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Abstract In this paper, we present a variable selection procedure by combining basis function

approximations with penalized estimating equations for varying-coefficient models with missing

response at random. With appropriate selection of the tuning parameters, we establish the

consistency of the variable selection procedure and the optimal convergence rate of the regularized

estimators. A simulation study is undertaken to assess the finite sample performance of the

proposed variable selection procedure.
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1. Introduction

Consider the following varying-coefficient model

Y = XTθ(U) + ǫ, (1)

where θ(u) = (θ1(u), . . . , θp(u))
T is a p×1 vector of unknown functions, X and U are covariates,

Y is the response variable, and ǫ is the model error with E(ǫ|X,U) = 0. In addition, we assume

that the variable U ranges over a nondegenerate compact interval, without loss of generality,

that is assumed to be the unit interval [0, 1].

When the dimension of the covariate X is small, many methods have been developed for

estimating the coefficients in model (1) and its extensions [1–5]. However, when the dimension

of the covariate in model (1) is large, an important problem is to select the important variables

in such models. Traditional methods for variable selection, such as stepwise deletion method,

ignore stochastic errors inherited in the stages of variable selections. Hence, the accuracy of the

regression coefficient estimators in the final model is somewhat difficult to understand. To avoid

this drawback, for linear models, Fan and Li [6] proposed a family of variable selection procedures,
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called SCAD, via a nonconcave penalized likelihood function. This procedure can simultaneously

estimate regression coefficients and shrink some coefficients to zero, thereby, removing them from

the final model. Li and Liang [7] adopted this methodology to select important variables in the

parametric components of semiparametric regression modeling. Wang et al. [8] considered the

variable selection for model (1) with the group SCAD penalty, which is an extension of the

SCAD penalty. Wang et al. [9] adopted the group SCAD penalty to select important variables

of varying coefficient models with longitudinal data. An essential assumption in their papers

is that all data can be observed, but missing data frequently occurs in many applications such

as health and social science studies. For such models with missing data, the variable selection

procedures proposed by [8, 9] cannot be used directly any more. Recently, some work has been

done on the inferences of missing data. Wang and Sun [10] proposed an estimation method

for regression coefficients of partially linear models with missing responses at random based on

inverse marginal probability weighted method. Sun et al. [11] considered the model checking

for partially linear models with missing responses at random. Zhou et al. [12] considered the

inferences of missing data by imputation-based estimating equations. However, the variable

selection for such varying coefficient models with missing data seems to be missing. Taking

this issue into account, we propose a variable selection procedure for the varying-coefficient

models with missing response at random based on basis function approximations and penalized

estimating equations. Furthermore, with proper choice of regularization parameters, we show

that this variable selection procedure is consistent, and the estimators of the coefficient functions

achieve the convergence rate as if the subset of true zero coefficients were already known.

The rest of this paper is organized as follows. In Section 2, we first propose the variable

selection procedure. Then, we present theoretical properties of our variable selection procedure

including the consistency of the variable selections and the convergence rates of the regularized

estimators. In Section 3, based on local quadratic approximations, we propose an iterative

algorithm for finding regularized estimators. In Section 4, some simulations are carried out to

assess the performance of the proposed methods. The technical proofs of all asymptotic results

are provided in the Appendix.

2. Variable selection via penalized estimating equations

Suppose that we have an incomplete random sample (Yi, δi, Xi, Ui), i = 1, . . . , n, from model

(1), where Xi and Ui are observed, and δi = 0 if Yi is missing, otherwise δi = 1. In this paper,

we assume that Y is missing at random (MAR). That is, P (δ = 1|Y,X,U) = P (δ = 1|X,U).

