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Abstract Quasi-interpolation is very useful in the study of approximation theory and its ap-

plications, since it can yield solutions directly without the need to solve any linear system of

equations. Based on the good performance, Chen and Wu presented a kind of multiquadric (MQ)

quasi-interpolation, which is generalized from the LD operator, and used it to solve hyperbolic

conservation laws and Burgers’ equation. In this paper, a numerical scheme is presented based

on Chen and Wu’s method for solving the Korteweg-de Vries (KdV) equation. The presented

scheme is obtained by using the second-order central divided difference of the spatial derivative

to approximate the third-order spatial derivative, and the forward divided difference to approx-

imate the temporal derivative, where the spatial derivative is approximated by the derivative

of the generalized LD quasi-interpolation operator. The algorithm is very simple and easy to

implement and the numerical experiments show that it is feasible and valid.
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1. Introduction

Since Hardy proposed in 1968 the multiquadric(MQ) which is a kind of radial basis function

(RBF), it has been investigated thoroughly. Hardy [1] summarized the achievements of study

of multiquadric (MQ) from 1968 to 1988 and showed that MQ can be applied in hydrology,

geodesy, photogrammetry, surveying and mapping, geophysics and crustal movement, geology

and mining and so on. Now, the RBFs have found wider and wider applications. Since Kansa

[2, 3] successfully modified MQ for solving partial differential equation (PDE), more and more

researchers have been attracted by this meshless, scattered data approximation scheme. In most

of the known methods of solving differential equations using multiquadric, one must resolve a

system of linear equations at each time step. Hon and Wu [4], Wu [5, 6] and others have provided

some successful examples using MQ quasi-interpolation to solve differential equations.

Beaston and Powell [7] proposed three univariate multiquadric quasi-interpolations, namely,

LA , LB, LC . Wu and Schaback [8] presented the univariate multiquadric quasi-interpolation
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LD and proved that the scheme is shape preserving and convergent. In [9–11], Chen and Wu

generalized the MQ quasi-interpolant LD and used it to solve second-order differential equa-

tions. The numerical schemes using generalized LD to solve Burgers’ equation and hyperbolic

conservation laws were presented in [9, 11] and [10], respectively. Moreover, Chen, Han and Wu

[12] have done more work and showed the relation between the generalized LD in [9–11] and

LD . Besides, Ma and Wu [13] studied the approximation properties to the k-th derivatives by

multiquadric quasi-interpolation and showed successful examples in [14].

Thanks to so many people who are introduced before, the MQ quasi-interpolation are wider

and wider used to solve PDEs. Based on Chen and Wu’s method [9–11], the numerical scheme

with the generalized LD for solving Kortewege-de Vries (KdV) equations with the third-order

spatial derivative variable is presented in this paper.

Kortewege-de Vries (KdV) equation is a nonlinear partial differential equation, which is given

by:

ut + εuux + µuxxx = 0,

where ε and µ are positive real constants. This equation shows both dispersion and nonlinearity.

Gardner et al. [15] have shown the existence and uniqueness of solutions of the KdV equation

are necessary for various boundary and initial conditions to model many physical events. So

there has been a considerable interest in the numerical solution of a class of KdV equation.

Many well-known numerical techniques such as finite-difference scheme, finite-element schemes,

Fourier spectral methods and meshfree radial basis functions collation method [16–20] have been

used to solve the KdV equation. A small time solution for the KdV equation has been found by

heat balance integral (HBIM) method [21], which has been suggested to be used to initialize some

other numerical methods at some small time when an exact solution of the KdV equation does

not exist [22]. A higher accuracy method than the classical explicit finite difference (CFDM)

and HBIM in getting the numerical solution of the KdV equation at small-time was given by

Bahadir [23], which is exponential finite-difference method (EFDM).

