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Abstract In this paper, the zeros of solutions of periodic second order linear differential equation

y′′ + Ay = 0, where A(z) = B(ez), B(ζ) = g(ζ) +
∑p

j=1
b−jζ

−j , g(ζ) is a transcendental entire

function of lower order no more than 1/2, and p is an odd positive integer, are studied. It is

shown that every non-trivial solution of above equation satisfies the exponent of convergence of

zeros equals to infinity.
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1. Introduction and main results

In this paper, we shall assume that the reader is familiar with the fundamental results and

the stardard notations of the Nevanlinna’s value distribution theory of meromorphic functions

[12, 14, 16]. In addition, we will use the notation σ(f), µ(f) and λ(f) to denote respectively the

order of growth, the lower order of growth and the exponent of convergence of the zeros of a

meromorphic function f . σe(f) (see [8]), the e-type order of f(z), is defined to be

σe(f) = lim
r→+∞

log T (r, f)

r
.

Similarly, λe(f), the e-type exponent of convergence of the zeros of meromorphic function f , is

defined to be

λe(f) = lim
r→+∞

log+ N(r, 1/f)

r
.

We say that f(z) has regular order of growth if a meromorphic function f(z) satisfies

σ(f) = lim
r→+∞

log T (r, f)

log r
.

We consider the second order linear differential equation

f ′′ + Af = 0, (1.1)
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where A(z) = B(eαz) is a periodic entire function with period ω = 2πi/α. The complex oscilla-

tion theory of (1.1) was first investigated by Bank and Laine [6]. Studies concerning (1.1) have

been carried on and various oscillation theorems have been obtained [2–11, 13, 17–19]. When

A(z) is rational in eαz, Bank and Laine [6] proved the following theorem

Theorem A Let A(z) = B(eαz) be a periodic entire function with period ω = 2πi/α and

rational in eαz . If B(ζ) has poles of odd order at both ζ = ∞ and ζ = 0, then for every solution

f(z)(6≡ 0) of (1.1), λ(f) = +∞.

Bank [5] generalized this result: The above conclusion still holds if we just suppose that both

ζ = ∞ and ζ = 0 are poles of B(ζ), and at least one is of odd order. In addition, the stronger

conclusion

log+ N(r, 1/f) 6= o(r) (1.2)

holds. When A(z) is transcendental in eαz, Gao [10] proved the following theorem

Theorem B Let B(ζ) = g(1/ζ) +
∑p

j=1 bjζ
j , where g(t) is a transcendental entire function

with σ(g) < 1, p is an odd positive integer and bp 6= 0. Let A(z) = B(ez). Then any non-trivial

solution f of (1.1) must have λ(f) = +∞. In fact, the stronger conclusion (1.2) holds.

An example was given in [10] showing that Theorem B does not hold when σ(g) is any positive

integer. If the order σ(g) > 1, but is not a positive integer, what can we say? Chiang and Gao

[8] obtained the following theorems

Theorem C Let A(z) = B(ez), where B(ζ) = g1(1/ζ) + g2(ζ), g1 and g2 are entire functions

with g2 transcendental and σ(g2) not equal to a positive integer or infinity, and g1 arbitrary.

(i) Suppose σ(g2) > 1. (a) If f is a non-trivial solution of (1.1) with λe(f) < σ(g2), then

f(z) and f(z + 2πi) are linearly dependent. (b) If f1 and f2 are any two linearly independent

solutions of (1.1), then λe(f1f2) ≥ σ(g2).

(ii) Suppose σ(g2) < 1. (a) If f is a non-trivial solution of (1.1) with λe(f) < 1, then f(z)

and f(z+2πi) are linearly dependent. (b) If f1 and f2 are any two linearly independent solutions

of (1.1), then λe(f1f2) ≥ 1.

Theorem D Let g(ζ) be a transcendental entire function and its order be not a positive integer

or infinity. Let A(z) = B(ez), where B(ζ) = g(1/ζ)+
∑p

j=1 bjζ
j and p is an odd positive integer.

Then λ(f) = +∞ for each non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2)

holds.

Examples were also given in [8] showing that Theorem D is no longer valid when σ(g) is

infinity.

The main purpose of this paper is to improve above results in the case when B(ζ) is tran-

scendental. Specially, we find a condition under which Theorem D still holds in the case when

σ(g) is a positive integer or infinity. We will prove the following results in Section 3.

Theorem 1 Let A(z) = B(ez), where B(ζ) = g1(1/ζ) + g2(ζ), g1 and g2 are entire functions

with g2 transcendental and µ(g2) not equal to a positive integer or infinity, and g1 arbitrary. If
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f(z) and f(z + 2πi) are two linearly independent solutions of (1.1), then

λe(f) = +∞

or

λe(f)−1 + µ(g2)
−1 ≤ 2.

