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Abstract Let G be a group. We consider the set cd(G)\{m}, where m ∈ cd(G). We define the

graph ∆(G−m) whose vertex set is ρ(G−m), the set of primes dividing degrees in cd(G)\{m}.

There is an edge between p and q in ρ(G − m) if pq divides a degree a ∈ cd(G)\{m}. We show

that if G is solvable, then ∆(G − m) has at most two connected components.
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1. Introduction

Throughout the following, all groups are assumed to be finite. For a group G, cd(G) is the set

of irreducible character degrees, ∆(G) denotes the prime degree graph of G, whose vertex set is

ρ(G), the set of primes that divide degrees in cd(G). There is an edge between p and q in ρ(G) if

pq divides some degree a ∈ cd(G), and n(∆(G)) denotes the number of connected components of

∆(G). The basic results on the relationship between cd(G) and the structure of G can be found

in [1–3]. Many recent papers have studied the influence of cd(G) on the structure of G. Several

papers have studied other graphs, such as [4–9]. It is well known that if G is solvable, then

∆(G) has at most two connected components. In this paper, we are particulary interested in the

question of the set cd(G)\{m}, where m ∈ cd(G). We define the graph ∆(G−m) whose vertex

set is ρ(G−m), the set of primes dividing degrees in cd(G)\{m}. There is an edge between p and

q in ρ(G−m) if pq divides a degree a ∈ cd(G)\{m}. π(m) denotes the set of primes which divide

m, n(∆(G−m)) denotes the number of connected components of ∆(G−m). If G is abelian or

cd(G) = {1, a} andm = a, then we have that cd(G)\{m} = ∅ or cd(G)\{m} = {1}, and we define

n(∆(G −m)) = 0. It is obvious that ordinary ∆(G −m) has less edges or vertices than ∆(G)

(such as, let G = S4×D4. Then cd(G) = {1, 2, 3, 6}, where if m = 6, then cd(G−m) = {1, 2, 3},
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so ∆(G − m) has less edges than ∆(G)). But we can also show that if G is a solvable group,

then n(∆(G−m)) ≤ 2.

The following is our conclusion.

Theorem Let G be a solvable group. Then ∆(G −m) has at most 2 connected components,

that is, n(∆(G −m)) ≤ 2.

2. Proof of Theorem

At first we introduce some definitions [7] of the following Lemma 2.1. Fix a set of prime π.

The set cdπ(G) denotes the set of character degrees that are divisible only by primes in π. The

graph ∆π(G), whose vertex set is ρπ(G), denotes the set of primes dividing degrees in cdπ(G).

There is an edge between p and q if pq divides a degree a ∈ cdπ(G).

Lemma 2.1 ([7]) Let π be a set of primes, and let G be a π-solvable group. Then ∆π(G) has

at most 2 connected components.

Lemma 2.2 ([3]) Let G be solvable and let π be a set of primes contained in ∆(G). Assume

that |π| ≥ 3. Then there exist distinct u, v ∈ π such that uv|χ(1) for some χ ∈ Irr(G).

Lemma 2.3 ([2]) Let G be solvable and assume that G′ is the unique minimal normal subgroup

of G. Then all nonlinear irreducible characters of G have equal degree f and one of the following

situations holds:

(a) G is a p-group, Z(G) is cyclic and G/Z(G) is elementary abelian of order f2.

(b) G is a Frobenius group with an abelian Frobenius complement of order f . Also, G′ is

the Frobenius kernel and is an elementary abelian p-group.

Lemma 2.4 ([2]) Let N ⊳ G and let χ ∈ Irr(G) be such that χN = θ ∈ Irr(N). Then the

characters βχ for β ∈ Irr(G/N) are irreducible, distinct for distinct β and are all of the irreducible

constituents of θG.

Lemma 2.5 ([2]) Let N ⊳ G and χ ∈ Irr(G). Let θ ∈ Irr(N) be a constituent of χN . Then

χ(1)/θ(1) divides |G : N |.

Proof of Theorem If G is abelian, then n(∆(G−m)) = 0. If m = 1, then ∆(G−m) = ∆(G),

and thus n(∆(G−m)) = n(∆(G)) ≤ 2 by Lemma 2.2. So we can assume that G is not abelian

and m > 1. We prove the Theorem by the following two cases.

Case 1 Suppose |π(m) ∩ ρ(G −m)| < |π(m)|, that is to say there is p ∈ π(m) and p is not in

ρ(G−m).