In this paper, we use the generalized LD quasi-interpolation to solve the KdV equation

numerically. So we do not have to solve any system of linear equations and thus we do not meet

the question of the ill-condition of the matrix in [20]. So the computational time is saved. In

our methods, we use the derivative of the MQ quasi-interpolation to approximate the first-order

spatial derivative and employ a frist order forward divided difference to approximate the temporal

derivative as Chen and Wu did in [9–11]. Besides, we use the second-order central divided

difference of the first-order spatial derivative to approximate the third-order spatial derivative

since the performance of approxiamtion of high order derivatives by MQ quasi-interpolation is

not good.

The rest of this paper is organized as follows. In Section 2, we introduce the theory of the

univariate MQ quasi-interpolation briefly. The numerical scheme using MQ quasi-interpolation

to solve the KdV equation is presented in Section 3. In Section 4, we apply the method on the

third-order nonlinear equation, namely, KdV equation, with three different initial values. The

results are compared with the analytical solutions and the results in [20, 21]. We can find that
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the results are also acceptable, so the scheme is valid. Finaly, we make a brief conclusion and

give remaks for the resulting scheme and further works in Section 5.

2. Univariate multiquadric quasi-interpolation

According to the papers [9–11], we introduce the univariate multiquadric quasi-interpolation.

Beaston and Powell [7] proposed three univariate multiquadric quasi-interpolations, namely, LA ,

LB, LC , to approximate a function {f(x), x0 6 x 6 xm} from the space that is spanned by

the multiquadrics {φj(x) =
√

(x − xj)2 + c2, x ∈ R, j = 0, . . . , m} and linear function, where

c is positive constant and the centers {xj : j = 0, . . . , m} are given distinct points in interval

[x0, xm]. In 1994, Wu and Schaback [8] proposed the univariate multiquadric quasi-interpolation

LD on [x0, xm] and proved that the scheme is shape preserving and convergent.

Given {(xj , yj)}m
j=0, where x0 < x1 < · · · < xm, the univariate quasi-interpolation is of the

form

f∗(x) =

m
∑

j=0

fjΨj(x), (1)

where

Ψj(x) =
φj+1(x) − φj(x)

2(xj+1 − xj)
− φj(x) − φj−1(x)

2(xj − xj−1)
, 0 ≤ j ≤ m. (2)

The definition of φj(x) will be given whereafter.

Now we introduce some definitions and theorems related to quasi-interpolation .

Definition 2.1 If the quasi-interpolation f∗(x) possesses the property

f∗(x) ≡ C if f0 = f1 = · · · = fm = C, (3)

where C is any real constant, we say that the quasi-interpolation is constant reproducing on

[x0, xm].

Definition 2.2 We say that the quasi-interpolation f∗(x) possesses linear reproducing property

on [x0, xm], if f∗(x) = px + q as fj = pxj + q, j = 0, . . . , m, for all p, q ∈ R.

Remark 2.1 It is obvious that if a quasi-interpolation f∗(x) possesses linear reproducing prop-

erty on [x0, xm], then it must be constant reproducing.

Definition 2.3 If the quasi-interpolation f∗(x) is monotone increasing (decreasing) for mono-

tone increasing (decreasing) data fj, j = 0, . . . , m, then we say that it possesses preserving

monotonicity on [x0, xm].

Given {(xj , yj)}m
j=0, where x0 < x1 < · · ·xm, Wu and Shacback defined in [8] the univariate

multiquadric quasi-interpolation LD as follows:

(LDf)(x) = f0α0(x) + f1α1(x) +

n−2
∑

j=2

fjΨj(x) + fn−1αn−1(x) + fnαn(x), (4)

where

α0(x) =
1

2
+

φ1(x) − (x − x0)

2(x1 − x0)
,
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α1(x) =
φ2(x) − φ1(x)

2(x2 − x1)
− φ1(x) − (x − x0)

2(x1 − x0)
,

αn−1(x) =
xn − x − φn−1(x)

2(xn − xn−1)
− φn−1(x) − φn−2(x)

2(xn−1 − xn−2)
,

αn(x) =
1

2
+

φn−1(x) − (xn − x)

2(xn − xn−1)
.

