Incompleteness and Minimality of Exponential System

Si Yu KE, Guan Tie DENG*
School of Mathematical Sciences and Key Laboratory of Mathematics and Complex System, Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China

Abstract

Necessary and sufficient conditions are obtained for the incompleteness and the minimality of the exponential system $E(\Lambda, M)=\left\{z^{l} e^{\lambda_{n} z}: l=0,1, \ldots, m_{n}-1 ; n=1,2, \ldots\right\}$ in the Banach space $E^{2}[\sigma]$ consisting of some analytic functions in a half strip. If the incompleteness holds, each function in the closure of the linear span of exponential system $E(\Lambda, M)$ can be extended to an analytic function represented by a Taylor-Dirichlet series. Moreover, by the conformal mapping $\zeta=\phi(z)=e^{z}$, the similar results hold for the incompleteness and the minimality of the power function system $F(\Lambda, M)=\left\{(\log \zeta)^{l} \zeta^{\lambda_{n}}: l=0,1, \ldots, m_{n}-1 ; n=\right.$ $1,2, \ldots\}$ in the Banach space $F^{2}[\sigma]$ consisting of some analytic functions in a sector.

Keywords incompleteness; minimality; exponential system.
Document code A
MR(2010) Subject Classification 30E05; 41A30
Chinese Library Classification O174.5; O174.52

1. Introduction

Following, e.g., [1] and [2], a system $E=\left\{e_{n}: n=1,2, \ldots\right\}$ of elements of a Banach space X is called to be (i) incomplete in X if $\overline{\operatorname{span}} E \neq X$; (ii) minimal in X if for all $n=1,2, \ldots$, $e_{n} \notin \overline{\operatorname{span}}\left(E-\left\{e_{n}\right\}\right)$, where $\operatorname{span} E$ is the linear span of the system E and $\overline{\operatorname{span}} E$ is the closure of $\operatorname{span} E$ in X. The incompleteness of the system E in X is equivalent to the existence of a non-trivial functional f in the dual Banach space X^{*} of X which annihilates the system E, i.e., $f\left(e_{n}\right)=0, n=1,2, \ldots$ The minimality of the system E in X is equivalent to the existence of a system of conjugate functionals $\left\{f_{n}: n=1,2, \ldots\right\}$ in X^{*}, i.e., $f_{n}\left(e_{m}\right)=\delta_{n m}$ (Kronneker delta, i.e., $\delta_{n n}=1$, while $\delta_{n m}=0$ for $n \neq m$). The system $\left\{f_{n}\right\}$ is also called a biorthogonal system of the system E.

Let $\Lambda=\left\{\lambda_{n}: n=1,2, \ldots\right\}$ be a sequence of distinct complex numbers in the open right half-plane $\mathbb{C}_{0}=\{z \in \mathbb{C}: \operatorname{Re} z>0\}$, and $M=\left\{m_{n}: n=1,2, \ldots\right\}$ be a sequence of positive integers. With these sequences Λ and M, we associate the complex exponential system

$$
E(\Lambda, M)=\left\{z^{l} e^{\lambda_{n} z}: l=0,1, \ldots, m_{n}-1 ; n=1,2, \ldots\right\}
$$

[^0]Let $D_{s, \tau}$ be the half strip $\{z \in \mathbb{C}:|\operatorname{Im} z|<s, \operatorname{Re} z<\tau\}$, $\gamma_{s, \tau}$ be a boundary of $D_{s, \tau}$ traced around in the positive direction with respect to $D_{s, \tau}$. When $0<\sigma<\infty$, let $D_{\sigma}=D_{\sigma, 0}$, $D_{\sigma}^{*}=\mathbb{C} \backslash\left(D_{\sigma} \cup \gamma_{\sigma}\right), \gamma_{\sigma}=\gamma_{\sigma, 0}$. When $1 \leq p<\infty$, denote by $E^{p}[\sigma]$ and $E_{*}^{p}[\sigma]$ the sets consisting of all functions f analytic in D_{σ} and D_{σ}^{*}, respectively, such that

$$
\sup \left\{\dot{I}_{p}(s, \tau, f): 0<s<\sigma, \tau<0\right\}<\infty \text { and } \sup \left\{\dot{I}_{p}(s, \tau, f): s>\sigma, \tau>0\right\}<\infty
$$

respectively. Here, $\dot{I}_{p}(s, \tau, f)=\left(\int_{\gamma_{s, \tau}}|f(z)|^{p}|\mathrm{~d} z|\right)^{\frac{1}{p}}$. By Lemma 5 in [3], $E(\Lambda, M)$ is a subset of $E^{2}[\sigma]$, and if we define a norm on each of the sets $E^{2}[\sigma]$ and $E_{*}^{2}[\sigma]$ by the equality $\|f\|=$ $\left(\int_{\gamma_{\sigma}}|f(t)|^{2}|\mathrm{~d} t|\right)^{\frac{1}{2}}$, then the sets $E^{2}[\sigma]$ and $E_{*}^{2}[\sigma]$ become Banach spaces.

