Journal of Mathematical Research & Exposition Mar., 2011, Vol. 31, No. 2, pp. 323–329 DOI:10.3770/j.issn:1000-341X.2011.02.016 Http://jmre.dlut.edu.cn

On Skew McCoy Rings

Xue Mei SONG^{1,*}, Xu Dong LI¹, Shi Zhou YANG²

College of Mathematics, Lanzhou City University, Gansu 730070, P. R. China;
College of Mathematics and Information Science, Northwest Normal University,

Gansu 730070, P. R. China

Abstract For a ring endomorphism α , we introduce α -skew McCoy rings which are generalizations of α -rigid rings and McCoy rings, and investigate their properties. We show that if $\alpha^t = I_R$ for some positive integer t and R is an α -skew McCoy ring, then the skew polynomial ring $R[x; \alpha]$ is α -skew McCoy. We also prove that if $\alpha(1) = 1$ and R is α -rigid, then $R[x; \alpha]/\langle x^2 \rangle$ is $\overline{\alpha}$ -skew McCoy.

Keywords McCoy ring; skew McCoy ring; skew polynomial ring; rigid ring; skew Armendariz ring; upper triangular matrix ring.

Document code A MR(2010) Subject Classification 16S36; 16S50 Chinese Library Classification 0153.3

1. Introduction

All rings considered here are associative with identity. According to Nielsen [10], a ring R is called a left McCoy ring if whenever f(x), $g(x) \in R[x] \setminus \{0\}$ satisfy f(x)g(x) = 0, then there exists a nonzero element $r \in R$ with rg(x) = 0. Similarly, right McCoy rings can be defined. If a ring is both left and right McCoy, then we say that the ring is a McCoy ring. Some properties of McCoy rings have been studied in Camillo and Nielsen [2,9], Yang et al. [11,12].

According to Krempa [7], an endomorphism α of a ring R is called rigid if $a\alpha(a) = 0$ implies a = 0 for $a \in R$. We call a ring $R \alpha$ -rigid if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism and α -rigid rings are reduced rings by Hong et al. [3, Proposition 5]. For an endomorphism α of a ring R, $R[x; \alpha]$ is reduced if and only if R is α -rigid by Hong et al. [4, Proposition 3]. Recall that for a ring R with a ring endomorphism $\alpha : R \to R$, a skew polynomial ring (also called an Ore extension of endomorphism type) $R[x; \alpha]$ of R is the ring obtained by giving the polynomial ring over R with the new multiplication $xr = \alpha(r)x$ for all $r \in R$.

Received January 18, 2009; Accepted January 19, 2010

Supportd by the Natural Science Foundation of Gansu Province (Grant No. 3ZS061-A25-015) and the Scientific Research Fund of Gansu Provincial Education Department (Grant No. 06021-21).

^{*} Corresponding author

E-mail address: songxm@lztc.edu.cn (X. M. SONG); lixd@lztc.edu.cn (X. D. LI); yangsz@nwnu.edu.cn (S. Z. YANG)

Motivated by results in Hong et al. [3,4], Nielsen [10] and so on, we investigate a generalization of α -rigid rings and McCoy rings which we call an α -skew McCoy ring.

2. Skew McCoy rings

Definition 2.1 Let α be an endomorphism of a ring R. Assume that $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{j=0}^{m} b_j x^j \in R[x; \alpha] \setminus \{0\}$ satisfy f(x)g(x) = 0. We say that R is a left α -skew McCoy ring if there exists a nonzero element $r \in R$ with $rb_j = 0$ for all $0 \le j \le m$, and say that R is a right α -skew McCoy ring if there exists a nonzero element $s \in R$ with $a_i \alpha^i(s) = 0$ for all $0 \le i \le n$. If a ring is both left α -skew McCoy and right α -skew McCoy, then we say that the ring is an α -skew McCoy ring.