And φj(x), j = 1, . . . , n − 1 and Ψj(x), j = 2, . . . , n − 2 are defined as follows.

Definition 2.4 ([8–11]) For the initial data {(xj , fj)}m
j=0, fj = f(xj), we define f∗(x) on [x0, xm]

with (1), (2),

φm(x) = φ0(x) − 2x + xm + x0, (5)
{

φ−1(x) = φ0(x) + x0 − x−1,

φm+1(x) = φm(x) + xm+1 − xm

(6)

and

φj(x) =
√

(x − xj)2 + c2, 0 ≤ j ≤ m − 1, c ∈ R. (7)

Then f∗(x) is univariate multiquadric quasi-interpolation (LDf)(x).

Theorem 2.1 ([8–11]) The quasi-interpolation f∗(x), defined by Definition 2.4, possesses linear

reproducing property and preserving monotonicity on [x0, xm]. Meantime, on [x0, xm], f∗(x) can

be rewritten as follows:

f∗(x) =
1

2

m−1
∑

j=1

(
φj+1(x) − φj(x)

2(xj+1 − xj)
− φj(x) − φj−1(x)

2(xj − xj−1)
)fj+

1

2
(1 +

φ1(x) − φ0(x)

(x1 − x0)
)f0 +

1

2
(1 − φm(x) − φm−1(x)

(xm − xm−1)
)fm; (8)

or

f∗(x) =
f0 + fm

2
+

1

2

m−1
∑

j=0

φj(x) − φj+1(x)

xj+1 − xj

(fj+1 − fj); (9)

or

f∗(x) =
1

2

m−1
∑

j=1

(
fj+1 − fj

xj+1 − xj

− fj − fj−1

xj − xj−1

)φj(x) +
f0 + fm

2
+

f1 − f0

2(x1 − x0)
φ0(x) − fm − fm−1

2(xm − xm−1)
φm(x). (10)

Moreover, on [x0, xm], we have

(f∗(x))′ =
1

2

m−1
∑

j=0

φ′
j(x) − φ′

j+1(x)

xj+1 − xj

(fj+1 − fj) (11)

and

(f∗(x))′′ =
1

2

m−1
∑

j=0

φ′′
j (x) − φ′′

j+1(x)

xj+1 − xj

(fj+1 − fj). (12)
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Remark 2.2 We note that formulae (8)–(12) and the linear reproducing property of the quasi-

interpolation f∗(x) have no relation to the definition of φj(x), j = 1, . . . , m−1 i.e., (7). In other

words, all quasi-interpolation f∗(x) defined by (1), (2), (5) and (6) satisfy (8)–(12) and possesses

the linear reproducing property.

Theorem 2.2 ([8–12]) Denote h = max
1≤j≤m

{xj − xj−1}. f∗(x) is the univariate multiquadric

quasi-interpolation defined by Definition 2.4. For c > 0, and fx ∈ C2(x0, xm), we have

‖f∗(x) − f(x)‖∞ ≤ K0Ch + K1h
2 + K2ch + K3c

2 log h, (13)

where

Ch = min{c, c2

h
}, (14)

K0, K1, K2, and K3 are the positive constant independent of h and c.

Remark 2.3 As c = 0, f∗(x) changes into L(x), and now ‖f∗(x)− f(x)‖∞ ≤ Kh2, where K is

a constant which is independent of h.

The content above can be found in [8–11] and we iterate them only for the sake of integrality

of the paper.

3. Numerical scheme using MQ quasi-interpolation

In this section, we consider the KdV equation, which is a third-order nonlinear equation

∂u(x, t)

∂t
+ εu(x, t)

∂u(x, t)

∂x
+ µ

∂3u(x, t)

∂x3
= 0, x ∈ Ω = [a, b] ⊂ R, t > 0 (15)

with the initial condition

u(x, t) = u0(x), t = 0, (16)

and boundary conditions

u(x, t) = f(t), x ∈ ∂Ω, t > 0, (17)

ux(b, t) = g(t), t > 0. (18)

We show the numerical scheme for solving KdV equation by using the multiquadric(MQ)

quasi-interpolation as Chen and Wu did in [9–11].