Thus,

δiYi = δiX
T
i θ(Ui) + δiǫi, i = 1, . . . , n. (2)

Let B(u) = (B1(u), . . . , BL(u))T be B-spline basis functions with the order of M , where

L = K +M + 1, and K is the number of interior knots. Then, θk(u) can be approximated by

θk(u) ≈ B(u)Tβk, k = 1, . . . , p. Substituting this into model (2), we can get

δiYi = δiW
T
i β + δiǫi, (3)
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where Wi = Ip ⊗ B(Ui) · Xi and β = (βT
1 , . . . , β

T
p )T. Model (3) is a standard linear regression

model. Let ψi(β) = Wi(Yi −WT
i β), H =

∫ 1

0 B(u)B(u)Tdu, and ‖βk‖H = (βT
k Hβk)

1/2. Further-

more, let pλ(·) be a penalty function with λ as a tuning parameter. Then, it is easy to show

that
∂pλ(‖βk‖H)

∂βk
= p′λ(‖βk‖H)

Hβk
‖βk‖H

.

Invoking this, we note that E{ψi(β)} = o(1), and each function θk(u) in model (2) is characterized

by βk in model (3). This motivates us to adopt the following penalized estimating equations,

that is

η(β) =

n
∑

i=1

δiψi(β) − nb(β), (4)

where

b(β) =
(

p′λ1
(‖β1‖H)

βT
1 H

‖β1‖H
, . . . , p′λp

(‖βp‖H)
βT
p H

‖βp‖H

)T

is a pL×1 penalized vector. There are many ways to specify the penalty function pλ(·). Through-

out this paper, we take pλ(·) as the SCAD penalty function, proposed by Fan and Li [6], which

is defined as

p′λ(w) = λ{I(w ≤ λ) +
(aλ− w)+
(a− 1)λ

I(w > λ)}

with a > 2, w > 0 and pλ(0) = 0. Here, the tuning parameter λ is not necessarily the same for

all θk(·). Hence, we denote λ, that corresponds to θk(·), as λk in b(β), respectively. However,

the subjects with missing data are discarded and only the complete data are used in η(β). To

improve efficiency, we adopt the strategy of Zhou et al. [12], and propose an imputation-based

penalized estimating equation as

η̃(β) =

n
∑

i=1

ψ̃i(β) − nb(β), (5)

where ψ̃i(β) = δiψi(β)+(1−δi)m̃ψ(Ui, β), and m̃ψ(u, β) is the kernel estimator of E{ψi(β)|Ui =

u}, which can be defined as

m̃ψ(u, β) =
n

∑

i=1

δiωni(u)ψi(β),

where ωni(u) = Kh(u− Ui)/
∑n
j=1 δjKh(u− Uj), Kh(·) = h−1K(·/h), K(·) is a kernel function,

and h is a band width.

Let β̂ = (β̂T
1 , . . . , β̂

T
p )T be the solution of η̃(β) = 0. Then, the estimator of θk(u) can

be obtained by θ̂k(u) = B(u)Tβ̂k. Next, we study the asymptotic properties of the resulting

penalized estimators. Let θ0(·) be the true value of θ(·), and corresonding true value of β is

denoted by β0. Without loss of generality, we assume that θk0(·) ≡ 0, k = d+1, . . . , p, and θk0(·),
k = 1, . . . , d are all nonzero components of θ0(·). The following theorem gives the consistency of

the penalized estimators.

Theorem 1 Suppose that the regularity conditions C1–C6 in the Appendix hold and the number
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of knots K = Op(n
1/(2r+1)). Let an = maxk{|p′λk

(‖βk0‖H)| : βk0 6= 0}. Then,

‖θ̂k(·) − θk0(·)‖ = Op(n
−r

2r+1 + an), k = 1, . . . , p,

where r is defined in condition C1 in the Appendix.

By Remark 1 in [6], we have that, if max{λk} → 0 as n→ ∞, then an = 0. Hence, Theorem

1 implies that, by choosing proper tuning parameters, the estimators of coefficient functions

achieve the optimal convergence rate as if the subset of true zero coefficients were already known

[13]. Furthermore, under some conditions, we show that such consistent estimators must possess

the sparsity property, which is stated as follows

Theorem 2 Suppose that the regularity conditions C1–C7 in the Appendix hold and the number

of knots K = Op(n
1/(2r+1)). Let λmax = max{λk : k = 1, . . . , p}, and λmin = min{λk : k =

1, . . . , p}. If λmax → 0 and nr/(2r+1)λmin → ∞, as n→ ∞. Then, with probability tending to 1,

θ̂(·) must satisfy θ̂k(·) ≡ 0, k = d+ 1, . . . , p.

