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Abstract For a ring endomorphism α, we introduce α-skew McCoy rings which are general-

izations of α-rigid rings and McCoy rings, and investigate their properties. We show that if

αt = IR for some positive integer t and R is an α-skew McCoy ring, then the skew polynomial

ring R[x; α] is α-skew McCoy. We also prove that if α(1) = 1 and R is α-rigid, then R[x; α]/〈x2〉

is ᾱ-skew McCoy.
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1. Introduction

All rings considered here are associative with identity. According to Nielsen [10], a ring R

is called a left McCoy ring if whenever f(x), g(x) ∈ R[x]\{0} satisfy f(x)g(x) = 0, then there

exists a nonzero element r ∈ R with rg(x) = 0. Similarly, right McCoy rings can be defined. If

a ring is both left and right McCoy, then we say that the ring is a McCoy ring. Some properties

of McCoy rings have been studied in Camillo and Nielsen [2, 9], Yang et al. [11, 12].

According to Krempa [7], an endomorphism α of a ring R is called rigid if aα(a) = 0 implies

a = 0 for a ∈ R. We call a ring R α-rigid if there exists a rigid endomorphism α of R. Note that

any rigid endomorphism of a ring is a monomorphism and α-rigid rings are reduced rings by Hong

et al. [3, Proposition 5]. For an endomorphism α of a ring R, R[x; α] is reduced if and only if R

is α-rigid by Hong et al. [4, Proposition 3]. Recall that for a ring R with a ring endomorphism

α : R → R, a skew polynomial ring (also called an Ore extension of endomorphism type) R[x; α]

of R is the ring obtained by giving the polynomial ring over R with the new multiplication

xr = α(r)x for all r ∈ R.
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Motivated by results in Hong et al. [3, 4], Nielsen [10] and so on, we investigate a generaliza-

tion of α-rigid rings and McCoy rings which we call an α-skew McCoy ring.

2. Skew McCoy rings

Definition 2.1 Let α be an endomorphism of a ring R. Assume that f(x) =
∑n

i=0
aix

i,

g(x) =
∑m

j=0
bjx

j∈ R[x; α]\{0} satisfy f(x)g(x) = 0. We say that R is a left α-skew McCoy ring

if there exists a nonzero element r ∈ R with rbj = 0 for all 0 ≤ j ≤ m, and say that R is a right

α-skew McCoy ring if there exists a nonzero element s ∈ R with aiα
i(s) = 0 for all 0 ≤ i ≤ n.

If a ring is both left α-skew McCoy and right α-skew McCoy, then we say that the ring is an

α-skew McCoy ring.

It can be easily checked that if R is a McCoy ring, then it is an IR-skew McCoy ring, where IR

is an identity endomorphism of R, and thus every reversible ring (or reduced ring ) R is IR-skew

McCoy since reversible rings are McCoy by Nielsen [10, Theorem 2]. However, the following

example shows that there exists an IR-skew McCoy ring R which is not reversible.

Example 2.2 Suppose that R is a McCoy ring. Let

aUT3(R) =











a b d

0 a c

0 0 a



 | a, b, c, d ∈ R







.

Then aUT3(R) is an IR-skew McCoy ring since aUT3(R) is McCoy by Yang and Song [11,

Proposition 2.5 and Corollary 2.8]. Let A = E23, B = E12, where Eij , a 3 × 3 matrix, is the

matrix unit with 1 in the (i, j)th position and 0 elsewhere. Then AB = 0. But BA = E13 6= 0.

Thus aUT3(R) is not reversible.