We remark that the conclusion of Theorem 1 remains valid if we assume µ(g1) is not equal

to a positive integer or infinity, and g2 arbitrary and still assume B(ζ) = g1(1/ζ) + g2(ζ). In the

case when g1 is transcendental with its lower order not equal to an integer or infinity and g2 is

arbitrary, we need only to consider B∗(η) = B(1/η) = g1(η)+g2(1/η) in 0 < |η| < +∞, η = 1/ζ.

Corollary 1 Let A(z) = B(ez), where B(ζ) = g1(1/ζ) + g2(ζ), g1 and g2 are entire functions

with g2 transcendental and µ(g2) no more than 1/2, and g1 arbitrary.

(a) If f is a non-trivial solution of (1.1) with λe(f) < +∞, then f(z) and f(z + 2πi) are

linearly dependent.

(b) If f1 and f2 are any two linearly independent solutions of (1.1), then λe(f1f2) = +∞.

Theorem 2 Let g(ζ) be a transcendental entire function and its lower order be no more than

1/2. Let A(z) = B(ez), where B(ζ) = g(1/ζ) +
∑p

j=1 bjζ
j and p is an odd positive integer, then

λ(f) = +∞ for each non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2) holds.

We remark that the above conclusion remains valid if

B(ζ) = g(ζ) +

p∑
j=1

b−jζ
−j .

We note that Theorem 2 generalizes Theorem D when σ(g) is a positive integer or infinity

but µ(g) ≤ 1/2. Combining Theorem D with Theorem 2, we have

Corollary 2 Let g(ζ) be a transcendental entire function. Let A(z) = B(ez), where B(ζ) =

g(1/ζ) +
∑p

j=1 bjζ
j and p is an odd positive integer. Suppose that either (i) or (ii) below holds:

(i) σ(g) is not a positive integer or infinity;

(ii) µ(g) ≤ 1/2,

then λ(f) = +∞ for each non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2)

holds.

2. Lemmas for the proofs of Theorems

Lemma 1 ([7]) Suppose that k ≥ 2 and that A0, . . . , Ak−2 are entire functions of period 2πi,

and that f is a non-trivial solution of

y(k) +

k−2∑
j=0

Aj(z)y(j)(z) = 0.

Suppose further that f satisfies log+ N(r, 1/f) = o(r), that A0 is non-constant and rational in

ez, and that if k ≥ 3, then A1, . . . , Ak−2 are constants. Then there exists an integer q with
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1 ≤ q ≤ k such that f(z) and f(z + q2πi) are linearly dependent. The same conclusion holds if

A0 is transcendental in ez, and f satisfies log+ N(r, 1/f) = O(r), and if k ≥ 3, then as r → +∞

through a set L1 of infinite measure, we have T (r, Aj) = o(T (r, A0)) for j = 1, . . . , k − 2.

Lemma 2 ([10]) Let A(z) = B(eαz) be a periodic entire function with period ω = 2πiα−1

and be transcendental in eαz, i.e., B(ζ) is transcendental and analytic on 0 < |ζ| < +∞. If

B(ζ) has a pole of odd order at ζ = ∞ or ζ = 0 (including those which can be changed into

this case by varying the period of A(z)), and Eq. (1.1) has a solution f(z) 6≡ 0 which satisfies

log+ N(r, 1/f) = o(r), then f(z) and f(z + ω) are linearly independent.

3. Proofs of main results

The proof of main results are based on [8] and [15].

Proof of Theorem 1 Let us assume λe(f) < +∞. Since f(z) and f(z + 2πi) are linearly

independent, Lemma 1 implies that f(z) and f(z +4πi) must be linearly dependent. Let E(z) =

f(z)f(z + 2πi). Then E(z) satisfies the differential equation

4A(z) = (
E′(z)

E(z)
)2 − 2

E′′(z)

E(z)
−

c2

E(z)2
, (2.1)

where c 6= 0 is the Wronskian of f1 and f2 (see [12, p. 5] or [1, p. 354]), and E(z + 2πi) = c1E(z)

for some non-zero constant c1. Clearly, E′/E and E′′/E are both periodic functions with period

2πi, while A(z) is periodic by definition. Hence (2.1) shows that E(z)2 is also periodic with

period 2πi. Thus we can find an analytic function Φ(ζ) in 0 < |ζ| < +∞, so that E(z)2 = Φ(ez).