As in [4], we are interested in the incompleteness and the minimality of $E(\Lambda, M)$ in Banach space $E^{2}[\sigma]$. Our main conclusions are as follows:

Theorem 1 Suppose that $\Lambda=\left\{\lambda_{n}=\left|\lambda_{n}\right| e^{i \varphi_{n}}: n=1,2, \ldots\right\}$ is a sequence of distinct complex numbers in \mathbb{C}_{0}, and $M=\left\{m_{n}: n=1,2, \ldots\right\}$ is a sequence of positive integers, then

$$
E(\Lambda, M)=\left\{z^{l} e^{\lambda_{n} z}: l=0,1, \ldots, m_{n}-1 ; n=1,2, \ldots\right\}
$$

is incomplete in $E^{2}[\sigma]$ if and only if

$$
\begin{equation*}
\sum_{\left|\lambda_{n}\right| \leq 1} \operatorname{Re} \lambda_{n}<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{r \rightarrow \infty}\left(S(r)-\frac{\sigma}{\pi} \log r\right)<\infty \tag{2}
\end{equation*}
$$

are satisfied, where

$$
\begin{equation*}
S(r)=\sum_{1<\left|\lambda_{n}\right| \leq r} m_{n}\left(\frac{1}{\left|\lambda_{n}\right|}-\frac{\left|\lambda_{n}\right|}{r^{2}}\right) \cos \varphi_{n} . \tag{3}
\end{equation*}
$$

Remark 1 Theorem 1 was proved by Vinnitskii in [3] when $m_{n} \equiv 1$.
Theorem 2 Suppose that $\Lambda=\left\{\lambda_{n}=\left|\lambda_{n}\right| e^{i \varphi_{n}}: n=1,2, \ldots\right\}$ is a sequence of complex numbers in \mathbb{C}_{0}, and $M=\left\{m_{n}: n=1,2, \ldots\right\}$ is a sequence of positive integers, satisfying

$$
\begin{gather*}
\Theta(\Lambda)=\sup \left\{\left|\varphi_{n}\right|: n=1,2, \ldots\right\}<\frac{\pi}{2}, \tag{4}\\
\delta(\Lambda)=\inf \left\{\left|\lambda_{n+1}\right|-\left|\lambda_{n}\right|: n=0,1,2, \ldots ; \lambda_{0}=0\right\}>0, \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
K(M)=\sup \left\{m_{n}: n=1,2, \ldots\right\}<\infty . \tag{6}
\end{equation*}
$$

If $S(r)-\frac{\sigma}{\pi} \log r$ is bounded on $(1, \infty)$, then $E(\Lambda, M)=\left\{z^{l} e^{\lambda_{n} z}: l=0,1, \ldots, m_{n}-1 ; n=1,2, \ldots\right\}$ is incomplete and minimal in $E^{2}[\sigma]$, and each function $f \in \overline{\operatorname{span}} E(\Lambda, M)$ can be extended to an analytic function $\tilde{f}(z)$ represented by a Taylor-Dirichlet series

$$
\begin{equation*}
\tilde{f}(z)=\sum_{n=1}^{\infty} \sum_{k=0}^{m_{n}-1} a_{n, k} z^{k} e^{\lambda_{n} z}, \quad z \in D(B), \tag{7}
\end{equation*}
$$

where $D(B)=\left\{z=r e^{i \theta}: r \cos (|\pi-\theta|+\Theta(\Lambda))>B\right\}$, and B is a positive constant only dependent on Λ, M and σ.

Remark 2 If (4)-(6) hold, $S(r)-\lambda(r)$ is bounded on $(1, \infty)$, here

$$
\lambda(r)= \begin{cases}\sum_{\left|\lambda_{n}\right| \leq r} \frac{m_{n} \cos \varphi_{n}}{\left|\lambda_{n}\right|}, & \text { if } r \geq\left|\lambda_{1}\right| ; \\ 0, & \text { otherwise. }\end{cases}
$$

By the conformal mapping $\zeta=\phi(z)=e^{z}$, each half strip $D_{s, \tau}(0<s<\pi)$ is mapped to the sector $\mathcal{D}_{s, \tau}=\left\{\zeta=r e^{i \theta}: 0<r<e^{\tau},|\theta|<s<\pi\right\}=\phi\left(D_{s, \tau}\right), \kappa_{s, \tau}=\phi\left(\gamma_{s, \tau}\right)$ is a boundary of $\mathcal{D}_{s, \tau}$ traced around in the positive direction with respect to $\mathcal{D}_{s, \tau}, \kappa_{\sigma}=\kappa_{\sigma, 0}$, and $\mathcal{D}_{\sigma}=\mathcal{D}_{\sigma, 0}$. Denote by $F^{p}[\sigma]$ the linear space of functions F analytic in \mathcal{D}_{σ} such that

