On Skew McCoy Rings

Xue Mei SONG ${ }^{1, *}$, Xu Dong LI ${ }^{1}$, Shi Zhou YANG ${ }^{2}$
1. College of Mathematics, Lanzhou City University, Gansu 730070, P. R. China;
2. College of Mathematics and Information Science, Northwest Normal University, Gansu 730070, P. R. China

Abstract

For a ring endomorphism α, we introduce α-skew McCoy rings which are generalizations of α-rigid rings and McCoy rings, and investigate their properties. We show that if $\alpha^{t}=I_{R}$ for some positive integer t and R is an α-skew McCoy ring, then the skew polynomial ring $R[x ; \alpha]$ is α-skew McCoy. We also prove that if $\alpha(1)=1$ and R is α-rigid, then $R[x ; \alpha] /\left\langle x^{2}\right\rangle$ is $\bar{\alpha}$-skew McCoy.

Keywords McCoy ring; skew McCoy ring; skew polynomial ring; rigid ring; skew Armendariz ring; upper triangular matrix ring.
Document code A
MR(2010) Subject Classification 16S36; 16S50
Chinese Library Classification O153.3

1. Introduction

All rings considered here are associative with identity. According to Nielsen [10], a ring R is called a left McCoy ring if whenever $f(x), g(x) \in R[x] \backslash\{0\}$ satisfy $f(x) g(x)=0$, then there exists a nonzero element $r \in R$ with $r g(x)=0$. Similarly, right McCoy rings can be defined. If a ring is both left and right McCoy, then we say that the ring is a McCoy ring. Some properties of McCoy rings have been studied in Camillo and Nielsen [2, 9], Yang et al. [11, 12].

According to Krempa [7], an endomorphism α of a ring R is called rigid if $a \alpha(a)=0$ implies $a=0$ for $a \in R$. We call a ring $R \alpha$-rigid if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism and α-rigid rings are reduced rings by Hong et al. [3, Proposition 5]. For an endomorphism α of a ring $R, R[x ; \alpha]$ is reduced if and only if R is α-rigid by Hong et al. [4, Proposition 3]. Recall that for a ring R with a ring endomorphism $\alpha: R \rightarrow R$, a skew polynomial ring (also called an Ore extension of endomorphism type) $R[x ; \alpha]$ of R is the ring obtained by giving the polynomial ring over R with the new multiplication $x r=\alpha(r) x$ for all $r \in R$.

[^0]Motivated by results in Hong et al. [3, 4], Nielsen [10] and so on, we investigate a generalization of α-rigid rings and McCoy rings which we call an α-skew McCoy ring.

2. Skew McCoy rings

Definition 2.1 Let α be an endomorphism of a ring R. Assume that $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$, $g(x)=\sum_{j=0}^{m} b_{j} x^{j} \in R[x ; \alpha] \backslash\{0\}$ satisfy $f(x) g(x)=0$. We say that R is a left α-skew McCoy ring if there exists a nonzero element $r \in R$ with $r b_{j}=0$ for all $0 \leq j \leq m$, and say that R is a right α-skew McCoy ring if there exists a nonzero element $s \in R$ with $a_{i} \alpha^{i}(s)=0$ for all $0 \leq i \leq n$. If a ring is both left α-skew McCoy and right α-skew McCoy, then we say that the ring is an α-skew McCoy ring.

It can be easily checked that if R is a McCoy ring, then it is an I_{R}-skew McCoy ring, where I_{R} is an identity endomorphism of R, and thus every reversible ring (or reduced ring) R is I_{R}-skew McCoy since reversible rings are McCoy by Nielsen [10, Theorem 2]. However, the following example shows that there exists an I_{R}-skew McCoy ring R which is not reversible.

Example 2.2 Suppose that R is a McCoy ring. Let

$$
a U T_{3}(R)=\left\{\left.\left(\begin{array}{ccc}
a & b & d \\
0 & a & c \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c, d \in R\right\}
$$

Then $a U T_{3}(R)$ is an I_{R}-skew McCoy ring since $a U T_{3}(R)$ is McCoy by Yang and Song [11, Proposition 2.5 and Corollary 2.8]. Let $A=E_{23}, B=E_{12}$, where $E_{i j}$, a 3×3 matrix, is the matrix unit with 1 in the (i, j) th position and 0 elsewhere. Then $A B=0$. But $B A=E_{13} \neq 0$. Thus $a U T_{3}(R)$ is not reversible.