Recall that a ring is called an Armendariz ring if aibj = 0 for all i, j whenever polynomials

f(x) =
∑m

i=0
aix

i, g(x) =
∑n

j=0
bjx

j ∈ R[x] satisfy f(x)g(x) = 0. For a monoid M , a ring R is

called an M -Armendariz ring if whenever elements α = a1g1+a2g2+· · ·+angn, β = b1h1+b2h2+

· · ·+bmhm ∈ R[M ] satisfy αβ = 0, then aibj = 0 for each i, j. A ring R is called a left M -McCoy

ring if whenever elements α = a1g1+a2g2+ · · ·+angn, β = b1h1 +b2h2 + · · ·+bmhm ∈ R[M ]\{0}

satisfy αβ = 0, then there exists a nonzero element r ∈ R with rβ = 0, the right M -McCoy rings

can be defined similarly. If a ring is both left and right M -McCoy, then we say that the ring

is an M -McCoy ring. Armendariz rings are clearly McCoy. M -Armendariz rings are M -McCoy

for any monoid M by Yang and Song [11, Theorem 2.2]. Power-serieswise Armendariz rings are

power-serieswise McCoy by Yang et al. [12, Theorem 2.2]. Some properties of these rings were

studied in Anderson and Camillo [1], Hong et al. [4], Huh et al. [5], Kim et al. [6], Liu [8],

Yang and Song [11], and Yang et al. [12]. Now let α be an endomorphism of a ring R, one may

conjecture that if R is α-skew Armendariz, then R is α-skew McCoy. However, the following

example eliminates the possibility.

Example 2.3 ([4, Example 5]) Let R = Z2[x], α : R → R be an endomorphism defined by

α(f(x)) = f(0). Then R is α-skew Armendariz by Hong et al. [4, Example 5]. However,
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p = y − xy2, q = xy ∈ R[y, α]\{0} satisfy pq = 0, but for any nonzero element f(x) ∈ R,

f(x)x 6= 0. Thus R is not left α-skew McCoy. Hence R is not α-skew McCoy.

Proposition 2.4 Let α be an endomorphism of a ring R. If R is α-skew Armendariz, then R

is right α-skew McCoy.

Proof Let f(x) =
∑n

i=0
aix

i, g(x) =
∑m

j=0
bjx

j ∈ R[x; α]\{0} satisfy f(x)g(x) = 0. Then

aiα
i(bj) = 0 for all i, j since R is α-skew Armendariz. Since g(x) 6= 0, there exists j0 such that

bj0 ∈ R\{0}. Hence aiα
i(bj0) = 0 for all i. Therefore R is right α-skew McCoy. 2

Theorem 2.5 Let α be an endomorphism of a ring R. If R is α-rigid, then R is α-skew McCoy.

Proof Let f(x) =
∑n

i=0
aix

i, g(x) =
∑m

j=0
bjx

j ∈ R[x; α]\{0} with f(x)g(x) = 0. Then R is α-

skew Armendariz by Hong et al. [4, Corollary 4]. Thus aiα
i(bj) = 0 for all 0 ≤ i ≤ n, 0 ≤ j ≤ m.

Since f(x) 6= 0, there exists i0 such that ai0 6= 0. Hence ai0α
i0 (bj) = 0 implies ai0bj = 0 for all

0 ≤ j ≤ m by Hong et al. [3, Lemma 4(iii)]. Therefore R is left α-skew McCoy. Moreover, R is

right α-skew McCoy by Proposition 2.4. The proof is completed. 2

The following example shows that the converse of Theorem 2.5 is not true.

Example 2.6 Let R =











r a b

0 r a

0 0 r



 | r ∈ Z, a, b ∈ Q







, where Z and Q are the sets of all

integers and all rational numbers, respectively. Let α : R → R be an automorphism defined by

α

(





r a b

0 r a

0 0 r





)

=





r a/2 b/4

0 r a/2

0 0 r



. Then

(1) R is not α-rigid since





0 0 b

0 0 0

0 0 0



α

(





0 0 b

0 0 0

0 0 0





)

= 0, but





0 0 b

0 0 0

0 0 0



 6= 0 if b 6= 0.

(2) R is α-skew McCoy.

Let f(x) = A0 + A1x + · · · + Anxn, g(x) = B0 + B1x + · · · + Bmxm ∈ R[x; α]\{0} with

f(x)g(x) = 0, where Ai =





ri ai bi

0 ri ai

0 0 ri



 and Bj =





sj cj dj

0 sj cj

0 0 sj



 for 0 ≤ i ≤ n, 0 ≤ j ≤ m.