$$
\sup \left\{\dot{J}_{p}(s, \tau, F): 0<s<\sigma, \tau<0\right\}<\infty
$$

where $\dot{J}_{p}(s, \tau, F)=\left(\int_{\gamma_{s, \tau}}|J(z)|^{p}|\mathrm{~d} z|\right)^{\frac{1}{p}}$.
The conformal mapping $\zeta=\phi(z)$ transforms D_{σ} onto \mathcal{D}_{σ}, and

$$
\int_{\kappa_{s, \tau}}|F(\zeta)|^{p}|\mathrm{~d} \zeta|=\int_{\gamma_{s, \tau}}|F(\phi(z))|^{p}\left|\phi^{\prime}(z)\right| \mathrm{d} z
$$

then the mapping $\mathcal{L}: F(\zeta) \longrightarrow f(z)=\left|F(\phi(z)) \| \phi^{\prime}(z)\right|^{\frac{1}{p}}$ defines an isomorphism between $F^{p}[\sigma]$ and $E^{p}[\sigma]$. Define a norm in $F^{2}[\sigma]$ by the equality $\|F\|=\left(\int_{\kappa_{\sigma}}|F(t)|^{p}|\mathrm{~d} t|\right)^{\frac{1}{2}}$, then $F^{2}[\sigma]$ is a Banach space.

Suppose that $\Lambda^{\prime}=\left\{\lambda_{n}^{\prime}=\left|\lambda_{n}^{\prime}\right| e^{i \varphi_{n}^{\prime}}: n=1,2, \ldots\right\}$ is a sequence of distinct complex numbers in $\mathbb{C}_{-\frac{1}{2}}=\left\{z \in \mathbb{C}: \operatorname{Re} z>-\frac{1}{2}\right\}$, then the incompleteness and the minimality of $F\left(\Lambda^{\prime}, M\right)=$ $\left\{(\log \zeta)^{l} \zeta^{\lambda_{n}^{\prime}}: l=0,1, \ldots, m_{n}-1 ; n=1,2, \ldots\right\}$ in $F^{2}[\sigma]$ are equivalent to the ones of $E(\Lambda, M)=$ $\left\{z^{l} e^{\lambda_{n} z}: l=0,1, \ldots, m_{n}-1 ; n=1,2, \ldots\right\}$ in $E^{2}[\sigma]$, where $\Lambda=\Lambda^{\prime}+\frac{1}{2}=\left\{\lambda_{n}^{\prime}+\frac{1}{2}: n=1,2, \ldots\right\}$ is a sequence of distinct complex numbers in \mathbb{C}_{0}.

Corollary 1 Suppose that $\Lambda^{\prime}=\left\{\lambda_{n}^{\prime}=\left|\lambda_{n}^{\prime}\right| e^{i \varphi_{n}^{\prime}}: n=1,2, \ldots\right\}$ is a sequence of distinct complex numbers in $\mathbb{C}_{-\frac{1}{2}}$ and $M=\left\{m_{n}: n=1,2, \ldots\right\}$ is a sequence of positive integers, then $F\left(\Lambda^{\prime}, M\right)=\left\{(\log \zeta)^{l} \zeta^{\lambda_{n}^{\prime}}: l=0,1, \ldots, m_{n}-1 ; n=1,2, \ldots\right\}$ is incomplete in $F^{2}[\sigma]$ if and only if Λ^{\prime} satisfies

$$
\sum_{\left|\lambda_{n}\right| \leq 1} m_{n} \operatorname{Re} \lambda_{\mathrm{n}}<\infty
$$

and

$$
\lim _{r \rightarrow \infty}\left(S(r)-\frac{\sigma}{\pi} \log r\right)<\infty
$$

where $\lambda_{n}=\left|\lambda_{n}\right| e^{i \varphi_{n}}=\lambda_{n}^{\prime}+\frac{1}{2}$, and $S(r)$ is defined by (3).
Corollary 2 Suppose that $\Lambda^{\prime}=\left\{\lambda_{n}^{\prime}=\left|\lambda_{n}^{\prime}\right| e^{i \varphi_{n}^{\prime}}: n=1,2, \ldots\right\}$ is a sequence of complex numbers in $\mathbb{C}_{-\frac{1}{2}}$ and $M=\left\{m_{n}: n=1,2, \ldots\right\}$ is a sequence of positive integers such that the sequence $\Lambda=\Lambda^{\prime}+\frac{1}{2}=\left\{\lambda_{n}=\left|\lambda_{n}\right| e^{i \varphi_{n}}=\lambda_{n}^{\prime}+\frac{1}{2}: n=1,2, \ldots\right\}$ and M satisfy (4)-(6). If $S(r)-\frac{\sigma}{\pi} \log r$ is bounded on $(1, \infty)$, then $F\left(\Lambda^{\prime}, M\right)=\left\{(\log \zeta)^{l} \zeta^{\lambda_{n}^{\prime}}: l=0,1, \ldots, m_{n}-1 ; n=1,2, \ldots\right\}$ is incomplete, minimal in $F^{2}[\sigma]$, and each function $F \in \overline{\operatorname{span}} F\left(\Lambda^{\prime}, M\right)$ can be extended to an
analytic function $\tilde{F}(\zeta)$ represented by weighted lacunary power series

$$
\tilde{F}(\zeta)=\sum_{n=1}^{\infty} \sum_{k=0}^{m_{n}-1} a_{n, k}(\log \zeta)^{k} \zeta^{\lambda_{n}^{\prime}}, \quad \zeta \in \mathcal{D}(B)
$$

where $\mathcal{D}(B)=\{\zeta \in \mathbb{C}: \cos \Theta(\Lambda) \log |\zeta|+\sin \Theta(\Lambda)|\arg \zeta|+B<0\}$, and B is a positive constant only dependent on Λ, M and σ.