Recall that a ring is called an Armendariz ring if $a_{i} b_{j}=0$ for all i, j whenever polynomials $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f(x) g(x)=0$. For a monoid M, a ring R is called an M-Armendariz ring if whenever elements $\alpha=a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{n} g_{n}, \beta=b_{1} h_{1}+b_{2} h_{2}+$ $\cdots+b_{m} h_{m} \in R[M]$ satisfy $\alpha \beta=0$, then $a_{i} b_{j}=0$ for each i, j. A ring R is called a left M-McCoy ring if whenever elements $\alpha=a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{n} g_{n}, \beta=b_{1} h_{1}+b_{2} h_{2}+\cdots+b_{m} h_{m} \in R[M] \backslash\{0\}$ satisfy $\alpha \beta=0$, then there exists a nonzero element $r \in R$ with $r \beta=0$, the right $M-\mathrm{McCoy}$ rings can be defined similarly. If a ring is both left and right $M-\mathrm{McCoy}$, then we say that the ring is an M-McCoy ring. Armendariz rings are clearly McCoy. M-Armendariz rings are M - Mc Coy for any monoid M by Yang and Song [11, Theorem 2.2]. Power-serieswise Armendariz rings are power-serieswise McCoy by Yang et al. [12, Theorem 2.2]. Some properties of these rings were studied in Anderson and Camillo [1], Hong et al. [4], Huh et al. [5], Kim et al. [6], Liu [8], Yang and Song [11], and Yang et al. [12]. Now let α be an endomorphism of a ring R, one may conjecture that if R is α-skew Armendariz, then R is α-skew McCoy. However, the following example eliminates the possibility.

Example 2.3 ([4, Example 5]) Let $R=\mathbb{Z}_{2}[x], \alpha: R \rightarrow R$ be an endomorphism defined by $\alpha(f(x))=f(0)$. Then R is α-skew Armendariz by Hong et al. [4, Example 5]. However,
$p=y-x y^{2}, q=x y \in R[y, \alpha] \backslash\{0\}$ satisfy $p q=0$, but for any nonzero element $f(x) \in R$, $f(x) x \neq 0$. Thus R is not left α-skew McCoy. Hence R is not α-skew McCoy.

Proposition 2.4 Let α be an endomorphism of a ring R. If R is α-skew Armendariz, then R is right α-skew McCoy.

Proof Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=\sum_{j=0}^{m} b_{j} x^{j} \in R[x ; \alpha] \backslash\{0\}$ satisfy $f(x) g(x)=0$. Then $a_{i} \alpha^{i}\left(b_{j}\right)=0$ for all i, j since R is α-skew Armendariz. Since $g(x) \neq 0$, there exists j_{0} such that $b_{j_{0}} \in R \backslash\{0\}$. Hence $a_{i} \alpha^{i}\left(b_{j_{0}}\right)=0$ for all i. Therefore R is right α-skew McCoy.

Theorem 2.5 Let α be an endomorphism of a ring R. If R is α-rigid, then R is α-skew McCoy.
Proof Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=\sum_{j=0}^{m} b_{j} x^{j} \in R[x ; \alpha] \backslash\{0\}$ with $f(x) g(x)=0$. Then R is α skew Armendariz by Hong et al. [4, Corollary 4]. Thus $a_{i} \alpha^{i}\left(b_{j}\right)=0$ for all $0 \leq i \leq n, 0 \leq j \leq m$. Since $f(x) \neq 0$, there exists i_{0} such that $a_{i_{0}} \neq 0$. Hence $a_{i_{0}} \alpha^{i_{0}}\left(b_{j}\right)=0$ implies $a_{i_{0}} b_{j}=0$ for all $0 \leq j \leq m$ by Hong et al. [3, Lemma 4(iii)]. Therefore R is left α-skew McCoy. Moreover, R is right α-skew McCoy by Proposition 2.4. The proof is completed.