Since f(x), g(x) 6= 0, by a similar proof to Hong et al. [4, Example 1] we have that Ai =




0 ai bi

0 0 ai

0 0 0



 and Bj =





0 cj dj

0 0 cj

0 0 0



 for 0 ≤ i ≤ n, 0 ≤ j ≤ m. Take C =





0 0 1

0 0 0

0 0 0



. We

have Cbj = 0 for all j, and Aiα
i(C) = 0 for all i. Thus R is α-skew McCoy.

The following example shows that there exists an endomorphism α of a McCoy ring R such

that R is not α-skew McCoy.

Example 2.7 ([4, Example 2]) Let R = Z2 ⊕Z2. Then R is a commutative reduced ring. Thus

it is McCoy. Let α : R → R be an endomorphism defined by α((a, b)) = (b, a). Then for

f(x) = (1, 0) + (1, 0)x, g(x) = (0, 1) + (1, 0)x ∈ R[x; α]\{0}, f(x)g(x) = 0. But for (a, b) ∈ R,

if (a, b)g(x) = 0, then a = b = 0. Thus R is not left McCoy. Similarly, if f(x)(a, b) = 0, then
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(a, b) = 0. So R is not right α-skew McCoy.

Recall that if α is an endomorphism of a ring R, then the map R[x] → R[x] defined by
∑n

i=0
aix

i 7→
∑n

i=0
α(ai)x

i is an endomorphism of the polynomial ring R[x] and clearly this map

extends α. We shall also denote the extended map R[x] → R[x] by α and the image of f ∈ R[x]

by α(f).

Theorem 2.8 Let α be an endomorphism of a ring R and αt = IR for some positive integer t.

If R is α-skew McCoy, then R[x; α] is α-skew McCoy.

Proof Let p(y) = f0 + f1y + · · · + fnyn, q(y) = g0 + g1y + · · · + gmym ∈ R[x; α][y; α]\{0} with

p(y)q(y) = 0. Assume that fi = ai0 + ai1x+ · · ·+ aiui
xui , gj = bj0 + bj1x+ · · ·+ bjvj

xvj for each

0 ≤ i ≤ n, and 0 ≤ j ≤ m, where ai0, ai1, . . . , aiui
, bj0, bj1, . . . , bjvj

∈ R. Take a positive integer

k such that k > max{deg(fi), deg(gj)} for any 0 ≤ i ≤ n, and 0 ≤ j ≤ m, where the degree

is as polynomial in R[x; α] and the degree of zero polynomial is taken to be 0. Suppose that

p(xtk) = f0 + f1x
tk+1 + · · · + fnxntk+n, q(xtk) = g0 + g1x

tk+1 + · · · + gmxmtk+m. Then p(xtk),

q(xtk) ∈ R[x; α]\{0}, and the set of coefficients of fi’s (resp., gj ’s) equals the set of coefficients

of p(xtk) (resp., q(xtk)). It is easy to check that p(xtk)q(xtk) = 0 in R[x; α] since p(y)q(y) = 0

in R[x; α][y; α] and αtk = IR. Since R is α-skew McCoy, there exist r, s ∈ R\{0} such that

rq(xtk) = 0, and p(xtk)s = 0. rq(xtk) = 0 implies rbjk = 0 for any 0 ≤ j ≤ m, and 0 ≤ k ≤ vj .

Hence rgj = 0 for any 0 ≤ j ≤ m. Therefore R[x; α] is left α-skew McCoy. p(xtk)s = 0 implies

ailα
itk+i+l(s) = 0 for any 0 ≤ i ≤ n, and 0 ≤ l ≤ ui. Thus ailα

i+l(s) = 0 for any 0 ≤ i ≤ n, and

0 ≤ l ≤ ui since αitk = IR. Hence we have

fiα
i(s) = (ai0 + ai1x + · · · + aiui

xui)αi(s)

= ai0α
i+0(s) + ai1α

i+1(s)x + · · · + aiui
αi+ui(s)xui = 0

for any 0 ≤ i ≤ n. Therefore R[x; α] is right α-skew McCoy. The proof is completed. 2

Recall that an element a in R is called regular if rR(a) = 0 = lR(a), i.e., a is not a zero

divisor. For subrings of an α-skew McCoy ring, we have the following.