It can be easily checked that if R is a McCoy ring, then it is an I_R -skew McCoy ring, where I_R is an identity endomorphism of R, and thus every reversible ring (or reduced ring) R is I_R -skew McCoy since reversible rings are McCoy by Nielsen [10, Theorem 2]. However, the following example shows that there exists an I_R -skew McCoy ring R which is not reversible.

Example 2.2 Suppose that R is a McCoy ring. Let

$$aUT_{3}(R) = \left\{ \begin{pmatrix} a & b & d \\ 0 & a & c \\ 0 & 0 & a \end{pmatrix} \mid a, \ b, \ c, \ d \in R \right\}.$$

Then $aUT_3(R)$ is an I_R -skew McCoy ring since $aUT_3(R)$ is McCoy by Yang and Song [11, Proposition 2.5 and Corollary 2.8]. Let $A = E_{23}$, $B = E_{12}$, where E_{ij} , a 3×3 matrix, is the matrix unit with 1 in the (i, j)th position and 0 elsewhere. Then AB = 0. But $BA = E_{13} \neq 0$. Thus $aUT_3(R)$ is not reversible.

Recall that a ring is called an Armendariz ring if $a_i b_j = 0$ for all i, j whenever polynomials $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$ satisfy f(x)g(x) = 0. For a monoid M, a ring R is called an M-Armendariz ring if whenever elements $\alpha = a_1g_1 + a_2g_2 + \cdots + a_ng_n$, $\beta = b_1h_1 + b_2h_2 + \cdots + b_mh_m \in R[M]$ satisfy $\alpha\beta = 0$, then $a_ib_j = 0$ for each i, j. A ring R is called a left M-McCoy ring if whenever elements $\alpha = a_1g_1 + a_2g_2 + \cdots + a_ng_n$, $\beta = b_1h_1 + b_2h_2 + \cdots + b_mh_m \in R[M] \setminus \{0\}$ satisfy $\alpha\beta = 0$, then there exists a nonzero element $r \in R$ with $r\beta = 0$, the right M-McCoy rings can be defined similarly. If a ring is both left and right M-McCoy, then we say that the ring is an M-McCoy ring. Armendariz rings are clearly McCoy. M-Armendariz rings are M-McCoy for any monoid M by Yang and Song [11, Theorem 2.2]. Power-serieswise Armendariz rings were studied in Anderson and Camillo [1], Hong et al. [4], Huh et al. [5], Kim et al. [6], Liu [8], Yang and Song [11], and Yang et al. [12]. Now let α be an endomorphism of a ring R, one may conjecture that if R is α -skew Armendariz, then R is α -skew McCoy. However, the following example eliminates the possibility.

Example 2.3 ([4, Example 5]) Let $R = \mathbb{Z}_2[x]$, $\alpha : R \to R$ be an endomorphism defined by $\alpha(f(x)) = f(0)$. Then R is α -skew Armendariz by Hong et al. [4, Example 5]. However,

 $p = y - xy^2, q = xy \in R[y, \alpha] \setminus \{0\}$ satisfy pq = 0, but for any nonzero element $f(x) \in R$, $f(x)x \neq 0$. Thus R is not left α -skew McCoy. Hence R is not α -skew McCoy.

Proposition 2.4 Let α be an endomorphism of a ring *R*. If *R* is α -skew Armendariz, then *R* is right α -skew McCoy.

Proof Let $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{j=0}^{m} b_j x^j \in R[x; \alpha] \setminus \{0\}$ satisfy f(x)g(x) = 0. Then $a_i \alpha^i(b_j) = 0$ for all i, j since R is α -skew Armendariz. Since $g(x) \neq 0$, there exists j_0 such that $b_{j_0} \in R \setminus \{0\}$. Hence $a_i \alpha^i(b_{j_0}) = 0$ for all i. Therefore R is right α -skew McCoy. \Box

Theorem 2.5 Let α be an endomorphism of a ring R. If R is α -rigid, then R is α -skew McCoy.