The following example shows that the converse of Theorem 2.5 is not true.
Example 2.6 Let $R=\left\{\left.\left(\begin{array}{lll}r & a & b \\ 0 & r & a \\ 0 & 0 & r\end{array}\right) \right\rvert\, r \in \mathbb{Z}, a, b \in \mathbb{Q}\right\}$, where \mathbb{Z} and \mathbb{Q} are the sets of all integers and all rational numbers, respectively. Let $\alpha: R \rightarrow R$ be an automorphism defined by $\alpha\left(\left(\begin{array}{lll}r & a & b \\ 0 & r & a \\ 0 & 0 & r\end{array}\right)\right)=\left(\begin{array}{ccc}r & a / 2 & b / 4 \\ 0 & r & a / 2 \\ 0 & 0 & r\end{array}\right)$. Then
(1) R is not α-rigid since $\left(\begin{array}{lll}0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \alpha\left(\left(\begin{array}{lll}0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right)=0$, but $\left(\begin{array}{lll}0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \neq 0$ if $b \neq 0$.
(2) R is α-skew McCoy.

Let $f(x)=A_{0}+A_{1} x+\cdots+A_{n} x^{n}, g(x)=B_{0}+B_{1} x+\cdots+B_{m} x^{m} \in R[x ; \alpha] \backslash\{0\}$ with $f(x) g(x)=0$, where $A_{i}=\left(\begin{array}{ccc}r_{i} & a_{i} & b_{i} \\ 0 & r_{i} & a_{i} \\ 0 & 0 & r_{i}\end{array}\right)$ and $B_{j}=\left(\begin{array}{ccc}s_{j} & c_{j} & d_{j} \\ 0 & s_{j} & c_{j} \\ 0 & 0 & s_{j}\end{array}\right)$ for $0 \leq i \leq n, 0 \leq j \leq m$. Since $f(x), g(x) \neq 0$, by a similar proof to Hong et al. [4, Example 1] we have that $A_{i}=$ $\left(\begin{array}{ccc}0 & a_{i} & b_{i} \\ 0 & 0 & a_{i} \\ 0 & 0 & 0\end{array}\right)$ and $B_{j}=\left(\begin{array}{ccc}0 & c_{j} & d_{j} \\ 0 & 0 & c_{j} \\ 0 & 0 & 0\end{array}\right)$ for $0 \leq i \leq n, 0 \leq j \leq m$. Take $C=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. We have $C b_{j}=0$ for all j, and $A_{i} \alpha^{i}(C)=0$ for all i. Thus R is α-skew McCoy.

The following example shows that there exists an endomorphism α of a McCoy ring R such that R is not α-skew McCoy.

Example 2.7 ([4, Example 2]) Let $R=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. Then R is a commutative reduced ring. Thus it is McCoy. Let $\alpha: R \rightarrow R$ be an endomorphism defined by $\alpha((a, b))=(b, a)$. Then for $f(x)=(1,0)+(1,0) x, g(x)=(0,1)+(1,0) x \in R[x ; \alpha] \backslash\{0\}, f(x) g(x)=0$. But for $(a, b) \in R$, if $(a, b) g(x)=0$, then $a=b=0$. Thus R is not left McCoy. Similarly, if $f(x)(a, b)=0$, then
$(a, b)=0$. So R is not right α-skew McCoy.
Recall that if α is an endomorphism of a ring R, then the map $R[x] \rightarrow R[x]$ defined by $\sum_{i=0}^{n} a_{i} x^{i} \mapsto \sum_{i=0}^{n} \alpha\left(a_{i}\right) x^{i}$ is an endomorphism of the polynomial ring $R[x]$ and clearly this map extends α. We shall also denote the extended map $R[x] \rightarrow R[x]$ by α and the image of $f \in R[x]$ by $\alpha(f)$.

Theorem 2.8 Let α be an endomorphism of a ring R and $\alpha^{t}=I_{R}$ for some positive integer t. If R is α-skew McCoy, then $R[x ; \alpha]$ is α-skew McCoy.

