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Abstract Recently Brutman and Passow considered Newman-type rational interpolation to |x|

induced by arbitrary sets of symmetric nodes in [−1, 1] and gave the general estimation of the

approximation error. By their methods, one could establish the exact order of approximation for

some special nodes. In the present note we consider the sets of interpolation nodes obtained by

adjusting the Chebyshev roots of the second kind on the interval [0, 1] and then extending this

set to [−1, 1] in a symmetric way. We show that in this case the exact order of approximation is

O( 1

n
2 ).
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1. Introduction

Let

X = {x(n)
k : k = 1, 2, . . . , n, 0 < x

(n)
1 < x

(n)
2 < . . . < x(n)

n ≤ 1}

be a set of n distinct points in (0, 1], and let

pn(x) =

n∏

k=1

(
x + x

(n)
k

)
(1)

(in the sequence, when there is no confusion, the superscript (n) will be omitted).

The Newman-type rational interpolation to |x| (see [3]) at the set of the points

{−xn, . . . ,−x2,−x1, 0, x1, x2, . . . , xn} (2)

is defined by

rn(x) = rn(X ; x) = x
pn(x) − pn(−x)

pn(x) + pn(−x)
. (3)

Since rn(X ; x) as well as |x| are even functions, the study of the approximation error

en(X ; x) = |x| − rn(X ; x) (4)
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may be restricted to the interval [0, 1], where it can be represented in the form

en(X ; x) =
2xhn(X ; x)

1 + hn(X ; x)
, 0 ≤ x ≤ 1, (5)

where

hn(X ; x) =
pn(−x)

pn(x)
=

n∏

k=1

−x + xk

x + xk
. (6)

Bernstein [1] showed that the order of the best uniform approximation of |x| by polynomials

is only O( 1
n ). In [6], to demonstrate the rational approximation to |x| is much more favorable in

contrast to polynomial approximation to |x|, Newman selected

xk = ξk, k = 1, 2, . . . , n, (7)

in (2), where

ξ = exp(−n− 1

2 ),

and proved that for n ≥ 5 the following bounds hold

1

2
e−9

√
n ≤ |en(X ; x)| ≤ 3e−

√
n, x ∈ [−1, 1]. (8)

There has been a great deal of work on Newman-type rational to |x| since then. Brutman

and Passow [3] established general estimates of the approximation error en(X ; x) for arbitrary

set of interpolation points, and obtained

Theorem B (P1) Let S1 = S
(n)
1 (X) =

∑n
k=1 xk. Then

|hn(X ; x)| ≤ e−xS1 , x ∈ [0, 1]. (9)

Theorem B (P2) Let An = An(X) =
∑n

k=1 x−1
k . Then

|en(X ; x)| ≤ 1

An
, x ∈ [−x1, x1]. (10)

In what follows we denote by c positive constant (different each time, in general) that is abso-

lute or depends on parameters not essential for the argument. If A(k, n, x, . . .) and B(k, n, x, . . .)

are positive real numbers depending on parameters q, k, n, x, . . . , then the notation

A(k, n, x, . . .) = O(B(k, n, x, . . .))

means that there exists positive real number c independent of k, n, x, . . . , such that

A(k, n, x, . . .) ≤ cB(k, n, x, . . .).

Brutman [5] studied the special case where the set of nodes is obtained by adjusting the

Chebyshev roots ξ
(n)
k = cos((2k − 1)π/(2n)), k = 1, 2, . . . , n , to the interval [0, 1], namely

X = T̃ = {xk =
1

2
(1 + ξn−k+1) = sin2 2k − 1

4n
π : k = 1, 2, . . . , n}

and proved that in this case the exact order of approximation is O( 1
n2 ). Zhu and Dong [7]

considered the special case where set of interpolation points

X = U = {xk = cos
kπ

2n + 1
: k = 1, 2, . . . , n}
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is that of the zeros contained in (0, 1] of the Chebyshev polynomial of the second kind

U2n(x) =
sin[(2n + 1) arccosx]√

1 − x2
,

and they proved in this case the exact order of approximation is O( 1
n ln n ). In present paper we

consider the set of nodes obtained by adjusting the Chebyshev roots of the second kind

x
(n)
k = cos

kπ

n + 1
, k = 1, 2, . . . , n, (11)

to the interval (0, 1], namely,

X = T = {zk =
1

2
(1 + x

(n)
n−k+1) = sin2 kπ

2(n + 1)
: k = 1, 2, . . . , n}, (12)

and prove that in this case the exact order of approximation is O( 1
n2 ).

2. Results

In order to prove our main results, we firstly estimate S1 in (9) and An in (10) in the case

X = T .