2. Proof of Theorems

Denote by H_{σ}^{p} the space consisting of all functions f analytic in \mathbb{C}_{0} satisfying $\|f\|:=$ $\sup \left\{\left(\int_{0}^{\infty}\left|f\left(r e^{i \theta}\right)\right|^{p} e^{-p \sigma r|\sin \theta|} \mathrm{d} r\right)^{\frac{1}{p}}:|\theta|<\frac{\pi}{2}\right\}<\infty$, and $H(\Lambda, M)$ the class consisting of all functions $f \not \equiv 0$ analytic in \mathbb{C}_{0} and having zeros of orders m_{n} at the points λ_{n}. Hereafter we denote a positive constant by A, not necessarily the same at each occurrence. In order to prove our conclusions, we need the following lemmas.

Lemma 1 Suppose that $\Lambda=\left\{\lambda_{n}=\left|\lambda_{n}\right| e^{i \varphi_{n}}: n=1,2, \ldots\right\}$ is a sequence of complex numbers in \mathbb{C}_{0} and $M=\left\{m_{n}: n=1,2, \ldots\right\}$ is a sequence of positive integers satisfying (4)-(6), then the function

$$
\begin{equation*}
G(z)=\prod_{n=1}^{\infty}\left(\frac{1-z / \lambda_{n}}{1+z / \bar{\lambda}_{n}}\right)^{m_{n}} \exp \left(\frac{m_{n} z}{\lambda_{n}}+\frac{m_{n} z}{\bar{\lambda}_{n}}\right) \tag{8}
\end{equation*}
$$

is analytic in the closed right half plane $\overline{\mathbb{C}}_{0}=\{z \in \mathbb{C}: \operatorname{Re} z \geq 0\}$, and satisfies the following inequalities

$$
\begin{equation*}
|G(z)| \leq \exp \{2 x \lambda(r)+A x\} \tag{9}
\end{equation*}
$$

for all $z \in \mathbb{C}_{0}$, and

$$
\begin{equation*}
|G(z)| \geq \exp \{2 x \lambda(r)-A x\} \tag{10}
\end{equation*}
$$

for all $z \in C\left(\Lambda, \delta_{0}\right)$, where $r=|z|, 4 \delta_{0}=\delta(\Lambda)$ and $C\left(\Lambda, \delta_{0}\right)=\left\{z \in \mathbb{C}_{0}:\left|z-\lambda_{n}\right| \geq \delta_{0}, n=\right.$ $1,2, \ldots\}$.

Remark 3 When $\Theta(\Lambda)=0, m_{n} \equiv 1, G(z)$ is Fuch's function [5].
Lemma 2 ([3]) Each continuous linear functional Φ on $E^{2}[\sigma]$ is associated with a unique function $g \in E_{*}^{2}[\sigma]$ such that the value $\langle\Phi, f\rangle$ of the functional Φ at $f \in E^{2}[\sigma]$ is given by the relation $\langle\Phi, f\rangle=\int_{\gamma_{\sigma}} f(t) g(t) \mathrm{d} t$. In this case, the norm of the functional Φ is equivalent to the norm of the function g and the space $\left(E^{2}[\sigma]\right)^{*}$ (strongly) dual to $E^{2}[\sigma]$ can be realized as $E_{*}^{2}[\sigma]$.

Lemma 3 ([3]) The equality

$$
\begin{equation*}
f_{2}(z)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} f_{1}(w) e^{-z w} \mathrm{~d} w \tag{11}
\end{equation*}
$$

determines a one-to-one correspondence between the functions $f_{1} \in H_{\sigma}^{2}$ and $f_{2} \in E_{*}^{2}[\sigma]$. The following duality relation is valid

$$
\begin{equation*}
f_{1}(w)=\frac{1}{\sqrt{2 \pi} i} \int_{\gamma_{\sigma}} f_{2}(z) e^{z w} \mathrm{~d} z \tag{12}
\end{equation*}
$$

Furthermore, $\left\|f_{2}\right\| / A \leq\left\|f_{1}\right\| \leq 3\left\|f_{2}\right\|$.
Lemma 4 ([3]) In order that a function $f \in H_{\sigma}^{2} \cap H(\Lambda, M)$ exists, it is necessary and sufficient that conditions (1) and (2) are satisfied.