Proposition 2.9 Let α be an endomorphism of a ring R and I be an ideal of R satisfying that

every nonzero element in I is regular. If R is α-skew McCoy, then I is α-skew McCoy (without

identity).

Proof Let f(x) =
∑n

i=0
aix

i, g(x) =
∑m

j=0
bjx

j ∈ I[x; α]\{0} with f(x)g(x) = 0. Since I is an

ideal of R and R is α-skew McCoy, there exist nonzero elements r, s ∈ R satisfying rbj = 0 for

any 0 ≤ j ≤ m, and aiα
i(s) = 0 for any 0 ≤ i ≤ n. Therefore tr, st ∈ I\{0} for any nonzero

element t ∈ I (Otherwise, if tr = 0 (resp., st = 0) for a element t ∈ I\{0}, then r ∈ rR(t) (resp.,

s ∈ lR(t)). Hence r = 0 (resp., s = 0) since every nonzero element in I is regular. This is a

contradiction). Consequently, we have

0 = t(rbj) = (tr)bj , 0 = (aiα
i(s))αi(t) = aiα

i(st)

for any 0 ≤ i ≤ n, and 0 ≤ j ≤ m. Thus I is α-skew McCoy. 2
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Let Ri be a ring and αi an endomorphism of Ri for each i ∈ I. For the product
∏

i∈I Ri of

Ri, the endomorphism ᾱ :
∏

i∈I Ri →
∏

i∈I Ri defined by ᾱ((ai)) = (α(ai)). Yang et al. [12,

Theorem 2.12] have shown that
∏

i∈I Ri is a power-serieswise McCoy ring if and only if each Ri

is.

Proposition 2.10 Let αi be an endomorphism of Ri, i ∈ I. Then
∏

i∈I Ri is ᾱ-skew McCoy if

and only if each Ri is αi-skew McCoy.

Proof The proof is similar to Yang et al. [12, Theorem 2.12]. 2

Corollary 2.11 Let R be an abelian ring, α an endomorphism of R, and e2 = e ∈ R. If eR and

(1 − e)R are α-skew McCoy, then R is α-skew McCoy.

Proof Since R is an abelian ring and e2 = e ∈ R, R = eR × (1 − e)R. Hence the conclusion

follows from Proposition 2.10. 2

Lemma 2.12 Let α be an endomorphism and R an α-rigid ring. If f(x) =
∑n

i=0
aix

i, g(x) =
∑m

j=0
bjx

j ∈ R[x; α] satisfy f(x)g(x) = 0, then f(x)α(g(x)) = 0 and α(f(x))g(x) = 0.

Proof Since R in α-skew Armendariz by Hong et al. [4, Corollary 4], aiα
i(bj) = 0 for each i, j.

Thus aiα
i+1(bj) = 0 for each i, j by Hong et al. [3, Lemma 4(i)]. Hence f(x)α(g(x)) = 0. Since

R[x; α] is reduced by Hong et al. [4, Proposition 3], α(f(x))g(x) = 0. 2

For an ideal I of a ring R, if α(I) ⊆ I, then ᾱ : R/I → R/I defined by ᾱ(a + I) = α(a) + I

is an endomorphism of a factor ring R/I.

Theorem 2.13 Let α be an endomorphism of R and α(1) = 1. If R is α-rigid, then R[x; α]/〈x2〉

is ᾱ-skew McCoy.