Discretizing KdV equation

ut + εuux + µuxxx = 0, (19)

in time with time step τ , we get

un+1
j − un

j

τ
+ εun

j (ux)n
j + µ(uxxx)n

j = 0, (20)

i.e.,

un+1
j = un

j − τ · (εun
j (ux)n

j + µ(uxxx)n
j ), (21)
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where un
j is the approximation of value u(x, t) at point (xj , tn), xj = jh, tn = nτ . And we use

the derivatives of the MQ quasi-interpolation to approximate ux, where

(ux)n
j =

1

2

m−1
∑

k=0

φ′
k(xj) − φ′

k+1(xj)

xk+1 − xk

(un
k+1 − un

k). (22)

To approximate uxxx more efficiently, we use the following approach instead of using the third

derivatives of the MQ quasi-interpolation

(uxxx)n
j =

(ux)n
j+1 − 2(ux)n

j + (ux)n
j−1

h2
. (23)

φj(x), j = 0, . . . , m is defined in (5) and (7).

We compare the numerical results of the KdV equation by using this scheme with the ana-

lytical solutions and the solutions in [20, 21].

4. Numerical examples

In this section, we test our scheme by three examples. In the numerical results, we use the

following norms to assess the perfromance of our scheme

L∞ = max
1≤i≤N

| uexact(i) − uapp(i) |,

L2 =

√

√

√

√

N
∑

i=1

(uexact(i) − uapp(i))2,

RMS =

√

√

√

√(

N
∑

i=1

(uexact(i) − uapp(i))2)/N,

where uexact is the exact soltution, uapp is the approximate solution of the KdV equation in our

scheme and N is the total number of the space joints. Denote our scheme by MQQI. For the

sake of the simplification, we set hj = h, then xj = jh, j = 0, . . . , m.

Example 4.1 Propagation of single solitary wave [24]. In this example, we consider the KdV

equation (19) with ε = 6 and µ = 1. The initial condition is

u0(x) =
r

2
sech2(

√
r

2
x − 7), t = 0, r = 0.5 (24)

and the exact solution is

u(x, t) =
r

2
sec h2(

√
r

2
(x − rt) − 7), r = 0.5 (25)

and the boundary functions f(t) and g(t) can be obtained from the exact solution. We consider

this example in the domain 0 ≤ x ≤ 40. In our computation, we choose τ = 0.001, h = 0.2.

Table 1 shows the error with c = 0.2799 at t = 1, 2, 3, 4, 5. We compare the L∞-error with the

results in [20] in Table 2 and compare the numerical solution with the exact solution in Table 3.

Moreover, in Figure 1, we illustrate the profiles of the exact and numerical solution at t = 5.

Example 4.2 Propagation of two solitary waves [24]. In this example, we consider the KdV
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equation (19) with ε = 6 and µ = 1. The initial condition is

u0(x) = 12
{3 + 4 cosh(2x) + cosh(4x)

{3 cosh(x) + cosh(3x)}2

}

(26)

and the exact solution is

u(x, t) = 12
{3 + 4 cosh(2x − 8t) + cosh(4x − 64t)

{3 cosh(x − 28t) + cosh(3x − 36t)}2

}

. (27)

The boundary functions f(t) and g(t) can be obtained from the exact solution.

t L∞-error L2-error RMS-error

1 1.5259× 10−3 6.5913× 10−3 4.6492× 10−4

2 2.8672× 10−3 1.2404× 10−2 8.7394× 10−4

3 4.1428× 10−3 1.8221× 10−2 1.2852× 10−3

4 5.3859× 10−3 2.4106× 10−2 1.7003× 10−3

5 6.8141× 10−3 3.0300× 10−2 2.1372× 10−3

Table 1 The errror between the numerical solution using our scheme and exact solution of

