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Abstract It is discussed in this paper that under what conditions, for a continuous domain L,

there is a Scott continuous self-mapping f : L → L such that the set of fixed points fix(f) is not

continuous in the ordering induced by L. For any algebraic domain L with a countable base and

a smallest element, the problem presented by Huth is partially solved. Also, an example is given

and shows that there is a bounded complete domain L such that for any Scott continuous stable

self-mapping f , fix(f) is not the retract of L.
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1. Introduction and preliminaries

A poset L is called DCPO if every directed subset of L has the supremum. For all x, y ∈

L, x ≪ y if and only if for every directed subset E of L satisfying y ≤
∨

E, there is e ∈ E such

that x ≤ e. For any x ∈ L, we write ⇓ x = {y ∈ L|y ≪ x}. A poset is called to be continuous

if for any x ∈ L,⇓ x is directed and x = ∨ ⇓ x. A continuous DCPO is also called a continuous

domain. For any x ∈ L, x is called a compact element if x ≪ x. The set of all compact elements

in L is denoted by K(L). A DCPO L is called an algebraic domain if ⇓ x∩K(L) is directed and

sup(⇓ x ∩ K(L)) = x for every x ∈ L. A DCPO L is called L-domain if for any x ∈ L, ↓ x is a

complete lattice. A DCPO L is called a bounded complete domain if each pair of elements of L

has a least upper bound. Suppose that D, L are DCPO. If the mapping f : D → L preserves the

supremum of directed subsets, then f is called Scott continuous. If there are Scott continuous

mappings r : D → L and s : L → D such that r ◦ s = idL, then L is called the retract of D. If

the Scott continuous self-mapping f : L → L satisfies f ◦ f = f , then fix(f) = {x ∈ L|f(x) = x}

is a continuous domain with respect to the induce order of L and fix(f) is the retract of L. In
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general, fix(f) is not continuous. In the web page [1], Huth gave a continuous domain L and a

Scott continuous self-mapping f : L → L satisfying that fix(f) is not continuous. He also put

forward the following problem:

Problem For which classes of continuous domains L are there Scott continuous self-maps

f : L → L such that fix(f) are not continuous on the induced order?

If L is an algebraic domain with a countable base and the smallest element, this problem is

answered in this paper.

On the other hand, Kou [2] considered those continuous domains L and Scott continuous

self-mappings f : L → L such that fix(f) is continuous, and discussed whether fix(f) is the

retract of L if fix(f) is continuous. Kou proved the following result.

Theorem 1.1 ([2]) Suppose that L is a continuous L-domain and f : L → L is a stable mapping.

Then fix(f) is a continuous domain; if L is simultaneously a complete lattice, then fix(L) is the

retract of L.

For the case of L-domain, f is a stable mapping if and only if f preserves directed supremum

and compatible infimum. Kou [2] constructed a continuous L-domain and a stable mapping

f : L → L such that fix(f) is not the retract of L. In general, an L-domain is not necessarily

a bounded complete domain. For example, L = {⊥, a, b, c, d} ordered by: ⊥ is the smallest

element; a, b are incomparable; c, d are incomparable; a < c, d and b < c, d. L is an L-domain,

but L is not bounded complete since a, b have no supremum though a, b are bounded. For a

bounded completely continuous domain L and stable mapping f : L → L, is fix(f) the retract

of L? In this paper, an example is given and shows the answer is no.

2. Main results

Huth [1] gave a continuous domain D and a Scott continuous self-mapping f : D → D such

that fix(f) is not continuous. But his example is somewhat complex and refers to the other

results. We give a simple example as follows.

Example 2.1 Let D = {a0, a1, a2, . . . , an, . . . , a∞, b0, b1, b2, . . . , bn, . . . , b∞} ordered by:

∀ i ∈ N, ai < ai+1 < a∞, bi < bi+1 < b∞, ai < bi, a∞ < b∞.

Then there is a Scott continuous self-mapping f : D → D such that fix(f) is not continuous on

the induced order of D.

Define f : D → D as follows:

f(a0) = a0, f(a∞) = a∞, f(b∞) = b∞, f(ai) = ai−1, i ≥ 1, f(bi) = bi, ∀ i ∈ N.

Then fix(f) = {a0, a∞, b0, b1, . . . , bn, . . . , b∞}. Obviously, fix(f) is not continuous on the induced

order.

At the end of the paper [1], Huth proposed the following problem: For which classes of

continuous domains D are there Scott continuous self-maps f : D → D such that fix(f) is not
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continuous on the induced order? The following theorem gives a partial answer.

Theorem 2.2 Suppose that D is an algebraic domain with a smallest element and a countable

base. Then there is a Scott continuous self-map f : D → D such that fix(f) is not continuous

on the induced order if and only if there is x, y ∈ D such that x < y, but x ≪D y does not hold.

Proof We firstly show necessity. Suppose there is a Scott continuous self-map f : D → D

such that fix(f) is not continuous on the induced order. Since fix(f) is not continuous, there is

x ∈ fix(f) such that fix(f) is not continuous at x, therefore, x ≪fix(f) x does not hold. Then

there is a directed subset {xi}i∈I ⊆ fix(f) such that
∨

i∈I xi ≥ x and ∀ i ∈ I, xi 6≥ x. Let

y =
∨

i∈I xi. If y > x, then x ≪fix(f) y dose not hold. Otherwise, there is i0 ∈ I such that

x ≤ xi0 , contradiction follows. So x ≪D y does not hold. If y = x, then there is xi0 such that

xi0 < x, but xi0 ≪D x does not hold. Otherwise, suppose for any xi, xi ≪D x. Since {xi}i∈I

is directed, fix(f) is continuous at x. This contradicts the continuity of fix(f) at x. Necessity is

proved.