Proof Suppose that p(y) =
∑n

i=0
f̄iy

i, q(y) =
∑m

j=0
ḡjy

j ∈ (R[x]/〈x2〉)[y; ᾱ]\{0}with p(y)q(y) =

0. Let f̄i = ai0 + ai1x̄, ḡj = bj0 + bj1x̄, where ai0, ai1, bj0, bj1 ∈ R, x̄ = x + 〈x2〉. Note that

x̄y = yx̄ since α(1) = 1. Thus p(y) = h0 + h1x̄ and q(y) = k0 + k1x̄, where h0 =
∑n

i=0
ai0y

i,

h1 =
∑n

i=0
ai1y

i, k0 =
∑m

j=0
bj0y

j and k1 =
∑m

j=0
bj1y

j . Since x̄2 = 0 and x̄a = α(a)x̄ for any

a ∈ R, we have

0 = p(y)q(y) = (h0 + h1x̄)(k0 + k1x̄) = h0k0 + (h0k1 + h1α(k0))x̄.

Hence in R[y; α] we have h0k0 = 0 and h0k1 + h1α(k0) = 0. Thus h0k0 = 0 implies h0α(k0) = 0

by Lemma 2.12. Since R[y; α](∼= R[x; α]) is reduced, α(k0)h0 = 0, and so 0 = α(k0)(h0k1 +

h1α(k0)) = α(k0)h1α(k0) = (h1α(k0))
2. Thus h1α(k0) = 0, and hence h0k1 = 0.

If h0 6= 0, then the equation 0 = h0(k0 + k1) implies that

0 = h0(k0 + k1y
m+1) = h0(

∑m

j=0
bj0y

j +
∑m

j=0
bj1y

j+m+1).

Since R is (left) α-skew McCoy by Theorem 2.5, there exists r ∈ R\{0} such that rbj0 = 0 and

rbj1 = 0 for any j. Hence rḡj = 0 for any 0 ≤ j ≤ m.

Otherwise, if h0 = 0, then h1 6= 0, and 0 = p(y)q(y) = (h1x̄)(k0 + k1x̄) = (h1α(k0))x̄. Thus
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h1α(k0) = 0. If α(k0) 6= 0, then there exists s ∈ R\{0} such that sα(bj0) = 0 for any j since R

is (left) α-skew McCoy. Let r = sx̄. Then r ∈ (R[x; α]/〈x2〉)\{0} and rḡj = sx̄(bj0 + bj1x̄) =

sα(bj0)x̄ = 0 for any 0 ≤ j ≤ m. If α(k0) = 0, then let r = x̄, and rḡj = 0 for any 0 ≤ j ≤ m.

So R[x; α]/〈x2〉 is left ᾱ-skew McCoy.

Moreover, the equations h0k0 = 0 and h0k1 + h1α(k0) = 0 yield that h0α(k0) = 0 and

h1α(k0) = 0. Thus h1y
n+1α(k0) = h1α

n+2(k0)y
n+1 = 0 by Lemma 2.12. Hence we have

0 = (h0 + h1y
n+1)α(k0) = (

∑n

i=0
ai0y

i +
∑n

i=0
ai1y

i+n+1)(
∑m

j=0
α(bj0)y

j).

Then the right case can be proved similarly as above. 2

Proposition 2.14 Let α be an endomorphism of a ring R and I an ideal of R with α(I) ⊆ I.

If aα(a) ∈ I implies a ∈ I for a ∈ R, then R/I is ᾱ-skew McCoy.

Proof By the proof of Hong et al. [4, Proposition 9], R/I is ᾱ-rigid. Thus R/I is ᾱ-skew McCoy

by Theorem 2.5. 2

Lemma 2.15 Let α be a monomorphism of a ring R, I an α-rigid ideal(without identity) of R

with α(I) ⊆ I, r ∈ I and s ∈ R. Then we have the following:

(1) If rs = 0, then rαk(s) = αk(r)s = 0 for any positive integer k.

(2) If rαk(s) = 0 (or αk(r)s = 0) for some positive integer k, then rs = 0.

Proof The proof is similar to Hong et al. [3, Lemma 4]. 2

Proposition 2.16 Let α be a monomorphism of a ring R, I an α-rigid ideal (without identity)

of R with α(I) ⊆ I and every nonzero element in I regular. Suppose br ∈ I\{0} implies

bα(r) ∈ I\{0} for b, r ∈ R. If R/I is reversible and ᾱ-skew McCoy, then R is α-skew McCoy.