Proof Let $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{j=0}^{m} b_j x^j \in R[x; \alpha] \setminus \{0\}$ with f(x)g(x) = 0. Then R is α -skew Armendariz by Hong et al. [4, Corollary 4]. Thus $a_i \alpha^i(b_j) = 0$ for all $0 \le i \le n$, $0 \le j \le m$. Since $f(x) \ne 0$, there exists i_0 such that $a_{i_0} \ne 0$. Hence $a_{i_0} \alpha^{i_0}(b_j) = 0$ implies $a_{i_0} b_j = 0$ for all $0 \le j \le m$ by Hong et al. [3, Lemma 4(iii)]. Therefore R is left α -skew McCoy. Moreover, R is right α -skew McCoy by Proposition 2.4. The proof is completed. \Box

The following example shows that the converse of Theorem 2.5 is not true.

Example 2.6 Let $R = \left\{ \begin{pmatrix} r & a & b \\ 0 & r & a \\ 0 & 0 & r \end{pmatrix} | r \in \mathbb{Z}, a, b \in \mathbb{Q} \right\}$, where \mathbb{Z} and \mathbb{Q} are the sets of all integers and all rational numbers, respectively. Let $\alpha : R \to R$ be an automorphism defined by $\alpha \left(\begin{pmatrix} r & a & b \\ 0 & r & a \\ 0 & 0 & r \end{pmatrix} \right) = \begin{pmatrix} r & a/2 & b/4 \\ 0 & r & a/2 \\ 0 & 0 & r \end{pmatrix}$. Then (1) R is not α -rigid since $\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \alpha \left(\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right) = 0$, but $\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0$ if $b \neq 0$. (2) R is α -skew McCoy. Let $f(x) = A_0 + A_1x + \dots + A_nx^n$, $g(x) = B_0 + B_1x + \dots + B_mx^m \in R[x; \alpha] \setminus \{0\}$ with f(x)g(x) = 0, where $A_i = \begin{pmatrix} r_i & a_i & b_i \\ 0 & r_i & a_i \\ 0 & 0 & r_i \end{pmatrix}$ and $B_j = \begin{pmatrix} s_j & c_j & d_j \\ 0 & s_j & c_j \\ 0 & 0 & s_j \end{pmatrix}$ for $0 \leq i \leq n$, $0 \leq j \leq m$. Since $f(x), g(x) \neq 0$, by a similar proof to Hong et al. [4, Example 1] we have that $A_i = \begin{pmatrix} 0 & a_i & b_i \\ 0 & 0 & a_i \\ 0 & 0 & 0 \end{pmatrix}$ and $B_j = \begin{pmatrix} 0 & c_j & d_j \\ 0 & 0 & c_j \\ 0 & 0 & 0 \end{pmatrix}$ for $0 \leq i \leq n$, $0 \leq j \leq m$. Take $C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. We have $Cb_i = 0$ for all j, and $A_i \alpha^i(C) = 0$ for all i. Thus R is α -skew McCoy.

The following example shows that there exists an endomorphism α of a McCoy ring R such that R is not α -skew McCoy.

Example 2.7 ([4, Example 2]) Let $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Then R is a commutative reduced ring. Thus it is McCoy. Let $\alpha : R \to R$ be an endomorphism defined by $\alpha((a, b)) = (b, a)$. Then for f(x) = (1,0) + (1,0)x, $g(x) = (0, 1) + (1, 0)x \in R[x; \alpha] \setminus \{0\}$, f(x)g(x) = 0. But for $(a, b) \in R$, if (a, b)g(x) = 0, then a = b = 0. Thus R is not left McCoy. Similarly, if f(x)(a, b) = 0, then

(a, b) = 0. So R is not right α -skew McCoy.

Recall that if α is an endomorphism of a ring R, then the map $R[x] \to R[x]$ defined by $\sum_{i=0}^{n} a_i x^i \mapsto \sum_{i=0}^{n} \alpha(a_i) x^i$ is an endomorphism of the polynomial ring R[x] and clearly this map extends α . We shall also denote the extended map $R[x] \to R[x]$ by α and the image of $f \in R[x]$ by $\alpha(f)$.