Then we show sufficiency. Suppose that there are x, y ∈ D such that x < y, but x ≪ y does

not hold. Since D has a countable base, there is a countable ascending chain {yi}i∈I such that

∀ i ∈ I, yi ∈ K(D),
∨

i∈I yi = y, but ∀ i ∈ I, x 6≤ yi. Similarly, there is a countable ascending

chain {xj}j∈J such that ∀ j ∈ J, xj ∈ K(D),
∨

j∈J xj = x. Let x0 = a0 =⊥, y0 = b0. We

can suppose that b0 6≤ x. Take xj1 such that xj1 > max{xj | xj ≤ y0, j ∈ J}. Let xj1 = a1.

Since a1 ≪ x < y, there is i1 ∈ I such that a1 < yi1 . Take xj2 such that xj2 > max{xj | xj ≤

yi1 , j ∈ J}. Let xj2 = a2, yi1 = b1. Inductively, for any n ∈ N, an and bn are defined. Let

x = a∞, y = b∞. We give a copy of the domain in Example 2.1. Denote this copy as D1. We

project D onto D1 and define a map f1 : D → D as follows �
∀ x ∈ D, f1(x) =

∨

D1

{e ∈ C | e ≤ x},

in which C = {a0, a1, . . . , an, . . . , b0, b1, . . . , bn, . . .}.

Let h = f ◦ f1, in which f is the map in Example 2.1. Then fix(h) is not continuous on the

induced order. The proof is completed. 2

We give a bounded complete continuous domain L and a stable map f : L → L such that

fix(f) is not the retract of L.

Example 2.3 Let L = {a0, a1, . . . , an, . . . , a∞, b1, b2, . . . , bn, . . . , b∞} ordered by: a0 is the

smallest element; ∀ i ∈ N, ai < bi, a∞ < b∞, a0 < a1 < · · · < an < · · · < a∞, where the order of

{b0, b1, b2, . . . , bn, b∞} is discrete. Then L is a bounded complete domain. We give a stable map

f : L → L such that fix(f) is not the retract of L.

Define f : L → L as follows:

∀ i ∈ N, f(bi) = bi, f(ai+1) = ai, f(b∞) = b∞ f(a∞) = a∞, f(a0) = a0.

Then fix(f) = {a0, b0, b1, b2, . . . , bn, . . . , b∞, a∞}. Next we show that fix(f) is not the retract of

L. Suppose that fix(f) is the retract of L. Then there is a Scott continuous map p : L → fix(f)
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and r : fix(f) → L such that p ◦ r = idfix(f).

We can claim ∀ i ∈ N, p(ai) = a0. In fact, suppose there is i0 ∈ N such that p(ai0) 6= a0.

Then there is n0 ∈ N such that p(ai0) = bn0
or b∞ or a∞. Suppose that p(ai0) = bn0

. Then

∀ i ∈ N and i ≥ i0, p(bi) ≥ p(ai0) = bn0
, p(ai) ≥ p(ai0) = bn0

, therefore, p(bi) = bn0
, p(ai) = bn0

.

It implies that im(p) is finite and contradicts p ◦ r = idfix(f). Similarly, suppose p(ai0) = b∞ or

a∞. Then im(p) is finite. This contradicts p ◦ r = idfix(f). Hence ∀i ∈ N, p(ai) = a0 and by the

continuity of p, p(a∞) = a0.

Consider the map r : fix(f) → L. We can claim r(a∞) 6= a∞. Otherwise, p ◦ r(a∞) =

p(a∞) = a0. This contradicts p ◦ r = idfix(f). Similarly, ∀i ∈ N, r(a∞) 6= ai, therefore, r(a∞) ∈

{b0, b1, . . . , bn, . . . , b∞}, r(a∞) 6= b∞. Otherwise, r(a∞) = r(b∞) = b∞. This contradicts p ◦ r =

idfix(f). Similarly, ∀ i ∈ N, r(a∞) 6= bi. Such r does not exist. fix(f) is not the retract of L. The

proof is completed. 2

If the stable map is strengthened to preserve arbitrary infimum, then we have the following

result. The proof is basically the same as that in [2, Theorem 2.2].

Theorem 2.4 Suppose that L is a bounded complete domain, f : L → L is Scott continuous

and preserves arbitrary infimum and ∀ x ∈ L, fix(f)∩ ↑ x 6= φ. Then fix(f) is the retract of L.

Proof Define a map r : L → fix(f) as follows: ∀ x ∈ L

r(x) = ∧(↑ x ∩ fix(f))

in which the infimum is defined on L. Since f preserves arbitrary infimum, ∀x ∈ L,∧(↑ x ∩

fix(f)) = f(∧(↑ x ∩ fix(f)) ∈ fix(f). So r is well defined and preserves the order. Next, we show

r is Scott continuous.

Suppose that D ⊆ L is directed and y = ∨D. ∀ d ∈ D, d ≤ ∧(↑ d ∩ fix(f)) = r(d), therefore

y ≤
∨

d∈D r(d). Since r(y) = ∧(↑ y ∩ fix(f) and
∨

d∈D r(d) ∈ fix(f), r(y) = r(∨D) =
∨

d∈D r(d).

Let s : fix(f) → L be inclusion map. Then r ◦ s = idfix(f). The proof is completed. 2

Remark The map in Example 2.3 does not preserve arbitrary infimum.
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