Proof Let $p(y)=f_{0}+f_{1} y+\cdots+f_{n} y^{n}, q(y)=g_{0}+g_{1} y+\cdots+g_{m} y^{m} \in R[x ; \alpha][y ; \alpha] \backslash\{0\}$ with $p(y) q(y)=0$. Assume that $f_{i}=a_{i 0}+a_{i 1} x+\cdots+a_{i u_{i}} x^{u_{i}}, g_{j}=b_{j 0}+b_{j 1} x+\cdots+b_{j v_{j}} x^{v_{j}}$ for each $0 \leq i \leq n$, and $0 \leq j \leq m$, where $a_{i 0}, a_{i 1}, \ldots, a_{i u_{i}}, b_{j 0}, b_{j 1}, \ldots, b_{j v_{j}} \in R$. Take a positive integer k such that $k>\max \left\{\operatorname{deg}\left(f_{i}\right), \operatorname{deg}\left(g_{j}\right)\right\}$ for any $0 \leq i \leq n$, and $0 \leq j \leq m$, where the degree is as polynomial in $R[x ; \alpha]$ and the degree of zero polynomial is taken to be 0 . Suppose that $p\left(x^{t k}\right)=f_{0}+f_{1} x^{t k+1}+\cdots+f_{n} x^{n t k+n}, q\left(x^{t k}\right)=g_{0}+g_{1} x^{t k+1}+\cdots+g_{m} x^{m t k+m}$. Then $p\left(x^{t k}\right)$, $q\left(x^{t k}\right) \in R[x ; \alpha] \backslash\{0\}$, and the set of coefficients of f_{i} 's (resp., g_{j} 's) equals the set of coefficients of $p\left(x^{t k}\right)$ (resp., $q\left(x^{t k}\right)$). It is easy to check that $p\left(x^{t k}\right) q\left(x^{t k}\right)=0$ in $R[x ; \alpha]$ since $p(y) q(y)=0$ in $R[x ; \alpha][y ; \alpha]$ and $\alpha^{t k}=I_{R}$. Since R is α-skew McCoy, there exist $r, s \in R \backslash\{0\}$ such that $r q\left(x^{t k}\right)=0$, and $p\left(x^{t k}\right) s=0 . r q\left(x^{t k}\right)=0$ implies $r b_{j k}=0$ for any $0 \leq j \leq m$, and $0 \leq k \leq v_{j}$. Hence $r g_{j}=0$ for any $0 \leq j \leq m$. Therefore $R[x ; \alpha]$ is left α-skew McCoy. $p\left(x^{t k}\right) s=0$ implies $a_{i l} \alpha^{i t k+i+l}(s)=0$ for any $0 \leq i \leq n$, and $0 \leq l \leq u_{i}$. Thus $a_{i l} \alpha^{i+l}(s)=0$ for any $0 \leq i \leq n$, and $0 \leq l \leq u_{i}$ since $\alpha^{i t k}=I_{R}$. Hence we have

$$
\begin{aligned}
f_{i} \alpha^{i}(s) & =\left(a_{i 0}+a_{i 1} x+\cdots+a_{i u_{i}} x^{u_{i}}\right) \alpha^{i}(s) \\
& =a_{i 0} \alpha^{i+0}(s)+a_{i 1} \alpha^{i+1}(s) x+\cdots+a_{i u_{i}} \alpha^{i+u_{i}}(s) x^{u_{i}}=0
\end{aligned}
$$

for any $0 \leq i \leq n$. Therefore $R[x ; \alpha]$ is right α-skew McCoy. The proof is completed.
Recall that an element a in R is called regular if $r_{R}(a)=0=l_{R}(a)$, i.e., a is not a zero divisor. For subrings of an α-skew McCoy ring, we have the following.

Proposition 2.9 Let α be an endomorphism of a ring R and I be an ideal of R satisfying that every nonzero element in I is regular. If R is α-skew McCoy, then I is α-skew McCoy (without identity).

Proof Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=\sum_{j=0}^{m} b_{j} x^{j} \in I[x ; \alpha] \backslash\{0\}$ with $f(x) g(x)=0$. Since I is an ideal of R and R is α-skew McCoy, there exist nonzero elements $r, s \in R$ satisfying $r b_{j}=0$ for any $0 \leq j \leq m$, and $a_{i} \alpha^{i}(s)=0$ for any $0 \leq i \leq n$. Therefore $t r$, st $\in I \backslash\{0\}$ for any nonzero element $t \in I$ (Otherwise, if $t r=0$ (resp., st $=0$) for a element $t \in I \backslash\{0\}$, then $r \in r_{R}(t)$ (resp., $s \in l_{R}(t)$). Hence $r=0$ (resp., $s=0$) since every nonzero element in I is regular. This is a contradiction). Consequently, we have

$$
0=t\left(r b_{j}\right)=(t r) b_{j}, \quad 0=\left(a_{i} \alpha^{i}(s)\right) \alpha^{i}(t)=a_{i} \alpha^{i}(s t)
$$

for any $0 \leq i \leq n$, and $0 \leq j \leq m$. Thus I is α-skew McCoy.