Theorem 2.8 Let α be an endomorphism of a ring R and $\alpha^t = I_R$ for some positive integer t. If R is α -skew McCoy, then $R[x; \alpha]$ is α -skew McCoy.

Proof Let $p(y) = f_0 + f_1y + \dots + f_ny^n$, $q(y) = g_0 + g_1y + \dots + g_my^m \in R[x;\alpha][y;\alpha] \setminus \{0\}$ with p(y)q(y) = 0. Assume that $f_i = a_{i0} + a_{i1}x + \dots + a_{iu_i}x^{u_i}$, $g_j = b_{j0} + b_{j1}x + \dots + b_{jv_j}x^{v_j}$ for each $0 \le i \le n$, and $0 \le j \le m$, where $a_{i0}, a_{i1}, \dots, a_{iu_i}, b_{j0}, b_{j1}, \dots, b_{jv_j} \in R$. Take a positive integer k such that $k > \max\{\deg(f_i), \deg(g_j)\}$ for any $0 \le i \le n$, and $0 \le j \le m$, where the degree is as polynomial in $R[x;\alpha]$ and the degree of zero polynomial is taken to be 0. Suppose that $p(x^{tk}) = f_0 + f_1x^{tk+1} + \dots + f_nx^{ntk+n}$, $q(x^{tk}) = g_0 + g_1x^{tk+1} + \dots + g_mx^{mtk+m}$. Then $p(x^{tk})$, $q(x^{tk}) \in R[x;\alpha] \setminus \{0\}$, and the set of coefficients of f_i 's (resp., g_j 's) equals the set of coefficients of $p(x^{tk})$ (resp., $q(x^{tk})$). It is easy to check that $p(x^{tk})q(x^{tk}) = 0$ in $R[x;\alpha]$ since p(y)q(y) = 0 in $R[x;\alpha][y;\alpha]$ and $\alpha^{tk} = I_R$. Since R is α -skew McCoy, there exist $r, s \in R \setminus \{0\}$ such that $rq(x^{tk}) = 0$, and $p(x^{tk})s = 0$. $rq(x^{tk}) = 0$ implies $rb_{jk} = 0$ for any $0 \le j \le m$, and $0 \le k \le v_j$. Hence $rg_j = 0$ for any $0 \le j \le m$. Therefore $R[x;\alpha]$ is left α -skew McCoy. $p(x^{tk})s = 0$ implies $a_{il}\alpha^{itk+i+l}(s) = 0$ for any $0 \le i \le n$, and $0 \le l \le u_i$. Thus $a_{il}\alpha^{i+l}(s) = 0$ for any $0 \le i \le n$, and $0 \le l \le u_i$ since $\alpha^{itk} = I_R$. Hence we have

$$f_i \alpha^i(s) = (a_{i0} + a_{i1}x + \dots + a_{iu_i}x^{u_i})\alpha^i(s)$$

= $a_{i0}\alpha^{i+0}(s) + a_{i1}\alpha^{i+1}(s)x + \dots + a_{iu_i}\alpha^{i+u_i}(s)x^{u_i} = 0$

for any $0 \le i \le n$. Therefore $R[x; \alpha]$ is right α -skew McCoy. The proof is completed. \Box

Recall that an element a in R is called regular if $r_R(a) = 0 = l_R(a)$, i.e., a is not a zero divisor. For subrings of an α -skew McCoy ring, we have the following.

Proposition 2.9 Let α be an endomorphism of a ring R and I be an ideal of R satisfying that every nonzero element in I is regular. If R is α -skew McCoy, then I is α -skew McCoy (without identity).