Lemma 1 For n = 1, 2, . . . ,

zk = sin2 kπ

2(n + 1)
, k = 1, 2, . . . , n,

the following estimate holds:

S1 =

n∑

k=1

zk =
n

2
. (13)

Proof Since

S1 =
n∑

k=1

zk =
n∑

k=1

sin2 kπ

2(n + 1)
=

n∑

k=1

1 − cos kπ
n+1

2

=
n

2
− 1

2

n∑

k=1

cos
kπ

n + 1
=

n

2
− 1

2

sin 2n+1
2(n+1)π

2 sin π
2(n+1)

+
1

4
=

n

2
,

we obtain S1 = n
2 .

Lemma 2 For n = 1, 2, . . . ,

zk = sin2 kπ

2(n + 1)
, k = 1, 2, . . . , n,

the following estimate holds:

4

π2
(n + 1)2 ≤ An =

n∑

k=1

zk
−1 ≤ π2

6
(n + 1)2. (14)

Proof Using the elementary inequality

2t

π
≤ sin t ≤ t, t ∈ [0,

π

2
], (15)
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we have ( k

n + 1

)2

≤ sin2 kπ

2(n + 1)
≤

( kπ

2(n + 1)

)2

, k = 1, 2, . . . , n.

Thus (14) follows immediately from the inequality

An =

n∑

k=1

[
sin2 kπ

2(n + 1)

]−1

≥
n∑

k=1

4(n + 1)2

k2π2
=

4(n + 1)2

π2

n∑

k=1

1

k2
≥ 4(n + 1)2

π2
,

and the inequality

An =

n∑

k=1

[
sin2 kπ

2(n + 1)

]−1

≤
n∑

k=1

(n + 1)2

k2
= (n + 1)2

n∑

k=1

1

k2
≤ π2(n + 1)2

6
.

This completes the proof of Lemma 2. 2

It is well-known [2, p37] that the nth Chebyshev polynomial of the second kind Un(x) has

the following three representations

Un(x) =
[sin(n + 1) arccosx]√

1 − x2
, x ∈ [−1, 1], (16)

Un(x) =
(x +

√
x2 − 1)n+1 − (x −

√
x2 − 1)n+1

2
√

x2 − 1
, x ∈ C, (17)

Un(x) =

n∑

k=0

xkTn−k(x), x ∈ C (18)

where C denotes the set of complex numbers, and

Tn(x) = cos(n arccosx), x ∈ [−1, 1],

Tn(x) =
1

2

[
(x +

√
x2 − 1)n + (x −

√
x2 − 1)n

]
, x ∈ C

are the nth Chebyshev polynomial, n = 0, 1, 2, . . . . It is easy to see from (1) and (5) that hn(T ; x)

can be represented in the form

hn(T ; x) =
Un(1 − 2x)

Un(1 + 2x)
, x ∈ [0, 1]. (19)

Secondly, we need the following estimate.

Lemma 3 For any x ∈ [z1,
1
2 ] and n = 1, 2, . . . , the following estimate holds:

|hn(T ; x)| ≤ 1

2
. (20)

Proof By (18),

U ′
n(x) =

n∑

k=1

kxk−1Tn−k(x) +

n∑

k=0

xkT ′
n−k(x).

Since Tn(x) ≥ 0 and T ′
n(x) = n

2 [ (x+
√

x2−1)n

√
x2−1

− (x−
√

x2−1)n

√
x2−1

] > 0, |x| ≥ 1. It suffices to verify

that Un(x) is strictly monotone increasing in x ∈ [1,∞), and

Un(1) = lim
x→1

(x +
√

x2 − 1)n+1 − (x −
√

x2 − 1)n+1

2
√

x2 − 1
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= lim
x→1

(n + 1)
[
(x +

√
x2 − 1)n+1 + (x −

√
x2 − 1)n+1]

/√
x2 − 1

2x/
√

x2 − 1

= n + 1.

For any x ∈ [z1,
1
2 ] and n = 1, 2, . . . , using (16) yields

|Un(1 − 2x)| =
| sin(n + 1) arccos(1 − 2x)|√

1 − (1 − 2x)2
≤ 1√

−4x2 + 4x
≤ 1√

−4z2
1 + 4z1

=
1

2
√

z1

√
1 − z1

=
1

sin π
n+1

≤ n + 1

2
. (21)

On the other hand, since Un(x) is strictly monotone increasing in x ∈ [1,∞), and Un(1) =

n + 1, we can conclude that

Un(1 + 2x) ≥ Un(1) = n + 1. (22)

Then it follows from (21) and (22), we can complete the proof of Lemma 3. 2

Now we are in position to prove our main results.