Let R_{i} be a ring and α_{i} an endomorphism of R_{i} for each $i \in I$. For the product $\prod_{i \in I} R_{i}$ of R_{i}, the endomorphism $\bar{\alpha}: \prod_{i \in I} R_{i} \rightarrow \prod_{i \in I} R_{i}$ defined by $\bar{\alpha}\left(\left(a_{i}\right)\right)=\left(\alpha\left(a_{i}\right)\right)$. Yang et al. [12, Theorem 2.12] have shown that $\prod_{i \in I} R_{i}$ is a power-serieswise McCoy ring if and only if each R_{i} is.

Proposition 2.10 Let α_{i} be an endomorphism of $R_{i}, i \in I$. Then $\prod_{i \in I} R_{i}$ is $\bar{\alpha}$-skew McCoy if and only if each R_{i} is α_{i}-skew McCoy.

Proof The proof is similar to Yang et al. [12, Theorem 2.12].
Corollary 2.11 Let R be an abelian ring, α an endomorphism of R, and $e^{2}=e \in R$. If $e R$ and $(1-e) R$ are α-skew McCoy, then R is α-skew McCoy.

Proof Since R is an abelian ring and $e^{2}=e \in R, R=e R \times(1-e) R$. Hence the conclusion follows from Proposition 2.10.

Lemma 2.12 Let α be an endomorphism and R an α-rigid ring. If $f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=$ $\sum_{j=0}^{m} b_{j} x^{j} \in R[x ; \alpha]$ satisfy $f(x) g(x)=0$, then $f(x) \alpha(g(x))=0$ and $\alpha(f(x)) g(x)=0$.

Proof Since R in α-skew Armendariz by Hong et al. [4, Corollary 4], $a_{i} \alpha^{i}\left(b_{j}\right)=0$ for each i, j. Thus $a_{i} \alpha^{i+1}\left(b_{j}\right)=0$ for each i, j by Hong et al. [3, Lemma 4(i)]. Hence $f(x) \alpha(g(x))=0$. Since $R[x ; \alpha]$ is reduced by Hong et al. [4, Proposition 3], $\alpha(f(x)) g(x)=0$.

For an ideal I of a ring R, if $\alpha(I) \subseteq I$, then $\bar{\alpha}: R / I \rightarrow R / I$ defined by $\bar{\alpha}(a+I)=\alpha(a)+I$ is an endomorphism of a factor ring R / I.

Theorem 2.13 Let α be an endomorphism of R and $\alpha(1)=1$. If R is α-rigid, then $R[x ; \alpha] /\left\langle x^{2}\right\rangle$ is $\bar{\alpha}$-skew McCoy.

Proof Suppose that $p(y)=\sum_{i=0}^{n} \bar{f}_{i} y^{i}, q(y)=\sum_{j=0}^{m} \bar{g}_{j} y^{j} \in\left(R[x] /\left\langle x^{2}\right\rangle\right)[y ; \bar{\alpha}] \backslash\{0\}$ with $p(y) q(y)=$ 0 . Let $\bar{f}_{i}=a_{i 0}+a_{i 1} \bar{x}, \bar{g}_{j}=b_{j 0}+b_{j 1} \bar{x}$, where $a_{i 0}, a_{i 1}, b_{j 0}, b_{j 1} \in R, \bar{x}=x+\left\langle x^{2}\right\rangle$. Note that $\bar{x} y=y \bar{x}$ since $\alpha(1)=1$. Thus $p(y)=h_{0}+h_{1} \bar{x}$ and $q(y)=k_{0}+k_{1} \bar{x}$, where $h_{0}=\sum_{i=0}^{n} a_{i 0} y^{i}$, $h_{1}=\sum_{i=0}^{n} a_{i 1} y^{i}, k_{0}=\sum_{j=0}^{m} b_{j 0} y^{j}$ and $k_{1}=\sum_{j=0}^{m} b_{j 1} y^{j}$. Since $\bar{x}^{2}=0$ and $\bar{x} a=\alpha(a) \bar{x}$ for any $a \in R$, we have

$$
0=p(y) q(y)=\left(h_{0}+h_{1} \bar{x}\right)\left(k_{0}+k_{1} \bar{x}\right)=h_{0} k_{0}+\left(h_{0} k_{1}+h_{1} \alpha\left(k_{0}\right)\right) \bar{x}
$$