Proof Let $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{j=0}^{m} b_j x^j \in I[x; \alpha] \setminus \{0\}$ with f(x)g(x) = 0. Since I is an ideal of R and R is α -skew McCoy, there exist nonzero elements $r, s \in R$ satisfying $rb_j = 0$ for any $0 \leq j \leq m$, and $a_i \alpha^i(s) = 0$ for any $0 \leq i \leq n$. Therefore $tr, st \in I \setminus \{0\}$ for any nonzero element $t \in I$ (Otherwise, if tr = 0 (resp., st = 0) for a element $t \in I \setminus \{0\}$, then $r \in r_R(t)$ (resp., $s \in l_R(t)$). Hence r = 0 (resp., s = 0) since every nonzero element in I is regular. This is a contradiction). Consequently, we have

$$0 = t(rb_j) = (tr)b_j, \ 0 = (a_i\alpha^i(s))\alpha^i(t) = a_i\alpha^i(st)$$

for any $0 \leq i \leq n$, and $0 \leq j \leq m$. Thus I is α -skew McCoy. \Box

Let R_i be a ring and α_i an endomorphism of R_i for each $i \in I$. For the product $\prod_{i \in I} R_i$ of R_i , the endomorphism $\bar{\alpha} : \prod_{i \in I} R_i \to \prod_{i \in I} R_i$ defined by $\bar{\alpha}((a_i)) = (\alpha(a_i))$. Yang et al. [12, Theorem 2.12] have shown that $\prod_{i \in I} R_i$ is a power-serieswise McCoy ring if and only if each R_i is.

Proposition 2.10 Let α_i be an endomorphism of $R_i, i \in I$. Then $\prod_{i \in I} R_i$ is $\bar{\alpha}$ -skew McCoy if and only if each R_i is α_i -skew McCoy.

Proof The proof is similar to Yang et al. [12, Theorem 2.12]. \Box

Corollary 2.11 Let R be an abelian ring, α an endomorphism of R, and $e^2 = e \in R$. If eR and (1-e)R are α -skew McCoy, then R is α -skew McCoy.

Proof Since R is an abelian ring and $e^2 = e \in R$, $R = eR \times (1 - e)R$. Hence the conclusion follows from Proposition 2.10. \Box

Lemma 2.12 Let α be an endomorphism and R an α -rigid ring. If $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{i=0}^{m} b_j x^j \in R[x; \alpha]$ satisfy f(x)g(x) = 0, then $f(x)\alpha(g(x)) = 0$ and $\alpha(f(x))g(x) = 0$.

Proof Since R in α -skew Armendariz by Hong et al. [4, Corollary 4], $a_i \alpha^i(b_j) = 0$ for each i, j. Thus $a_i \alpha^{i+1}(b_j) = 0$ for each i, j by Hong et al. [3, Lemma 4(i)]. Hence $f(x)\alpha(g(x)) = 0$. Since $R[x; \alpha]$ is reduced by Hong et al. [4, Proposition 3], $\alpha(f(x))g(x) = 0$. \Box

For an ideal I of a ring R, if $\alpha(I) \subseteq I$, then $\bar{\alpha} : R/I \to R/I$ defined by $\bar{\alpha}(a+I) = \alpha(a) + I$ is an endomorphism of a factor ring R/I.

Theorem 2.13 Let α be an endomorphism of R and $\alpha(1) = 1$. If R is α -rigid, then $R[x; \alpha]/\langle x^2 \rangle$ is $\bar{\alpha}$ -skew McCoy.

Proof Suppose that $p(y) = \sum_{i=0}^{n} \bar{f}_{i}y^{i}$, $q(y) = \sum_{j=0}^{m} \bar{g}_{j}y^{j} \in (R[x]/\langle x^{2} \rangle)[y;\bar{\alpha}] \setminus \{0\}$ with p(y)q(y) = 0. Let $\bar{f}_{i} = a_{i0} + a_{i1}\bar{x}$, $\bar{g}_{j} = b_{j0} + b_{j1}\bar{x}$, where $a_{i0}, a_{i1}, b_{j0}, b_{j1} \in R, \bar{x} = x + \langle x^{2} \rangle$. Note that $\bar{x}y = y\bar{x}$ since $\alpha(1) = 1$. Thus $p(y) = h_{0} + h_{1}\bar{x}$ and $q(y) = k_{0} + k_{1}\bar{x}$, where $h_{0} = \sum_{i=0}^{n} a_{i0}y^{i}$, $h_{1} = \sum_{i=0}^{n} a_{i1}y^{i}$, $k_{0} = \sum_{j=0}^{m} b_{j0}y^{j}$ and $k_{1} = \sum_{j=0}^{m} b_{j1}y^{j}$. Since $\bar{x}^{2} = 0$ and $\bar{x}a = \alpha(a)\bar{x}$ for any $a \in R$, we have