Theorem 1 For any x ∈ [−1, 1] and n = 1, 2, . . . , there exists a positive number c such that

|en(T ; x)| ≤ c

n2
. (23)

Proof It suffices to consider x ∈ [0, 1].

Firstly we consider the case x ∈ [0, z1] = [0, sin2 π
2(n+1) ]. By applying the general estimate

(10) and (14), we get

|en(T ; x)| ≤ 1

An
≤ π2

4(n + 1)2
≤ π2

4n2
, x ∈ [0, z1]. (24)

Now let us consider the error of approximation in the interval [z1,
1
2 ].

From (5), (16), (17) and (20), we can get

|en(T ; x)| =
2x|hn(T ; x)|
|1 + hn(T ; x)| ≤

2x|hn(T ; x)|
1 − |hn(T ; x)| ≤ 4x|hn(T ; x)|

≤ | sin(n + 1) arccos(1 − 2x)| · 8x
√

4x2 + 4x
√
−4x2 + 4x

[(
1 + 2x +

√
(1 + 2x)2 − 1

)n+1

−
(
1 + 2x −

√
(1 + 2x)2 − 1

)n+1]

≤
8x

√
1+x
1−x

(
1 + 2x +

√
(1 + 2x)2 − 1

)n+1

−
(
1 + 2x −

√
(1 + 2x)2 − 1

)n+1

≤
8x

√
1+1/2
1−1/2

(
1 + 2x +

√
(1 + 2x)2 − 1

)n+1

− 1
≤ 8x

√
3

1 + 2n(n + 1)x − 1
≤ 4

√
3

n2
. (25)

Finally, we consider the case x ∈ [12 , 1]. Using (9) and (13), we get

|hn(T ; x)| ≤ e−
1

2
S1 = e−

n

4 . (26)
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Thus for any x ∈ [12 , 1] and n = 1, 2, . . . ,

|en(T ; x)| =
2x|hn(T ; x)|
|1 + hn(T ; x)| ≤

2x|hn(T ; x)|
1 − |hn(T ; x)|

≤ 2e−
n

4

1 − e−
n

4

=
2

e
n

4 − 1

≤ 2

1 + 1
2 (n

4 )2 − 1
=

64

n2
. (27)

Comparison of (24), (25), and (27) completes the proof of the theorem. 2

Next we show that the estimate (23) is sharp, namely, the following result holds.

Theorem 2 Let x∗ = 1
4(n+1)2 . Then there exists a positive number c0 such that

|en(T ; x∗)| ≥ c0

(n + 1)2
. (28)

Proof Note first that for n ≥ 1, x∗ ∈ [0, z1], and (6) implies 0 < hn(T ; x∗) ≤ 1. We can write

4(n + 1)2|en(T ; x∗)| =
|en(T ; x∗)|

x∗
=

2hn(T ; x∗)

1 + hn(T ; x∗)
≥ hn(T ; x∗). (29)

Let tn = arccos(1 − 2x∗) = arccos[1 − 1
2(n+1)2 ], which is equivalent to sin tn

2 = 1
2(n+1) . By

applying the elementary inequality (15), we can get tn

π ≤ sin tn

2 ≤ tn

2 , which is equivalent to
1

n+1 ≤ tn ≤ π
2(n+1) , thus

sin(n + 1)tn ≥ sin 1. (30)

For n = 1, 2, . . . , we can write

Un(1 + 2x∗) =

(
1 + 2x∗ +

√
(1 + 2x∗)2 − 1

)n+1

−
(
1 + 2x∗ −

√
(1 + 2x∗)2 − 1

)n+1

2
√

(1 + 2x∗)2 − 1

≤

(
1 + 2x∗ +

√
(1 + 2x∗)2 − 1

)n+1

2
√

(1 + 2x∗)2 − 1

=

(
1 + 1

2(n+1)2 +
√

( 1
(n+1)2 + 1

4(n+1)4

)n+1

2
√

(1 + 2x∗)2 − 1

≤

(
1 + 1

2(n+1)2 +
√

2
n+1

)n+1

2
√

(1 + 2x∗)2 − 1
≤

(
1 + 2

n+1

)n+1

2
√

(1 + 2x∗)2 − 1
≤ e2

2
√

4x∗2 + 4x∗
. (31)

Applying (30) and (31), we get

hn(T ; x∗) =
Un(1 − 2x∗)

Un(1 + 2x∗)
≥ | sin(n + 1) arccos(1 − 2x∗)|√

−4x∗2 + 4x∗

2
√

4x∗2 + 4x∗

e2

≥ 2 sin 1

e2
. (32)

Therefore (29) and (32) together yield

|en(T ; x∗)| ≥
2 sin 1

e2

4(n + 1)2
=

sin 1

2e2(n + 1)2
.
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