Example 4.1 with c = 0.2799, τ = 0.001, h = 0.2, at t = 1, 2, 3, 4, 5

t MQQI RBF(MQ)[20] RBF(IMQ)[20]

1 1.5259× 10−3 1.7923× 10−5 6.9584× 10−5

2 2.8672× 10−3 3.0151× 10−5 1.9553× 10−4

3 4.1428× 10−3 3.9839× 10−5 3.8286× 10−3

4 5.3859× 10−3 4.7835× 10−5 5.9098× 10−3

5 6.8141× 10−3 5.4599× 10−5 8.3667× 10−3

Table 2 The comparison of L∞-error between the numerical solution using our scheme and the

solution in [20] of Example 4.1 with c = 0.2799, τ = 0.001, h = 0.2, at t = 1, 2, 3, 4, 5

x t = 1 t = 3 t = 5

MQQI Exact MQQI Exact MQQI Exact

17 0.081817 0.080625 0.045284 0.043573 0.024489 0.022515

18 0.137899 0.137393 0.082636 0.080625 0.045640 0.043573

19 0.204288 0.203886 0.139860 0.137393 0.084426 0.080625

20 0.247960 0.247227 0.206787 0.203886 0.142601 0.137393

21 0.235194 0.235251 0.249011 0.247227 0.208712 0.203886

22 0.176306 0.177627 0.233662 0.235251 0.249883 0.247227

23 0.110928 0.112353 0.173616 0.177627 0.231660 0.235251

24 0.062591 0.063421 0.108716 0.112353 0.171589 0.177627

25 0.033223 0.033545 0.061304 0.063420 0.106221 0.112353

Table 3 The comparison between the numerical solution using our scheme and exact solution

of Example 4.1 with c = 0.2799, τ = 0.001, h = 0.2, at t = 1, 3, 5
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Figure 1 Analytical and estimated fuction of Example 4.1 with

c = 0.2799, τ = 0.001, h = 0.2, at t = 5

We consider this example in the domain −5 ≤ x ≤ 15. In our computation, we choose

τ = 0.00001, h = 0.1. Table 4 shows the error with c = 0.001 at t = 0.01, 0.05, 0.1. The

comparison of the L∞-error with the results in [20] is given in Table 5 and the comparison with

the exact solution is given in Table 6. In Figure 2, the profiles of the exact and numerical

solutions at t = 0.1 are illustrated.

t L∞-error L2-error RMS-error

0.01 7.7405× 10−3 2.2328× 10−2 1.5749× 10−3

0.05 6.3762× 10−2 1.7355× 10−1 1.2241× 10−2

0.1 1.6196× 10−1 4.5430× 10−1 3.2044× 10−2

Table 4 The errror between the numerical solution using our scheme and exact solution of

Example 4.2 with c = 0.001, τ = 0.00001, h = 0.1, at t = 0.01, 0.05, 0.1

t MQQI RBF(MQ)[20] RBF(IMQ)[20]

0.01 7.7405× 10−3 9.2114× 10−4 2.2071× 10−2

0.05 6.3762× 10−2 2.9608× 10−2 7.2316× 10−2

0.1 1.6196× 10−1 1.2806× 10−2 1.0121× 10−1

Table 5 The comparison of L∞-error between the numerical solution using our scheme and the

solution in [20] of Example 4.2 with c = 0.001, τ = 0.00001, h = 0.1, at t = 0.01, 0.05, 0.1
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x t = 0.01 t = 0.05 t = 0.1