Hence in $R[y ; \alpha]$ we have $h_{0} k_{0}=0$ and $h_{0} k_{1}+h_{1} \alpha\left(k_{0}\right)=0$. Thus $h_{0} k_{0}=0$ implies $h_{0} \alpha\left(k_{0}\right)=0$ by Lemma 2.12. Since $R[y ; \alpha](\cong R[x ; \alpha])$ is reduced, $\alpha\left(k_{0}\right) h_{0}=0$, and so $0=\alpha\left(k_{0}\right)\left(h_{0} k_{1}+\right.$ $\left.h_{1} \alpha\left(k_{0}\right)\right)=\alpha\left(k_{0}\right) h_{1} \alpha\left(k_{0}\right)=\left(h_{1} \alpha\left(k_{0}\right)\right)^{2}$. Thus $h_{1} \alpha\left(k_{0}\right)=0$, and hence $h_{0} k_{1}=0$.

If $h_{0} \neq 0$, then the equation $0=h_{0}\left(k_{0}+k_{1}\right)$ implies that

$$
0=h_{0}\left(k_{0}+k_{1} y^{m+1}\right)=h_{0}\left(\sum_{j=0}^{m} b_{j 0} y^{j}+\sum_{j=0}^{m} b_{j 1} y^{j+m+1}\right)
$$

Since R is (left) α-skew McCoy by Theorem 2.5, there exists $r \in R \backslash\{0\}$ such that $r b_{j 0}=0$ and $r b_{j 1}=0$ for any j. Hence $r \overline{g_{j}}=0$ for any $0 \leq j \leq m$.

Otherwise, if $h_{0}=0$, then $h_{1} \neq 0$, and $0=p(y) q(y)=\left(h_{1} \bar{x}\right)\left(k_{0}+k_{1} \bar{x}\right)=\left(h_{1} \alpha\left(k_{0}\right)\right) \bar{x}$. Thus
$h_{1} \alpha\left(k_{0}\right)=0$. If $\alpha\left(k_{0}\right) \neq 0$, then there exists $s \in R \backslash\{0\}$ such that $s \alpha\left(b_{j 0}\right)=0$ for any j since R is (left) α-skew McCoy. Let $r=s \bar{x}$. Then $r \in\left(R[x ; \alpha] /\left\langle x^{2}\right\rangle\right) \backslash\{0\}$ and $r \bar{g}_{j}=s \bar{x}\left(b_{j 0}+b_{j 1} \bar{x}\right)=$ $s \alpha\left(b_{j 0}\right) \bar{x}=0$ for any $0 \leq j \leq m$. If $\alpha\left(k_{0}\right)=0$, then let $r=\bar{x}$, and $r \bar{g}_{j}=0$ for any $0 \leq j \leq m$.

So $R[x ; \alpha] /\left\langle x^{2}\right\rangle$ is left $\bar{\alpha}$-skew McCoy.
Moreover, the equations $h_{0} k_{0}=0$ and $h_{0} k_{1}+h_{1} \alpha\left(k_{0}\right)=0$ yield that $h_{0} \alpha\left(k_{0}\right)=0$ and $h_{1} \alpha\left(k_{0}\right)=0$. Thus $h_{1} y^{n+1} \alpha\left(k_{0}\right)=h_{1} \alpha^{n+2}\left(k_{0}\right) y^{n+1}=0$ by Lemma 2.12. Hence we have

$$
0=\left(h_{0}+h_{1} y^{n+1}\right) \alpha\left(k_{0}\right)=\left(\sum_{i=0}^{n} a_{i 0} y^{i}+\sum_{i=0}^{n} a_{i 1} y^{i+n+1}\right)\left(\sum_{j=0}^{m} \alpha\left(b_{j 0}\right) y^{j}\right) .
$$

Then the right case can be proved similarly as above.
Proposition 2.14 Let α be an endomorphism of a ring R and I an ideal of R with $\alpha(I) \subseteq I$. If $a \alpha(a) \in I$ implies $a \in I$ for $a \in R$, then R / I is $\bar{\alpha}$-skew McCoy.

Proof By the proof of Hong et al. [4, Proposition 9], R / I is $\bar{\alpha}$-rigid. Thus R / I is $\bar{\alpha}$-skew McCoy by Theorem 2.5.