Remark 1 Invoking Theorems 1 and 2, it is clear that by choosing proper tuning parameters,

our variable selection procedure is consistent, and the estimators of coefficient functions achieve

the optimal convergence rate as if the subset of true zero coefficients were already known.

3. Algorithm

Because η̃(β) is irregular at the origin, the common method is not applicable to solve equation

(5). Now, we develop an iterative algorithm based on local quadratic approximation of the

penalty function pλ(·) as in [6]. More specifically, in a neighborhood of a given non-zero w0, an

approximation of the penalty function at value w0 can be given by

pλ(w) ≈ pλ(w0) +
1

2

p′λ(w0)

w0
(w2 − w2

0).

Hence, for the given initial value β
(0)
k with ‖β(0)

k ‖H > 0, k = 1, . . . , p, we have

pλk
(‖βk‖H) ≈ pλk

(‖β(0)
k ‖H) +

1

2

p′λk
(‖β(0)

k ‖H)

‖β(0)
k ‖H

(βT
k Hβk − β

(0)T
k Hβ

(0)
k ).

Then,

∂pλk
(‖βk‖H)

∂βk
≈
p′λk

(‖β(0)
k ‖H)

‖β(0)
k ‖H

Hβk. (6)

By combining (5) with (6), it is easy to show that

η̃(β) ≈
n

∑

i=1

ψ̃i(β) − nΣ(β(0))β, (7)

where Σ(β(0)) = diag{ p
′

λ1
(‖β

(0)
1 ‖H)

‖β
(0)
1 ‖H

H, . . . ,
p′λp

(‖β(0)
p ‖H)

‖β
(0)
p ‖H

H}. Based on (7) and the definition of

m̃ψ(u, β), let η̃(β) = 0. Then a simple calculation yields

{

n
∑

i=1

(δiWiW
T
i + (1 − δi)µ̃(Ui)) + nΣ(β(0))

}

β =

n
∑

i=1

(δiWiYi + (1 − δi)g̃(Ui)), (8)
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where µ̃(u) =
∑n
j=1 δjωnj(u)WjW

T
j , and g̃(u) =

∑n
j=1 δjωnj(u)WjYj . Hence, we obtain the

following iterative algorithm

Step 1. Initialize β(0).

Step 2. Set β(0) = β(k), solve β(k+1) by equation (8).

Step 3. Iterate Step 2 until convergence, and denote the final estimator of β as β̂.

In the initialization step, we obtain an initial estimator of β by using traditional imputation-

based estimating equations based on the first term of the right side in (5). To implement this

method, the number of interior knots K, the tuning parameters a and λk’s in the penalty

functions, and the bandwidth h in the kernel estimator m̃ψ(u, β) should be chosen. As in [12],

we take h = Cn−1/3 in this paper, where C is the sample deviation of U . In addition, Fan and

Li [6] showed that the choice of a = 3.7 performs well in a variety of situations. Hence, we use

their suggestion throughout this paper. Furthermore, we can use the similar method to choose

the tuning parameters as in [8, 9]. More specifically, we can estimate λk’s and K by minimizing

the following cross-validation score

CV (K,λ1, . . . , λp) =

n
∑

i=1

{Yi −WT
i β̂

(−i)}2, (9)

where β̂(−i) is the solution of η̃(β) = 0 based on (5) after deleting the ith subject. The minimiza-

tion problem over a p + 1-dimensional space is very difficult. However, it is expected that the

choice of λk should satisfy that the tuning parameter for zero coefficient is larger than that for

nonzero coefficient. Thus we can simultaneously unbiasedly estimate large coefficients, and shrink

the small coefficients toward to zero. Hence, in practice, we suggest taking λ
k

= λ/‖β̂(0)
k ‖H ,

where β̂
(0)
k is initial estimators of βk. Then (9) will reduce to the following two-dimensional

minimization problem

CV (K,λ) =

n
∑

i=1

{Yi −WT
i β̂

(−i)}2. (10)

In fact, such a choice of tuning parameters, in some sense, is the same rationale behind adaptive

lasso [14], and from our simulation experience, we found that this method works well.