$$0 = p(y)q(y) = (h_0 + h_1\bar{x})(k_0 + k_1\bar{x}) = h_0k_0 + (h_0k_1 + h_1\alpha(k_0))\bar{x}.$$

Hence in $R[y; \alpha]$ we have $h_0 k_0 = 0$ and $h_0 k_1 + h_1 \alpha(k_0) = 0$. Thus $h_0 k_0 = 0$ implies $h_0 \alpha(k_0) = 0$ by Lemma 2.12. Since $R[y; \alpha] \cong R[x; \alpha]$ is reduced, $\alpha(k_0) h_0 = 0$, and so $0 = \alpha(k_0)(h_0 k_1 + h_1 \alpha(k_0)) = \alpha(k_0)h_1 \alpha(k_0) = (h_1 \alpha(k_0))^2$. Thus $h_1 \alpha(k_0) = 0$, and hence $h_0 k_1 = 0$.

If $h_0 \neq 0$, then the equation $0 = h_0(k_0 + k_1)$ implies that

$$0 = h_0(k_0 + k_1 y^{m+1}) = h_0(\sum_{j=0}^m b_{j0} y^j + \sum_{j=0}^m b_{j1} y^{j+m+1}).$$

Since R is (left) α -skew McCoy by Theorem 2.5, there exists $r \in R \setminus \{0\}$ such that $rb_{j0} = 0$ and $rb_{j1} = 0$ for any j. Hence $r\bar{g}_j = 0$ for any $0 \le j \le m$.

Otherwise, if $h_0 = 0$, then $h_1 \neq 0$, and $0 = p(y)q(y) = (h_1\bar{x})(k_0 + k_1\bar{x}) = (h_1\alpha(k_0))\bar{x}$. Thus

 $h_1\alpha(k_0) = 0$. If $\alpha(k_0) \neq 0$, then there exists $s \in R \setminus \{0\}$ such that $s\alpha(b_{j0}) = 0$ for any j since R is (left) α -skew McCoy. Let $r = s\bar{x}$. Then $r \in (R[x;\alpha]/\langle x^2 \rangle) \setminus \{0\}$ and $r\bar{g}_j = s\bar{x}(b_{j0} + b_{j1}\bar{x}) = s\alpha(b_{j0})\bar{x} = 0$ for any $0 \leq j \leq m$. If $\alpha(k_0) = 0$, then let $r = \bar{x}$, and $r\bar{g}_j = 0$ for any $0 \leq j \leq m$.

So $R[x;\alpha]/\langle x^2 \rangle$ is left $\bar{\alpha}$ -skew McCoy.

Moreover, the equations $h_0k_0 = 0$ and $h_0k_1 + h_1\alpha(k_0) = 0$ yield that $h_0\alpha(k_0) = 0$ and $h_1\alpha(k_0) = 0$. Thus $h_1y^{n+1}\alpha(k_0) = h_1\alpha^{n+2}(k_0)y^{n+1} = 0$ by Lemma 2.12. Hence we have

$$0 = (h_0 + h_1 y^{n+1}) \alpha(k_0) = \left(\sum_{i=0}^n a_{i0} y^i + \sum_{i=0}^n a_{i1} y^{i+n+1}\right) \left(\sum_{j=0}^m \alpha(b_{j0}) y^j\right).$$

Then the right case can be proved similarly as above. \Box

Proposition 2.14 Let α be an endomorphism of a ring R and I an ideal of R with $\alpha(I) \subseteq I$. If $a\alpha(a) \in I$ implies $a \in I$ for $a \in R$, then R/I is $\bar{\alpha}$ -skew McCoy.

