128(2): 463-473.
[11] YAO Xiyan. A note on regular pairs of orthogonal projections [J]. Adv. Math. (China), 2005, 34(5): 631-636.

[^0]: Received December 20, 2008; Accepted June 30, 2009
 Supported by the National Natural Science Foundation of China (Grant No. 10871224) and the Fundamental Research Funds for the Central Universities (Grant No. GK 200902049).

 * Corresponding author

 E-mail address: liyuan0401@yahoo.com.cn (Y. LI)