4. Simulation study

In this section, we conduct some simulations to evaluate finite sample performance of the

proposed method. We simulate data from model (1), where θ(u) = (θ1(u), . . . , θ10(u))
T with

θ1(u) = 5.5 + 0.5 exp(2u − 1), θ2(u) = 2 − sin(2πu) and θ3(u) = 0.5 + u(2 − u). While the

remaining coefficients, corresponding to the irrelevant variables, are given by zeros. To perform

this simulation, we take the covariates Xk ∼ N(0, 1.5), k = 1, . . . , 10, and U ∼ U(0, 1). Y is

generated according to the model with ǫ ∼ N(0, 0.5). Furthermore, we consider the following

functions of selection probability ∆(u) = P (δ = 1|U = u): 1) ∆(u) = 0.9 + 0.2(u − 0.5);

2) ∆(u) = eu

0.7+eu ; 3) ∆(u) = 0.5 for all u. Then, the missing rates corresponding to the three

scenarios are approximately 0.1, 0.3 and 0.5, respectively.
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1 − E(∆(U)) = 0.1 1 − E(∆(U)) = 0.3 1 − E(∆(U)) = 0.5

Methods C I RASE C I RASE C I RASE

gSCAD 6.382 0 0.015 6.036 0.002 0.028 6.244 0.013 0.079

cSCAD 6.405 0 0.015 5.041 0.009 0.074 1.869 0.011 0.115

fSCAD 6.677 0 0.014 6.672 0 0.014 6.672 0 0.014

NE 0 0 0.412 0 0 0.539 0 0 0.798

Table 1 Simulation results of variable selections with different variable selection procedures

We compare the performance of the variable selection procedure proposed in this paper, called

gSCAD, based on imputed estimating equations with that based on the full data set (i.e., no

missing data), called fSCAD, and the complete data set (i.e., ignoring the missing data), called

nSCAD. For comparison, we also consider the naive estimation procedure (NE) for β in our

simulation. That is, we delete the penalty in the objective function, and obtain the estimators

of β by using traditional imputation-based estimating equations based on the first term of the

right side in (5). In this simulation, we generate n = 200 subjects, and use the cubic B-splines.

The number of interior knots K and the tuning parameter λ are obtained by (10). The average

number of the estimated zero coefficients for coefficient functions, with 1000 simulation runs, is

reported in Table 1, in which the column labeled “C” gives the average number of the true zero

coefficients correctly set to zero, and the column labeled “I” gives the average number of the true

nonzero coefficients incorrectly set to zero. Furthermore, Table 1 also presents the median of

RASE over the 1000 simulations. Here RASE is the square root of average square errors, which

is defined as

RASE =
{ 1

N

N
∑

s=1

p
∑

k=1

[θ̂k(us) − θk(us)]
2
}1/2

,

where us, s = 1, . . . , N are the grid points at which the function θ̂(u) is evaluated. In our

simulation, N = 200 is used. From Table 1, we can make the following observations:

(i) The performances of both gSCAD and cSCAD procedures become better in terms of

model error and model complexity as the missing rate decreases. Furthermore, when the missing

rate is large, the performance of gSCAD is significantly better than that of cSCAD. This implies

that our imputation scheme is workable.

(ii) As expected, the performance of fSCAD is the best in all the cases for selecting significant

variables. In addition, the performance of gSCAD becomes closer and closer to that based on

fSCAD as the missing rate decreases.