Let π = ρ(G −m). By the previous paragraph we know that ∆(G −m) = ∆π(G), and by

Lemma 2.1 this implies that n(∆(G−m)) ≤ 2.

Case 2 Suppose |π(m) ∩ ρ(G−m)| = |π(m)|, so ρ(G) = ρ(G−m).

Let K � G such that K is maximal among those subgroups with G/K nonabelian. By the

results of Isaacs in [2, Chapter 12], we know that cd(G/K) = {1, f}. Using Lemma 2.3, we know
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that G/K is either a p-group for some prime p, or a Frobenius group. Let χ ∈ Irr(G) such that

χ(1) = m.

At first consider G/K is a p-group. Then, it follows that f = pe for some positive integer e.

If gcd(p,m) = 1, then χ restricts irreducibly to K. By using Gallagher’s Theorem (Lemma 2.4),

we have that χ(1)f ∈ cd(G). So n(∆(G)) = n(∆(G −m)), and thus n(∆(G −m)) ≤ 2. If, on

the other hand, p divides m, then suppose π(m) = {p}, and it is seen that n(∆(G −m)) ≤ 2.

So we suppose that π(m) ⊃ {p} and π(m) 6= {p}. Let χK(1) = etθ(1), where θ ∈ Irr(K). So

m = χK(1) = etθ(1), but by Lemma 2.5, we know that et | |G/K|, a power of prime p. And thus

θ(1) 6= 1. As the condition of Theorem is subgroup-closed, by induction of the orders of groups,

we have n(∆(K − θ(1))) ≤ 2.

By Lemma 2.5 we know that π(ψK(1)) = π(ϕ(1)) or π(ψK(1)) = π(ϕ(1)) ∪ {p} for every

ψ ∈ Irr(G) and ϕ is an irreducible constituent of ψK , and thus ρ(G−m) = ρ(G) ⊆ ρ(K) ∪ {p}.

If there is ϕ1(1) ∈ cd(K)\{θ(1)} and p|ϕ1(1), then n(∆(G − m)) = n(∆(K − θ(1))) ≤ 2. So

we know that p does not divide ϕ(1) to every ϕ(1) ∈ cd(K)\{θ(1)}. Let χi(1) be an irreducible

constituent of ϕG for some 1 6= ϕ(1) ∈ cd(K)\{θ(1)}. Then either p does not divide χi(1) or

p|χi(1). If p does not divide χi(1), then gcd(χi(1), |G/K|) = 1. It follows that χi(1)f ∈ cd(G)

by Lemma 2.4, this implies that n(∆(G − m)) = n(∆(K − θ(1))) ≤ 2. Otherwise, if p|χi(1),

and thus there is an edge between p and some vertex on ∆(G − m). We can conclude that

n(∆(G−m)) = n(∆(K − θ(1))) ≤ 2. So we have n(∆(G−m)) ≤ 2 in every case.

Suppose G/K is a Frobenius group. As stated in the previous paragraph, we know that the

Frobenius Kernel N/K is an elementary abelian p-group and |G : N | = f . Consider ψ ∈ Irr(G)

such that ψ(1) > 1. We will show that ψ(1) either lies in the same connected component as f

or is divisible by p. Suppose that ψ(1) and f lie in different connected components of ∆(G).

If ψ restricts irreducibly to K, then from Gallagher’s Theorem (Lemma 2.4) we know that

ψ(1)f ∈ cd(G). This implies that ψ(1) lies in the same component as f , which contradicts the

assumption. So we know that ψ does not restrict irreducibly to K. But since ψ(1) is coprime to

f , we know that ψ restricts irreducibly to N . Hence, we can conclude that p divides ψ(1). And

thus for every ψ(1) ∈ cd(G)\{m}, we have ψ(1) either lies in the same connected components as

f or is divisible by p. So n(∆(G −m)) ≤ 2. We have proved the theorem. 2

References

[1] HUPPERT B. Character Theory of Finite Groups [M]. Walter de Gruyter & Co., Berlin, 1998.
[2] ISAACS I.M. Character Theory of Finite Groups [M]. Academic Press, New York-London, 1976.

[3] MANZ O, WOLF T.R. Representations of Solvable Groups [M]. Cambridge University Press, Cambridge,

1993.
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[8] MORETÓ A. An answer to a question of Isaacs on character degree graphs [J]. Adv. Math., 2006, 201(1):
90–101.
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