Lemma 2.15 Let α be a monomorphism of a ring R, I an α-rigid ideal(without identity) of R with $\alpha(I) \subseteq I, r \in I$ and $s \in R$. Then we have the following:
(1) If $r s=0$, then $r \alpha^{k}(s)=\alpha^{k}(r) s=0$ for any positive integer k.
(2) If $r \alpha^{k}(s)=0\left(\right.$ or $\left.\alpha^{k}(r) s=0\right)$ for some positive integer k, then $r s=0$.

Proof The proof is similar to Hong et al. [3, Lemma 4].
Proposition 2.16 Let α be a monomorphism of a ring R, I an α-rigid ideal (without identity) of R with $\alpha(I) \subseteq I$ and every nonzero element in I regular. Suppose br $\in I \backslash\{0\}$ implies $b \alpha(r) \in I \backslash\{0\}$ for $b, r \in R$. If R / I is reversible and $\bar{\alpha}$-skew McCoy, then R is α-skew McCoy.

Proof Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=\sum_{j=0}^{m} b_{j} x^{j} \in R[x ; \alpha] \backslash\{0\}$ with $f(x) g(x)=0$. Consider the following three cases.

Case 1 Both $f(x)$ and $g(x)$ are in $I[x ; \alpha]$. By Theorem 2.5, I is α-skew McCoy. Thus there exist nonzero $r, s \in I \subseteq R$ such that $r b_{j}=0, a_{i} \alpha^{i}(s)=0$ for all i and j.

Case 2 One and only one of $f(x), g(x)$ is in $I[x ; \alpha]$. Without loss of generality, assume that $f(x) \in I[x ; \alpha]$, but $g(x) \notin I[x ; \alpha]$. Using Lemma 2.15 and I is α-rigid repeatedly, similar to the proof of Hong et al. [3, Proposition 6], we have that $a_{i} b_{j}=0$ for all i, j. Since $f(x), g(x) \neq 0$, there are i_{0}, j_{0} such that $a_{i_{0}}, b_{j_{0}} \in R \backslash\{0\}$. Take $r=a_{i_{0}}, s=b_{j_{0}}$, and hence $r b_{j}=0$, and $a_{i} \alpha^{i}(s)=0$ for all i and j.

Case 3 Neither $f(x)$ nor $g(x)$ is in $I[x ; \alpha]$. Then $\sum_{i=0}^{n} \overline{a_{i}} x^{i}, \sum_{j=0}^{m} \overline{b_{j}} x^{j} \in(R / I)[x ; \bar{\alpha}] \backslash\{\overline{0}\}$. Since R / I is $\bar{\alpha}$-skew McCoy, there exist $\bar{r}, \bar{s} \in R / I \backslash\{\overline{0}\}$ such that $\bar{r} \overline{b_{j}}=\overline{0}, \overline{a_{i}} \bar{\alpha}^{i}(\bar{s})=\overline{0}$. Since R / I is reversible, $\overline{b_{j}} \bar{r}=\overline{0}, \bar{\alpha}^{i}(\bar{s}) \overline{a_{i}}=\overline{0}$. So $r b_{j}, b_{j} r, a_{i} \alpha^{i}(s), \alpha^{i}(s) a_{i} \in I$ for all i, j. We claim that $\alpha^{i}(s) a_{i}=0$ for all i, and $b_{j} r=0$ for all j.

Assume that there exists some i such that $\alpha^{i}(s) a_{i} \neq 0$. Let t be the smallest one relation
to the property. Then $0=\alpha^{t}(s) f(x) g(x)=\left(\sum_{i=t}^{n} \alpha^{t}(s) a_{i} x^{i}\right)\left(\sum_{j=0}^{m} b_{j} x^{j}\right)$ implies $g(x)=0$ since $\alpha^{t}(s) a_{t}(\in I \backslash\{0\})$ is regular and α is monomorphism, a contradiction. Similarly, if there exists some j such that $b_{j} r \neq 0$. Let l be the smallest one relation to the property. Since I is reduced, $b_{j} r=0$ yields $b_{j} \alpha^{j}(r)=0$ for $0 \leq j \leq l-1$. Thus $0=f(x) g(x) r=\left(\sum_{i=0}^{n} a_{i} x^{i}\right)\left(\sum_{j=l}^{m} b_{j} \alpha^{j}(r) x^{j}\right)$. Since $b_{l} r \in I \backslash\{0\}$, we have $b_{l} \alpha^{l}(r) \in I \backslash\{0\}$. Hence $0=f(x) g(x) r$ implies $f(x)=0$ since $b_{l} \alpha^{l}(r) \in I \backslash\{0\}$ is regular and α is monomorphism, this is a contradiction. Thus $\alpha^{i}(s) a_{i}=0$ for all i, and $b_{j} r=0$ for all j.