Lemma 5 ([3]) If $f \in E^{p}[\sigma]$, then, almost everywhere on γ_{σ}, f has angular limit values belonging to $L^{2}\left[\gamma_{\sigma}\right]$ and, moreover,

$$
\frac{1}{2 \pi i} \int_{\gamma_{\sigma}} \frac{f(t)}{t-z} \mathrm{~d} t= \begin{cases}f(z), & z \in D_{\sigma} \\ 0, & z \in D_{\sigma}^{*}\end{cases}
$$

Proof of Lemma 1 By (4)-(6), $\sum_{n=1}^{\infty} m_{n}\left|\lambda_{n}\right|^{-2}<\infty$, and the product (8) defines an analytic function in $\overline{\mathbb{C}}_{0}$, which has zeros of orders m_{n} at each point λ_{n}. Let

$$
e_{n}(z)=\left|\frac{z-\lambda_{n}}{z+\bar{\lambda}_{n}}\right|^{2}=1-\frac{4 x\left|\lambda_{n}\right| \cos \varphi_{n}}{\left|z+\bar{\lambda}_{n}\right|^{2}}
$$

and

$$
E_{n}(z)=\log \left|\frac{1-z / \lambda_{n}}{1+z / \bar{\lambda}_{n}} \exp \left(\frac{z}{\lambda_{n}}+\frac{z}{\bar{\lambda}_{n}}\right)\right|=2 x \frac{\cos \varphi_{n}}{\left|\lambda_{n}\right|}+\frac{1}{2} \log e_{n}(z)
$$

where $x=\operatorname{Re} z>0$. When $\left|\lambda_{n}\right|>8|z|$,

$$
l_{n}(z)=1-\frac{\left|\lambda_{n}\right|^{2}}{\left|\bar{\lambda}_{n}+z\right|^{2}} \leq \frac{288}{49} \frac{|z|}{\left|\lambda_{n}\right|}
$$

and

$$
1-e_{n}(z)=\frac{4 x\left|\lambda_{n}\right| \cos \varphi_{n}}{\left|z+\bar{\lambda}_{n}\right|^{2}} \leq \min \left\{\frac{4}{7}, \frac{A \sqrt{x r \cos \varphi_{n}}}{\left|\lambda_{n}\right|}\right\}
$$

so

$$
\left|E_{n}(z)\right|=\left|\frac{2 x \cos \varphi_{n}}{\left|\lambda_{n}\right|} l_{n}(z)-\frac{1}{2} \sum_{k=2}^{\infty} \frac{1}{k}\left(1-e_{n}(z)\right)^{k}\right|
$$

hence

$$
\begin{equation*}
\left|E_{n}(z)\right| \leq \frac{A|x| r \cos \varphi_{n}}{\left|\lambda_{n}\right|^{2}}, \quad x=\operatorname{Re} z \tag{13}
\end{equation*}
$$

By (4)-(6) and $0 \leq e_{n}(z)<1$,

$$
\begin{aligned}
\log |G(z)| & \leq 2 x \sum_{\left|\lambda_{n}\right| \leq 8 r} \frac{m_{n} \cos \varphi_{n}}{\left|\lambda_{n}\right|}+A x r \sum_{\left|\lambda_{n}\right|>8 r} \frac{m_{n} \cos \varphi_{n}}{\left|\lambda_{n}\right|^{2}} \\
& \leq 2 x \lambda(8 r)+A x r \sum_{\left|\lambda_{n}\right|>8 r} \frac{m_{n} \cos \varphi_{n}}{\left|\lambda_{n}\right|^{2}} \leq 2 x \lambda(r)+A x .
\end{aligned}
$$

Thus inequality (9) holds. In order to prove inequality (10), we note that

$$
\log |G(z)| \geq \sum_{\left|\lambda_{n}\right| \leq 8 r} m_{n} E_{n}(z)-\sum_{\left|\lambda_{n}\right|>8 r} m_{n}\left|E_{n}(z)\right|=\Pi_{1}-\Pi_{2}
$$

Inequality (13) yields $\Pi_{2}=O(x)$ if $x \geq 0$. Let $n(r)=\sum_{\left|\lambda_{n}\right| \leq r} m_{n}$. Then $n(r)=O(r)$ by (4)-(6). We consider the following two cases for Π_{1} :
(i) $z \in\left\{z \in C\left(\Lambda, \delta_{0}\right): \Theta(\Lambda)+2 \epsilon_{1} \leq|\theta|<\frac{\pi}{2}\right\}$;
(ii) $z \in\left\{z \in C\left(\Lambda, \delta_{0}\right):|\theta|<\Theta(\Lambda)+2 \epsilon_{1}\right\}$, where $z=r e^{i \theta}$, and $4 \epsilon_{1}=\frac{\pi}{2}-\Theta(\Lambda)$.