(iii) The naive estimation procedure performs the worst in terms of model complexity and

model error. This estimation procedure cannot eliminate some unimportant variables. Then, this

procedure results in largest model errors. Hence, our penalized estimation procedure outperforms

the naive estimation procedure.
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Figure 1 The averages of estimated coefficients based on gSCAD procedure over 1000 replications

Figure 1 shows the estimators of coefficients θ1(u) (a), θ2(u) (b)and θ3(u) (c) based on the

gSCAD method proposed in this paper, where the solid curve represents the real curve of θ(u).

From Figure 1, it is clear that the estimators fit the true functions very well in all cases, and

do not depend sensitively on the choice of the selection probability function ∆(u). This implies

that the imputation scheme is workable.

Appendix. Proof of Theorems

For convenience and simplicity, let C denote a positive constant which may be different value

at each appearance throughout this paper. Before we prove our main theorems, we list some

regularity conditions which are used in this paper.

C1. θ(u) is rth continuously differentiable on (0, 1), where r > 1/2.

C2. The density function of U , say f(u), is bounded away from 0 and infinity on [0, 1].

Furthermore, we assume that f(u) is continuously differentiable on (0, 1).

C3. Let σ2(u) = E{ǫ2|U = u}, and G(u) = E{XXT |U = u}. Then, σ2(u) and G(u) are

continuous with respect to u. Furthermore, for given u, G(u) is a positive definite matrix, and

the eigenvalues of G(u) are bounded.

C4. Let c1, . . . , cK be the interior knots of [0, 1]. Furthermore, let c0 = 0, cK+1 = 1,

hi = ci − ci−1. Then, there exists a constant C0 such that

max{hi}
min{hi}

≤ C0, max{|hi+1 − hi|} = o
(

K−1
)

.

C5. The bandwidth in m̃ψ(u, β) satisfies nh2 → ∞, and nh4 → 0 as n→ ∞.

C6. For any given nonzero w, we have limn→∞ n
r

2r+1 p′λ(|w|) = 0.

C7. limn→∞ inf |w|≤Cn−r/(2r+1) λ−1p′λ(|w|) > 0, and limn→∞ sup|w|≤Cn−r/(2r+1) p′′λ(|w|) = 0.

These conditions are commonly adopted in the nonparametric literature and variable selection

methodology. Conditions C1–C3 are similar to those used in [1–5]. Condition C4 implies that

c0, . . . , cK+1 is a C0-quasi-uniform sequence of partitions of [0, 1] (see [15, p.216]). Condition

C5 is common in the nonparametric literature. Condition C6 and C7 are assumptions on the

penalty function, which were used in [16] and [17]. Furthermore these conditions on the penalty

function are similar to that used in [6, 7].
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Proof of Theorem 1 Let τ = n−r/(2r+1) + an, and β = β0 + τT . We first show that, for any

given ε > 0, there exists a large constant C such that

P{ inf
‖T‖=C

(β0 − β)Tη̃(β) > 0} ≥ 1 − ε. (11)

Let ∆(β) = K−1
(

βT
0 − βT

)

η̃(β). Then a simple calculation yields

∆(β) =
−τ
K

n
∑

i=1

δiT
Tψi(β) +

−τ
K

n
∑

i=1

(1 − δi)T
Tm̃ψ(Ui, β) +

τn

K
TTb(β)

≡ I1 + I2 + I3.

Hence, invoking the definition of ψi(β), we have that

I1 = − τ

K

n
∑

i=1

δiW
T
i TX

T
i R(Ui) −

τ

K

n
∑

i=1

δiW
T
i T ǫi +

τ2

K

n
∑

i=1

δi(W
T
i T )2

≡ I11 + I12 + I13,

where R(u) = (R1(u), . . . , Rp(u))
T, and Rk(u) = θk0(u) − B(u)Tβk0, k = 1, . . . , p. From condi-

tion C1, C4 and Corollary 6.21 in [15], we get that ‖Rk(u)‖ = O(K−r). Then, invoking condition

C3, a simple calculation yields

I11 = Op(τnK
−1−r)‖T ‖ = Op(1 + n

r
2r+1 an)‖T ‖.