Hence R is α-skew McCoy.
In the last part of this section, we consider the $n \times n$ upper triangular matrix ring $T_{n}(R)$ over a ring R. Let $a U T n(R)$ be the ring consisting of $n \times n$ upper triangular matrices with equal diagonal entries over R, where $n \geq 2$ is a positive integer. Hong et al. [4, Proposition 17] proved that if R is an α-rigid ring, then $a U T_{3}(R)$ is $\bar{\alpha}$-skew Armendariz, but $a U T n(R)$ is not $\bar{\alpha}$-skew Armendariz for $n \geq 4$ (see [4, Example 18]), where α is an endomorphism of a ring R and $\bar{\alpha}$ is the endomorphism of $\operatorname{aUTn}(R)$ defined by $\bar{\alpha}\left(\left(a_{i j}\right)\right)=\left(\alpha\left(a_{i j}\right)\right)$.

By Camillo and Nielsen [2, Proposition 10.2], the full matrix ring $M_{n}(R)$ and $T_{n}(R)$ over a nonzero ring R need not to be I_{R}-skew McCoy.

Proposition 2.17 Let $n \geq 2$. Then a ring R is α-skew McCoy if and only if aUT $T_{n}(R)$ is $\bar{\alpha}$-skew McCoy.

Proof The proof is similar to Yang and Song [11, Theorem 2.7]
Corollary 2.18 A ring R is α-skew McCoy if and only if the trivial extension

$$
T(R, R)=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a, b \in R\right\}
$$

of R is $\bar{\alpha}$-skew McCoy.

References

[1] ANDERSON D D, CAMILLO V. Armendariz rings and Gaussian rings [J]. Comm. Algebra, 1998, 26(7): 2265-2272.
[2] CAMILLO V, NIELSEN P P. McCoy rings and zero-divisors [J]. J. Pure Appl. Algebra, 2008, 212 (3): 599-615.
[3] HONG C Y, KIM N K, KWAK T K. Ore extensions of Baer and p.p.-rings [J]. J. Pure Appl. Algebra, 2000, 151(3): 215-226.
[4] HONG C Y, KIM N K, KWAK T K. On skew Armendariz rings [J]. Comm. Algebra, 2003, 31(1): 103-122.
[5] HUH C, LEE Y, SMOKTUNOWICZ A. Armendariz rings and semicommutative rings [J]. Comm. Algebra, 2002, 30(2): 751-761.
[6] KIM N K, LEE K H, LEE Y. Power series rings satisfying a zero divisor property [J]. Comm. Algebra, 2006, 34(6): 2205-2218.
[7] KREMPA J. Some examples of reduced rings [J]. Algebra Colloq., 1996, 3(4): 289-300.
[8] LIU Zhongkui. Armendariz rings relative to a monoid [J]. Comm. Algebra, 2005, 33(3): 649-661.
[9] MCCOY N H. Remarks on divisors of zero [J]. Amer. Math. Monthly, 1942, 49: 286-295.
[10] NIELSEN P P. Semi-commutativity and the McCoy condition [J]. J. Algebra, 2006, 298(1): 134-141.
[11] YANG Shizhou, SONG Xuemei. Extensions of McCoy rings relative to a monoid [J]. J. Math. Res. Exposition, 2008, 28(3): 659-665.
[12] YANG Shizhou, SONG Xuemei, LIU Zhongkui. Power series McCoy rings [J]. Algebra Colloq. to appear.

[^0]: Received January 18, 2009; Accepted January 19, 2010
 Supportd by the Natural Science Foundation of Gansu Province (Grant No. 3ZS061-A25-015) and the Scientific Research Fund of Gansu Provincial Education Department (Grant No. 06021-21).

 * Corresponding author

 E-mail address: songxm@lztc.edu.cn (X. M. SONG); lixd@lztc.edu.cn (X. D. LI); yangsz@nwnu.edu.cn (S. Z. YANG)