In case (i), let $\delta_{1}=\sin ^{2} \epsilon_{1}$. Then

$$
\left|z+\bar{\lambda}_{n}\right|^{2} \geq 2 r\left|\lambda_{n}\right|+2 r\left|\lambda_{n}\right| \cos \left(\left|\theta-\varphi_{n}\right|\right)=4 r\left|\lambda_{n}\right|\left(1+\delta_{1}\right)
$$

and

$$
0<1-e_{n}(z)=\frac{4 x\left|\lambda_{n}\right| \cos \varphi_{n}}{\left|z+\bar{\lambda}_{n}\right|^{2}} \leq \frac{x}{r\left(1+\delta_{1}\right)}
$$

Since

$$
\log (1-t) \geq-t-\frac{1+\delta_{1}}{2 \delta_{1}} t^{2} \geq-A t, \quad t \in\left[0, \frac{1}{1+\delta_{1}}\right]
$$

by taking $t=1-e_{n}(z)$, then $e_{n}(z) \geq \exp \left\{-A \frac{x}{r}\right\}$. Moreover,

$$
\begin{aligned}
\Pi_{1} & \geq 2 x \sum_{\left|\lambda_{n}\right| \leq 8 r} \frac{m_{n} \cos \varphi_{n}}{\left|\lambda_{n}\right|}-\sum_{\left|\lambda_{n}\right| \leq 8 r} \frac{1}{2} m_{n} \log e_{n}(z) \\
& \geq 2 x \lambda(8 r)-\frac{A x}{r} n(8 r) \geq 2 x \lambda(r)-A x .
\end{aligned}
$$

This implies that inequality (10) holds in this case.
In case (ii), let Λ_{k} be the set $\left\{\lambda_{n} \in \Lambda: \exists n\right.$, s.t. $\left.m_{n}=k\right\}$. Then $\Lambda_{1}, \ldots, \Lambda_{K(M)}$ are disjoint and $\Lambda=\Lambda_{1} \cup \Lambda_{2} \cup \cdots \cup \Lambda_{K(M)}$. Let $\Lambda_{k}=\left\{\lambda_{k_{n}}: n=1,2, \ldots\right\}$, and $n_{k}(r)$ be the number of $\lambda \leq r$ and $\lambda \in \Lambda_{k}$. When $\left|z-\lambda_{n}\right| \geq \delta_{0}$, (4)-(6) and Stirling's formula yield

$$
\prod_{\lambda \in \Lambda_{k},|\lambda| \leq 8 r}|\lambda-z| \geq \delta_{0}^{N_{k}} n_{k}(x)!\left(N_{k}-n_{k}(x)\right)!\geq\left(\frac{N_{k}}{A}\right)^{N_{k}}
$$

and

$$
\prod_{\lambda \in \Lambda_{k},|\lambda| \leq 8 r}|\bar{\lambda}+z| \leq(A r)^{N_{k}}
$$

where $N_{k}=n_{k}(8 r), k=1,2, \ldots, K(M)$. Thus,

$$
\begin{aligned}
\Pi_{1} & \geq \sum_{1 \leq k \leq K(M)} N_{k}\left(\log N_{k}-\log (A x)\right)+2 x \sum_{\left|\lambda_{n}\right| \leq 8 r} \frac{\cos \varphi_{n}}{\left|\lambda_{n}\right|} \\
& \geq x \lambda(r)-A x,
\end{aligned}
$$

and in the last inequality, we use $N(\log N-\log a) \geq-a e^{-1}$ for $a>0$. Therefore inequality (10) holds.

Proof of Theorem 1 According to Lemmas 2 and 3, similarly to the proof of Vinnitskii in [3], the space dual to $E^{2}[\sigma]$ can be realized in the form H_{σ}^{2}. In this case, the value $\left\langle f_{1}, f\right\rangle^{*}$ of the functional $f_{1} \in E^{2}[\sigma]$ is determined by the equality

$$
\left\langle f_{1}, f\right\rangle^{*}=\int_{\gamma_{\sigma}} f_{2}(t) f(t) \mathrm{d} t
$$

where f_{2} is defined by (11). In view of (12), we have

$$
\left\langle f_{1}(z), z^{l} e^{\lambda_{n} z}\right\rangle^{*}=\int_{\gamma_{\sigma}} t^{l} e^{\lambda_{n} t} f_{2}(t) \mathrm{d} t=\sqrt{2 \pi} i f_{1}^{(l)}\left(\lambda_{n}\right)
$$

Hence, the well-known criterion of completeness implies that system $E(\Lambda, M)$ is incomplete in $E^{2}[\sigma]$ if and only if there exists a function $f_{1} \in H_{\sigma}^{2} \cap H(\Lambda, M)$. Therefore, Theorem 1 follows
from Lemma 4.
Proof of Theorem 2 Taking inequality (9) and (10) into account and properly choosing the number M, we can see that the function

$$
U(z)=\frac{\exp \left\{-M z-\frac{2 \sigma}{\pi} z \log z\right\}}{1+z} G(z)
$$

satisfies the following inequalities

$$
\begin{equation*}
|U(z)| \leq \frac{\exp \{\sigma|y|\}}{|1+z|} \tag{14}
\end{equation*}
$$