Substituting this expression into (2.1) yields

−4B(ζ) =
c2

Φ
+ ζ

Φ′

Φ
−

3

4
ζ2(

Φ′

Φ
)2 + ζ2 Φ′′

Φ
. (2.2)

Since both B(ζ) and Φ(ζ) are analytic in C∗ = {ζ : 1 < |ζ| < +∞}, the Valiron theory [21, p. 15]

gives their representations as

B(ζ) = ζnR(ζ)b(ζ), Φ(ζ) = ζn1R1(ζ)φ(ζ), (2.3)

where n, n1 are some integers, R(ζ) and R1(ζ) are functions that are analytic and non-vanishing

on C∗
⋃
{∞}, b(ζ) and φ(ζ) are entire functions. Following the same arguments as used in [8],

we have

T (ρ, φ) = N(ρ, 1/φ) + T (ρ, b) + S(ρ, φ), (2.4)

where S(ρ, φ) = o(T (ρ, φ)). Furthermore, the following properties hold [8]

λe(f) = λe(E) = λe(E
2) = max{λeR(E2), λeL(E2)},

λeR(E2) = λ1(Φ) = λ(φ),

where λeR(E2) (resp. λeL(E2)) is defined to be

lim
r→+∞

log+ NR(r, 1/E2)

r
( resp. lim

r→+∞

log+ NL(r, 1/E2)

r
),
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where NR(r, 1/E2) (resp. NL(r, 1/E2)) denotes a counting function that only counts the zeros of

E(z)2 in the right-half plane (resp. in the left-half plane), λ1(Φ) is the exponent of convergence

of the zeros of Φ in C∗, which is defined to be

λ1(Φ) = lim
ρ→+∞

log+ N(ρ, 1/Φ)

log ρ
.

Recall the condition λe(f) < +∞, we obtain λ(φ) < +∞.

Now substituting (2.3) into (2.2) yields

−4ζnR(ζ)b(ζ) =
c2

ζn1R1(ζ)φ(ζ)
+ ζ(

n1

ζ
+

R′

1

R1
+

φ′

φ
) −

3

4
ζ2(

n1

ζ
+

R′

1

R1
+

φ′

φ
)2+

ζ2(
n1(n1 − 1)

ζ2
+ 2

n1R
′

1

ζR1
+ 2

n1φ
′

ζφ
+ 2

R′

1φ
′

R1φ
+

R′′

1

R1
+

φ′′

φ
). (2.5)

We assume σ(φ) < +∞. Since R1(ζ), R(ζ) are analytic at ∞, we deduce
R

(i)
1 (ζ)

R1(ζ) = O(1) (i = 1, 2),
1

R(ζ) = O(1), 1
R1(ζ) = O(1), as |ζ| → +∞. It follows from (2.5) and a standard estimate on the

logarithmic derivative ([12, Section 3.6] or [16, Poposition 5.12]) that there exists a positive

integer N such that

|b(ζ)| ≤ |ζ|N , (2.6)

for |φ(ζ)| > 1, ζ 6∈ V , ζ → ∞ where V is an R-set ([12, Section 3.6] or [16, p. 84]).

By using the similar arguments as used in [8, p. 278], we can deduce that µ(g2) = µ(b).

So µ(b) is not a positive integer or infinity. Thus b(ζ) must have infinitely many zeros. Let

a1, a2, . . . , aN+1 be N + 1 zeros of b(ζ) with N as in (2.6). Define

H(ζ) = b(ζ)/

N+1∏
i=1

(ζ − ai), (2.7)

then H is an entire function with µ(H) = µ(b) not equal to a positive integer or infinity.

Next, we define D∗

1 = {ζ : |H(ζ)| > 1} and D∗

2 = {ζ : |φ(ζ)| > 1}. Clearly, D∗

1 and D∗

2

are open sets. We denote the boundary D∗

j by ∂D∗

j , j = 1, 2 and then we have |H(ζ)| = 1 and

|φ(ζ)| = 1 for ζ in ∂D∗

j , j = 1, 2. Since both H(ζ) and φ(ζ) are transcendental, each D∗

j must

contain an unbounded component Dj for j = 1, 2. Denote the boundary of Dj by ∂Dj, j = 1, 2.

Let Ej(ρ) = {θ : ρeiθ ∈ Dj , 0 ≤ θ < 2π}, j = 1, 2, and E(ρ) = {θ : ρeiθ ∈ V }. Clearly,

E1(ρ)
⋂

E2(ρ) ⊂ E(ρ), otherwise we will get

1

2
|ζ|N+1 ≤ |b(ζ)| ≤ |ζ|N

from (2.6) and (2.7), where |φ(ζ)| > 1, ζ 6∈ V , a contradiction for sufficiently large ζ.