Then, notice that E{ǫi|Xi, Ui
} = 0, we can prove that

1√
n

n
∑

i=1

δiW
T
i T ǫi = Op(‖T ‖).

Hence, it is easy to show that

I12 = Op(τ
√
nK−1)‖T ‖ = Op(n

−1
2(2r+1) + n

2r−1
2(2r+1) an)‖T ‖.

Similarly, we can prove that I13 = Op(1+2n
r

2r+1 an)‖T ‖2. Hence, by choosing a sufficiently large

C, I13 dominates I11 and I12 uniformly in ‖T ‖ = C. This implies that for any given ε > 0, if we

choose C large enough, then

P{ inf
‖T‖=C

I1 > 0} ≥ 1 − ε. (12)

With the similar arguments, we can prove that for any given ε > 0, if C is sufficiently large, then

P{ inf
‖T‖=C

I2 > 0} ≥ 1 − ε. (13)

Next, we deal with I3. Notice that p′λ(0)sgn(0) = 0, Condition C6 implies that

τn

K
TTb(β0) = τnK−1n

−r
2r+1 TTn

r
2r+1 b(β0) = op(‖T ‖).

Then, it is easy to show that I3 = τnK−1TT{b(β) − b(β0)} + op(‖T ‖). Furthermore, invoking

condition C7, and using the standard argument of the Taylor expansion, we can prove that

I3 = τ2nK−1‖T ‖2op(1) = op(1 + nr/(2r+1)an)‖T ‖2.

Hence, invoking I13, it is clear that I3 is dominated by I1 uniformly in ‖T ‖ = C. Then, by

choosing a sufficiently large C, (11) holds. This implies, with probability at least 1 − ε, that
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there exists a local minimizer β̂ such that ‖β̂ − β0‖ = Op(τ). Hence, we have

(β̂k − βk)
TH(β̂k − βk) = Op{n

−2r
2r+1 + 2n

−r
2r+1 an + a2

n}. (14)

In addition, it is easy to show that
∫ 1

0

Rk(u)
2du = Op(n

−2r
2r+1 ). (15)

Then, note that

‖θ̂k(·) − θk0(·)‖2 =

∫ 1

0

{θ̂k(u) − θk0(u)}2du

=

∫ 1

0

{BT(u)β̂k −BT(u)βk +Rk(u)}2du

≤ 2

∫ 1

0

{BT(u)β̂k −BT(u)βk}2du+ 2

∫ 1

0

Rk(u)
2du

= 2(β̂k − βk)
TH(β̂k − βk) + 2

∫ 1

0

Rk(u)
2du.

Combining this with (14) and (15), we complete the proof of Theorem 1. 2

Proof of Theorem 2 Note that supuB(u) = O(1), and θ̂k(u) = B(u)Tβ̂k. It suffices to

show that for any given ε > 0, when n is large enough, P (Cnk) < ε, where Cnk = {β̂k 6= 0},
k = d + 1, . . . , p. Since β̂k = Op(n

−r/(2r+1)), when n is large enough, there exists some C such

that

P (Cnk) < ε/2 + P{β̂k 6= 0, ‖β̂k‖ < Cn−r/(2r+1)}. (16)

If β̂k 6= 0, then by condition C6, we can prove that, when n is large enough, there exists some C

such that

P (n
r

2r+1 p′λk
(‖β̂k‖) > C) < ε/2. (17)

In addition, by condition C7, we have

inf
‖βk‖≤Cn−r/(2r+1)

n
r

2r+1 p′λk
(‖βk‖) = n

r
2r+1 λk inf

‖βk‖≤Cn−r/(2r+1)
λ−1
k p′λk

(‖βk‖) → ∞.

That is, β̂k 6= 0 and ‖β̂k‖ < Cn−r/(2r+1) imply that nr/(2r+1)p′λk
(‖βk‖) > C for large n. Then,

invoking (16) and (17), we have

P (Cnk) < ε/2 + P (nr/(2r+1)p′λk
(‖β̂k‖) > C) < ε.

This completes the proof of Theorem 2. 2
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