for all $z \in \mathbb{C}_{0}$, and

$$
\begin{equation*}
|U(z)| \geq \frac{\exp \{-A x-\sigma|y|\}}{|1+z|} \tag{15}
\end{equation*}
$$

for all $z \in C\left(\Lambda, \delta_{0}\right)$, where $G(z)$ is defined by (8).
Let $D_{n}=\left\{z:\left|z-\lambda_{n}\right|<\delta_{0}\right\}$ and $A_{n, j}$ be the coefficients of the principal part of the Laurent series for the function $\frac{1}{U(z)}$ in $D_{n}-\left\{\lambda_{n}\right\}$, i.e.,

$$
\begin{equation*}
\frac{1}{U(z)}=\sum_{j=1}^{m_{n}} \frac{A_{n, j}}{\left(z-\lambda_{n}\right)^{j}}+g_{n}(z), \quad z \in D_{n}-\left\{\lambda_{n}\right\} \tag{16}
\end{equation*}
$$

where $g_{n}(z) \in H\left(D_{n}\right)$. Then

$$
A_{n, j}=\frac{1}{2 \pi i} \int_{\left|z-\lambda_{n}\right|=\delta_{0}} \frac{\left(z-\lambda_{n}\right)^{j-1}}{U(z)} \mathrm{d} z
$$

According to inequality (15),

$$
\begin{equation*}
\max \left\{\left|A_{n, j}\right|: 1 \leq j \leq m_{n}\right\} \leq \exp \left\{B\left(\left|\lambda_{n}\right|+1\right)\right\} \tag{17}
\end{equation*}
$$

where B is a constant only dependent on Λ, M and σ. Let

$$
H_{n, k}(z)=U(z) \sum_{l=1}^{m_{n}-k} \frac{A_{n, k+l}}{k!\left(z-\lambda_{n}\right)^{l}}, \quad k=0,1, \ldots, m_{n}-1 ; n=1,2, \ldots
$$

By inequalities (14), (17) and Maximum Module Principle, we have

$$
\left|H_{n, k}(z)\right| \leq \frac{A \exp \{\sigma|y|\}}{|1+z|-2 \delta_{0}} \exp \left\{B\left|\lambda_{n}\right|\right\}
$$

Then $H_{n, k}(z) \in H_{\sigma}^{2}$, and $\left\|H_{n, k}\right\|_{H_{\sigma}^{2}} \leq A \exp \left\{B\left|\lambda_{n}\right|\right\}$. By Lemma 3, each function

$$
h_{n, k}(z)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} H_{n, k}(t) e^{-z t} \mathrm{~d} t
$$

belongs to $E_{*}^{2}[\sigma]$ and satisfies

$$
\left\|h_{n, k}\right\|_{E_{*}^{2}[\sigma]} \leq A \exp \left\{B\left|\lambda_{n}\right|\right\}
$$

and the duality relation

$$
H_{n, k}(z)=\frac{1}{\sqrt{2 \pi} i} \int_{\gamma_{\sigma}} h_{n, k}(t) e^{t z} \mathrm{~d} t, \quad \operatorname{Re} z>0
$$

holds. Next we will prove that

$$
\begin{equation*}
H_{n, k}^{(l)}\left(\lambda_{j}\right)=\delta_{n j} \delta_{k l}, \quad \text { i.e., } \frac{1}{\sqrt{2 \pi} i} \int_{\gamma_{\sigma}} t^{l} e^{\lambda_{j} t} h_{n, k}(t) \mathrm{d} t=\delta_{n j} \delta_{k l}, \tag{18}
\end{equation*}
$$

where $l=0,1, \ldots, m_{j}-1, k=0,1, \ldots, m_{n}-1 ; n, j=1,2, \ldots$ It is obvious that if $j \neq n$, then $H_{n, k}^{(l)}\left(\lambda_{j}\right)=0, l=0,1, \ldots, m_{j}-1$. If $j=n$, then by (16), for $z \in D_{n}$ and $k=0,1, \ldots, m_{n}-1$, $n=1,2, \ldots$,

$$
\begin{aligned}
H_{n, k}(z) & =U(z) \frac{\left(z-\lambda_{n}\right)^{k}}{k!} \sum_{l=k+1}^{m_{n}} \frac{A_{n, l}}{\left(z-\lambda_{n}\right)^{l-k}} \\
& =U(z) \frac{\left(z-\lambda_{n}\right)^{k}}{k!}\left(\frac{1}{U(z)}-\sum_{l=1}^{k} \frac{A_{n, l}}{\left(z-\lambda_{n}\right)^{l}}-g_{n}(z)\right) \\
& =\frac{\left(z-\lambda_{n}\right)^{k}}{k!}+\sum_{l=m_{n}}^{\infty} B_{n, l}\left(z-\lambda_{n}\right)^{l},
\end{aligned}
$$

where $B_{n, l}$ are the coefficients of the Taylor expansion of $H_{n, k}(z)$ at λ_{n}. Thus (18) holds. Define a linear functional $T_{n, k}$ on $E^{2}[\sigma]$ by

$$
T_{n, k}(f)=\frac{1}{\sqrt{2 \pi} i} \int_{\gamma_{\sigma}} h_{n, k}(z) f(z) \mathrm{d} z, \quad f(z) \in E^{2}[\sigma]
$$