MQQI Exact MQQI Exact MQQI Exact

-3 0.054358 0.054477 0.038461 0.039507 0.023935 0.026554

-2 0.382756 0.382934 0.279287 0.275315 0.194571 0.188162

-1 2.084206 2.084133 1.380403 1.390946 1.038671 1.045967

0 5.640733 5.638245 2.597785 2.574829 1.990040 2.000572

1 3.186663 3.192964 6.922214 6.881609 1.764999 1.717101

2 0.478633 0.478495 1.191924 1.207024 7.139714 7.171392

3 0.064570 0.064520 0.101458 0.100955 0.452621 0.464299

4 0.008730 0.008723 0.012227 0.012239 0.024443 0.024308

5 0.001181 0.001180 0.001559 0.001630 0.002261 0.002542

Table 6 The comparison between the numerical solution using our scheme and exact

solution of Example 4.2 with c = 0.001, τ = 0.00001, h = 0.1, at t = 0.01, 0.05, 0.1

−5 0 5 10 15
−1

0

1

2

3

4

5

6

7

8

x−axis

u(
x,

t)

Exact Solution

Numerical Solution

Figure 2 Analytical and estimated function of Example 4.2 with

c = 0.001, τ = 0.00001, h = 0.1, at t = 0.1

Example 4.3 A special model problem of KdV equation was investigated in [20, 21]. We

consider the KdV equation(19) with ε = 1 and µ = 4.84 × 10−4. The initial condition is

u0(x) = u(x, 0) = 3C1 sech2(A1x + D1), 0 ≤ x ≤ 2 (28)

and the boundary condition is

u(0, t) = u(2, t) = ux(2, t) = 0, t > 0. (29)

The exact solution of this problem is taken from [25] and is given by

u(x, t) = 3C1 sech2(A1x − B1t + D1), 0 ≤ x ≤ 2 (30)
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where C1, D1 are real constants, A1 = 1
2

√

εC1/µ and B1 = εA1C1.

In this example, the results of the percentage error are compared with those given in [20, 21]

in Table 7. These schemes include RBF(MQ) scheme [20] and HBIM scheme [21] with τ = 0.001,

h = 0.0125, C1 = 0.3, D1 = −6.0 and the shape parameter c = 0.0001.

x t = 0.005 t = 0.01

MQQI RBF(MQ)[20] HBIM[21] MQQI HBIM[21]

0.1 0.1082 0.0 3.8033 1.7176 7.7548

0.2 0.1019 0.0003 3.7984 0.2049 7.7418

0.3 0.0597 0.0003 3.7243 0.1310 7.5905

0.4 0.1095 0.0103 2.9326 0.2491 5.9806

0.5 0.0691 0.0060 0.7865 0.1299 1.5010

0.6 0.0821 0.0101 3.2960 0.1626 6.4706

0.7 0.0534 0.0015 3.6331 0.1004 7.1332

0.8 0.0748 0.0007 3.6626 0.1488 7.1911

0.9 0.0767 0.0088 3.6656 0.1533 7.1904

1.0 0.0769 0.0 3.7353 0.1538 7.2016

Table 7 The percentage error using different schemes of Example 4.3 at t = 0.005, 0.01. and

choosing c = 0.0001, τ = 0.001, h = 0.0125 in the scheme

From the tables and figures above, we can say that the results of our scheme are acceptable,

although the accuracy is not higher than the scheme in [20]. Besides, our scheme is simple and

easy to implement, which means that our scheme is feasible and valid. And we can also find that

our results in Example 4.3 are better than the results of the HBIM method in [21].

5. Conclusion

The multiquadric(MQ) quasi-interpolation method is applied to find the numerical solution

of the KdV equation, which is a third-order nonlinear equation. From the above tables and

figures, we conclude that our scheme is feasible and valid. During the computation, we can find

that our scheme is simple and easy to implement and the results have very close relation to the

value of the shape parameter c. And in fact, the choice of the shape parameter c is still a pendent

question.

The scheme can also be used for non-equidistant grids, although we have used equidistant

grids in our numerical experiments. Moreover, we can improve the accuracy by selecting the

appropriate shape parameter c and using higher accurate MQ quasi-interpolation.
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