Proof Let f(x) =
∑n

i=0
aix

i, g(x) =
∑m

j=0
bjx

j ∈ R[x; α]\{0} with f(x)g(x) = 0. Consider the

following three cases.

Case 1 Both f(x) and g(x) are in I[x; α]. By Theorem 2.5, I is α-skew McCoy. Thus there

exist nonzero r, s ∈ I ⊆ R such that rbj = 0, aiα
i(s) = 0 for all i and j.

Case 2 One and only one of f(x), g(x) is in I[x; α]. Without loss of generality, assume that

f(x) ∈ I[x; α], but g(x) 6∈ I[x; α]. Using Lemma 2.15 and I is α-rigid repeatedly, similar to the

proof of Hong et al. [3, Proposition 6], we have that aibj = 0 for all i, j. Since f(x), g(x) 6= 0,

there are i0, j0 such that ai0 , bj0 ∈ R\{0}. Take r = ai0 , s = bj0 , and hence rbj = 0, and

aiα
i(s) = 0 for all i and j.

Case 3 Neither f(x) nor g(x) is in I[x; α]. Then
∑n

i=0
aix

i,
∑m

j=0
bjx

j ∈ (R/I)[x; ᾱ]\{0}. Since

R/I is ᾱ-skew McCoy, there exist r, s ∈ R/I\{0} such that rbj = 0, aiᾱ
i(s) = 0. Since R/I

is reversible, bjr = 0, ᾱi(s)ai = 0. So rbj , bjr, aiα
i(s), αi(s)ai ∈ I for all i, j. We claim that

αi(s)ai = 0 for all i, and bjr = 0 for all j.

Assume that there exists some i such that αi(s)ai 6= 0. Let t be the smallest one relation
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to the property. Then 0 = αt(s)f(x)g(x) = (
∑n

i=t αt(s)aix
i)(
∑m

j=0
bjx

j) implies g(x) = 0 since

αt(s)at(∈ I\{0}) is regular and α is monomorphism, a contradiction. Similarly, if there exists

some j such that bjr 6= 0. Let l be the smallest one relation to the property. Since I is reduced,

bjr = 0 yields bjα
j(r) = 0 for 0 ≤ j ≤ l−1. Thus 0 = f(x)g(x)r = (

∑n

i=0
aix

i)(
∑m

j=l bjα
j(r)xj).

Since blr ∈ I\{0}, we have blα
l(r) ∈ I\{0}. Hence 0 = f(x)g(x)r implies f(x) = 0 since

blα
l(r) ∈ I\{0} is regular and α is monomorphism, this is a contradiction. Thus αi(s)ai = 0 for

all i, and bjr = 0 for all j.

Hence R is α-skew McCoy. 2

In the last part of this section, we consider the n × n upper triangular matrix ring Tn(R)

over a ring R. Let aUTn(R) be the ring consisting of n×n upper triangular matrices with equal

diagonal entries over R, where n ≥ 2 is a positive integer. Hong et al. [4, Proposition 17] proved

that if R is an α-rigid ring, then aUT3(R) is ᾱ-skew Armendariz, but aUTn(R) is not ᾱ-skew

Armendariz for n ≥ 4 (see [4, Example 18]), where α is an endomorphism of a ring R and ᾱ is

the endomorphism of aUTn(R) defined by ᾱ((aij)) = (α(aij)).

By Camillo and Nielsen [2, Proposition 10.2], the full matrix ring Mn(R) and Tn(R) over a

nonzero ring R need not to be IR-skew McCoy.

Proposition 2.17 Let n ≥ 2. Then a ring R is α-skew McCoy if and only if aUTn(R) is ᾱ-skew

McCoy.

Proof The proof is similar to Yang and Song [11, Theorem 2.7] 2

Corollary 2.18 A ring R is α-skew McCoy if and only if the trivial extension

T (R, R) =

{(

a b

0 a

)

|a, b ∈ R

}

of R is ᾱ-skew McCoy.
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