Then

$$
\begin{equation*}
\left\|T_{n, k}\right\| \leq \frac{1}{\sqrt{2 \pi}}\left\|h_{n, k}\right\|_{E_{*}^{2}[\sigma]} \leq A \exp \left\{B\left|\lambda_{n}\right|\right\} \tag{19}
\end{equation*}
$$

and

$$
T_{n, k}\left(z^{l} e^{\lambda_{j} z}\right)=\frac{1}{\sqrt{2 \pi} i} \int_{\gamma_{\sigma}} h_{n, k}(z) z^{l} e^{\lambda_{j} z} \mathrm{~d} z=H_{n, k}^{(l)}\left(\lambda_{j}\right)=\delta_{n j} \delta_{k l}
$$

Hence $\left\{T_{n, k}: k=1,2 \ldots, m_{n} ; n=1,2, \ldots\right\}$ is a biorthogonal system of $E(\Lambda, M)$ in $\left(E^{2}[\sigma]\right)^{*}$ and $E(\Lambda, M)$ is minimal in $E^{2}[\sigma]$.

If $f \in \overline{\operatorname{span}} E(\Lambda, M)$, there exists a sequence of exponential polynomials

$$
P_{j}(z)=\sum_{n=1}^{j} \sum_{k=0}^{m_{n}-1} a_{n, k}^{j} z^{k} e^{\lambda_{n} z} \in \operatorname{span} E(\Lambda, M)
$$

such that

$$
\begin{equation*}
\left\|f-P_{j}\right\|_{E^{2}[\sigma]} \longrightarrow 0, \quad j \longrightarrow \infty . \tag{20}
\end{equation*}
$$

Let $\tilde{f}(z)$ be defined by (7), where $a_{n, k}=T_{n, k}(f), D(B)=\left\{z=r e^{i \theta}: r \cos (|\pi-\theta|+\Theta(\Lambda))>\right.$ $B\}$. By (19), the function $\tilde{f}(z)$ is an analytic function in $D(B)$. Since $\frac{1}{t-z} \in L^{2}\left[\gamma_{\sigma}\right], z \in D_{\sigma}$, by Lemma 5,

$$
\begin{equation*}
\left|f(z)-P_{j}(z)\right| \leq \frac{1}{2 \pi}\left\|f-P_{j}\right\|_{L^{2}\left[\gamma_{\sigma}\right]}\left\|\frac{1}{t-z}\right\|_{L^{2}\left[\gamma_{\sigma}\right]} \tag{21}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left|a_{n k}-a_{n k}^{j}\right|=\left|T_{n, k}(f)-T_{n, k}\left(P_{j}\right)\right| \leq\left\|T_{n, k}\right\| \cdot\left\|f-P_{j}\right\|_{E^{2}[\sigma]} \tag{22}
\end{equation*}
$$

so for $z \in D(B) \cap D_{\sigma}$,

$$
|f(z)-\tilde{f}(z)| \leq\left|f(z)-P_{j}(z)\right|+\left|P_{j}(z)-\tilde{f}(z)\right|
$$

$$
\begin{aligned}
\leq & \left|f(z)-P_{j}(z)\right|+\sum_{n=1}^{j} \sum_{k=0}^{m_{n}-1}\left|a_{n k}^{j}-a_{n k}\right| r^{k} e^{\operatorname{Re}\left(\lambda_{k} z\right)}+ \\
& \sum_{k=j+1}^{\infty} \sum_{k=0}^{m_{n}-1}\left|a_{n k}\right| r^{k} e^{\operatorname{Re}\left(\lambda_{k} z\right)} .
\end{aligned}
$$

Letting $j \longrightarrow \infty$, by (19)-(22), we see that $f(z)=\tilde{f}(z)$ for each $z \in D(B) \cap D_{\sigma}$. This completes the proof of Theorem 2.

References

[1] SEDLETSKII A M. Fourier Transforms and Approximations [M]. Gordon and Breach Science Publishers, Amsterdam, 2000.
[2] YOUNG R M. An Introduction to Nonharmonic Fourier Series [M]. Academic Press, Inc., New York-London, 1980.
[3] VINNITSKII B V. On zeros of functions analytic in a half plane and completeness of systems of exponents [J]. Ukrainian Math. J., 1994, 46(5): 514-532.
[4] DENG Guantie. Incompleteness and minimality of complex exponential system [J]. Sci. China Ser. A, 2007, 50(10): 1467-1476.
[5] BOAS R P. Entire Functions [M]. Academic Press Inc., New York, 1954.

[^0]: Received January 17, 2009; Accepted July 19, 2009
 Supported by the National Natural Science Foundation of China (Grant No. 11071020) and the Research Foundation for Doctor Program (Grant No. 20100003110004).

 * Corresponding author

 E-mail address: denggt@bnu.edu.cn (G. T. DENG)