Proof By the proof of Hong et al. [4, Proposition 9], R/I is $\bar{\alpha}$ -rigid. Thus R/I is $\bar{\alpha}$ -skew McCoy by Theorem 2.5. \Box

Lemma 2.15 Let α be a monomorphism of a ring R, I an α -rigid ideal(without identity) of R with $\alpha(I) \subseteq I$, $r \in I$ and $s \in R$. Then we have the following:

- (1) If rs = 0, then $r\alpha^k(s) = \alpha^k(r)s = 0$ for any positive integer k.
- (2) If $r\alpha^k(s) = 0$ (or $\alpha^k(r)s = 0$) for some positive integer k, then rs = 0.

Proof The proof is similar to Hong et al. [3, Lemma 4]. \Box

Proposition 2.16 Let α be a monomorphism of a ring R, I an α -rigid ideal (without identity) of R with $\alpha(I) \subseteq I$ and every nonzero element in I regular. Suppose $br \in I \setminus \{0\}$ implies $b\alpha(r) \in I \setminus \{0\}$ for $b, r \in R$. If R/I is reversible and $\overline{\alpha}$ -skew McCoy, then R is α -skew McCoy.

Proof Let $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{j=0}^{m} b_j x^j \in R[x; \alpha] \setminus \{0\}$ with f(x)g(x) = 0. Consider the following three cases.

Case 1 Both f(x) and g(x) are in $I[x; \alpha]$. By Theorem 2.5, I is α -skew McCoy. Thus there exist nonzero $r, s \in I \subseteq R$ such that $rb_j = 0, a_i \alpha^i(s) = 0$ for all i and j.

Case 2 One and only one of f(x), g(x) is in $I[x; \alpha]$. Without loss of generality, assume that $f(x) \in I[x; \alpha]$, but $g(x) \notin I[x; \alpha]$. Using Lemma 2.15 and I is α -rigid repeatedly, similar to the proof of Hong et al. [3, Proposition 6], we have that $a_ib_j = 0$ for all i, j. Since $f(x), g(x) \neq 0$, there are i_0, j_0 such that $a_{i_0}, b_{j_0} \in R \setminus \{0\}$. Take $r = a_{i_0}, s = b_{j_0}$, and hence $rb_j = 0$, and $a_i \alpha^i(s) = 0$ for all i and j.

Case 3 Neither f(x) nor g(x) is in $I[x; \alpha]$. Then $\sum_{i=0}^{n} \overline{a_i} x^i$, $\sum_{j=0}^{m} \overline{b_j} x^j \in (R/I)[x; \overline{\alpha}] \setminus \{\overline{0}\}$. Since R/I is $\overline{\alpha}$ -skew McCoy, there exist $\overline{r}, \overline{s} \in R/I \setminus \{\overline{0}\}$ such that $\overline{rb_j} = \overline{0}, \overline{a_i} \overline{\alpha}^i(\overline{s}) = \overline{0}$. Since R/I is reversible, $\overline{b_j}\overline{r} = \overline{0}, \overline{\alpha}^i(\overline{s})\overline{a_i} = \overline{0}$. So $rb_j, b_jr, a_i\alpha^i(s), \alpha^i(s)a_i \in I$ for all i, j. We claim that $\alpha^i(s)a_i = 0$ for all i, and $b_jr = 0$ for all j.

Assume that there exists some i such that $\alpha^i(s)a_i \neq 0$. Let t be the smallest one relation