We also let θj(ρ), j = 1, 2 and θ(ρ), respectively, be the angular measures of Ej(ρ), j = 1, 2

and E(ρ). We note that since V is an R-set, for given ε > 0, there exists ρ0 > 0 such that

θ(ρ) < ε for ρ > ρ0. We also note that we can choose ρ > ρ0 so that the circle |ζ| = ρ intersects

Dj , j = 1, 2. By the Beurling-Tsuji inequality [20, Theorem III 68, p. 117], and the remark in

[12, pp. 96-97] or [10, pp. 153-154], we have

π

∫ ρ/2

ρ0

dt

tθ1(t)
< log log M(ρ, H) +

ε

2π
K1 log ρ + O(1), (2.8)
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where M(ρ, H) denotes the usual maximum modulus of H on |ζ| = ρ, K1 > σ(φ), and ρ is

sufficiently large. Let

α = lim
ρ→∞

(log ρ)−1π

∫ ρ/2

ρ0

dt

tθ1(t)
. (2.9)

Then from (2.8), we have
1

2
≤ α ≤ µ(H). (2.10)

Similarly, we have

π

∫ ρ/2

ρ0

dt

tθ2(t)
< log log M(ρ, φ) +

ε

2π
K2 log ρ + O(1), (2.11)

where K2 > σ(H) and ρ is sufficiently large.

By Cauchy-Schwarz inequality
∫ ρ/2

ρ0

θi(t)

t
dt

∫ ρ/2

ρ0

dt

tθi(t)
≥ (

∫ ρ/2

ρ0

dt

t
)2, i = 1, 2, (2.12)

we obtain ∫ ρ/2

ρ0

θ2(t)

t
dt ≤

∫ ρ/2

ρ0

(2π + ε) − θ1(t)

t
dt

= (2π + ε)

∫ ρ/2

ρ0

dt

t
−

∫ ρ/2

ρ0

θ1(t)

t
dt

≤ (2π + ε)

∫ ρ/2

ρ0

dt

t
− (

∫ ρ/2

ρ0

dt

t
)2/

∫ ρ/2

ρ0

dt

tθ1(t)

and ∫ ρ/2

ρ0

dt

tθ2(t)
≥

(
∫ ρ/2

ρ0

dt
t )2

(2π + ε)
∫ ρ/2

ρ0

dt
t − (

∫ ρ/2

ρ0

dt
t )2/

∫ ρ/2

ρ0

dt
tθ1(t)

, (2.13)

then from (2.9), (2.11) and (2.13), we have

σ(φ) = lim
ρ→∞

log log M(ρ, φ)

log ρ
≥ lim

ρ→∞

(log ρ)−1π

∫ ρ/2

ρ0

dt

tθ2(t)
−

ε

2π
K2

≥
1

2π+ε
π − 1

α

−
ε

2π
K2.

Since ε is arbitrary, we obtain

σ(φ) ≥
1

2 − 1/α
=

α

2α − 1
. (2.14)

Inequalities (2.10) and (2.14) give

σ(φ) ≥
µ(H)

2µ(H) − 1
,

which implies

σ(φ)−1 + µ(H)−1 ≤ 2.

Recall that µ(H) = µ(b) = µ(g2), we obtain

σ(φ)−1 + µ(g2)
−1 ≤ 2. (2.15)
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We assert λ(φ) = σ(φ) (including σ(φ) = ∞). If λ(φ) < σ(φ), then the growth order of φ is

regular [12, p. 216] and σ(φ) is a positive integer or infinity. From (2.4), we have σ(φ) = µ(b),

which means µ(b) is a positive integer or infinity, contradicting our assumption.

Finally, since

λeR(E2) = λ(φ) ≤ λe(E
2) = λe(E) = λe(f),

we have

λ(φ)−1 ≥ λe(E
2)−1 = λe(E)−1 = λe(f)−1,

and can obtain

λe(f)−1 + µ(g2)
−1 ≤ 2.

This completes the proof of Theorem 1. 2

Proof of Corollary 1 We can easily deduce Corollary 1 (a) from Theorem 1.

Proof of Corollary 1 (b). Suppose f1 and f2 are linearly independent and λe(f1f2) < +∞,

then λe(f1) < +∞, and λe(f2) < +∞. We deduce from the conclusion of Corollary 1 (a) that

fj(z) and fj(z + 2πi) are linearly dependent, j = 1, 2. Let E(z) = f1(z)f2(z). Then we can find

a non-zero constant c2 such that E(z + 2πi) = c2E(z). Repeating the same arguments as used

in Theorem 1 by using the fact that E(z)2 is also periodic, we obtain λe(E)−1 + µ(g2)
−1 ≤ 2, a

contradiction since µ(g2) ≤ 1/2. Hence λe(f1f2) = +∞. 2

Proof of Theorem 2 Suppose there exists a non-trivial solution f of (1.1) that satisfies

log+ N(r, 1/f) = o(r). We deduce λe(f) = 0, so f(z) and f(z + 2πi) are linearly dependent by

Corollary 1 (a). However, Lemma 2 implies that f(z) and f(z + 2πi) are linearly independent.

This is a contradiction. Hence log+ N(r, 1/f) 6= o(r) holds for each non-trivial solution f of

(1.1). This completes the proof of Theorem 2. 2
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