to the property. Then $0 = \alpha^t(s)f(x)g(x) = (\sum_{i=t}^n \alpha^t(s)a_ix^i)(\sum_{j=0}^m b_jx^j)$ implies g(x) = 0 since $\alpha^t(s)a_t (\in I \setminus \{0\})$ is regular and α is monomorphism, a contradiction. Similarly, if there exists some j such that $b_jr \neq 0$. Let l be the smallest one relation to the property. Since I is reduced, $b_jr = 0$ yields $b_j\alpha^j(r) = 0$ for $0 \le j \le l-1$. Thus $0 = f(x)g(x)r = (\sum_{i=0}^n a_ix^i)(\sum_{j=l}^m b_j\alpha^j(r)x^j)$. Since $b_lr \in I \setminus \{0\}$, we have $b_l\alpha^l(r) \in I \setminus \{0\}$. Hence 0 = f(x)g(x)r implies f(x) = 0 since $b_l\alpha^l(r) \in I \setminus \{0\}$ is regular and α is monomorphism, this is a contradiction. Thus $\alpha^i(s)a_i = 0$ for all i, and $b_jr = 0$ for all j.

Hence R is α -skew McCoy. \Box

In the last part of this section, we consider the $n \times n$ upper triangular matrix ring $T_n(R)$ over a ring R. Let aUTn(R) be the ring consisting of $n \times n$ upper triangular matrices with equal diagonal entries over R, where $n \ge 2$ is a positive integer. Hong et al. [4, Proposition 17] proved that if R is an α -rigid ring, then $aUT_3(R)$ is $\bar{\alpha}$ -skew Armendariz, but aUTn(R) is not $\bar{\alpha}$ -skew Armendariz for $n \ge 4$ (see [4, Example 18]), where α is an endomorphism of a ring R and $\bar{\alpha}$ is the endomorphism of aUTn(R) defined by $\bar{\alpha}((a_{ij})) = (\alpha(a_{ij}))$.

By Camillo and Nielsen [2, Proposition 10.2], the full matrix ring $M_n(R)$ and $T_n(R)$ over a nonzero ring R need not to be I_R -skew McCoy.

Proposition 2.17 Let $n \ge 2$. Then a ring R is α -skew McCoy if and only if $aUT_n(R)$ is $\overline{\alpha}$ -skew McCoy.

Proof The proof is similar to Yang and Song [11, Theorem 2.7] \Box

Corollary 2.18 A ring R is α -skew McCoy if and only if the trivial extension

$$T(R,R) = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b \in R \right\}$$

of R is $\bar{\alpha}$ -skew McCoy.

References

- ANDERSON D D, CAMILLO V. Armendariz rings and Gaussian rings [J]. Comm. Algebra, 1998, 26(7): 2265–2272.
- [2] CAMILLO V, NIELSEN P P. McCoy rings and zero-divisors [J]. J. Pure Appl. Algebra, 2008, 212(3): 599-615.
- [3] HONG C Y, KIM N K, KWAK T K. Ore extensions of Baer and p.p.-rings [J]. J. Pure Appl. Algebra, 2000, 151(3): 215–226.
- [4] HONG C Y, KIM N K, KWAK T K. On skew Armendariz rings [J]. Comm. Algebra, 2003, 31(1): 103–122.
- [5] HUH C, LEE Y, SMOKTUNOWICZ A. Armendariz rings and semicommutative rings [J]. Comm. Algebra, 2002, 30(2): 751–761.
- [6] KIM N K, LEE K H, LEE Y. Power series rings satisfying a zero divisor property [J]. Comm. Algebra, 2006, 34(6): 2205–2218.
- [7] KREMPA J. Some examples of reduced rings [J]. Algebra Colloq., 1996, 3(4): 289–300.
- [8] LIU Zhongkui. Armendariz rings relative to a monoid [J]. Comm. Algebra, 2005, 33(3): 649-661.
- [9] MCCOY N H. Remarks on divisors of zero [J]. Amer. Math. Monthly, 1942, 49: 286–295.
- [10] NIELSEN P P. Semi-commutativity and the McCoy condition [J]. J. Algebra, 2006, 298(1): 134–141.
- [11] YANG Shizhou, SONG Xuemei. Extensions of McCoy rings relative to a monoid [J]. J. Math. Res. Exposition, 2008, 28(3): 659–665.
- [12] YANG Shizhou, SONG Xuemei, LIU Zhongkui. Power series McCoy rings [J]. Algebra Colloq. to appear.