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1. Introduction

In 1956, Aronszajn and Panitchpakdi [1] introduced the notion of hyperconvex metric spaces.

Recently, Khamsi [2] established a hyperconvex version of the famous KKM-Fan principle. Park

[3] obtained a Ky Fan matching theorem for open covers, a fixed point theorem and other results

in hyperconvex spaces. Kirk et al. [4] established KKM theory in hyperconvex spaces and as

applications of their results, a fixed point theorem, maximal element theorem and the other

results were given. In [5–12], we established fixed point theorems, Ky Fan matching theorem

and other results in noncompact hyperconvex spaces.

In 2001, Ding and Xia [13] introduced H-metric spaces and established some generalized

H-KKM theorems in H-metric spaces. In 2005, Meng et al. [14] introduced G-convex metric

spaces and established some generalized KKM theorems and fixed point theorems in G-convex

metric spaces. In [15–17], we introduced L-convex metric spaces, and established some GLKKM

theorems, fixed point theorems, Ky Fan matching theorems and equilibrium existence theorems

for abstract economies and qualitative games in complete L-convex metric spaces.

In this paper, a new fixed point theorem is established in noncompact complete L-convex

metric spaces. As applications, a maximal element theorem, a minimax inequality and a saddle

point theorem are obtained. Our results unify, improve and generalize some recent known results

in several aspects.
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2. Preliminaries

Let X be a nonempty set. We denote by F(X) and 2X the family of all nonempty finite

subsets of X and the family of all subsets of X , respectively, by |A| the cardinality of A for each

A ∈ F(X), and by △n the standard n-dimensional simplex with vertices e0, e1, . . . , en. Let X

and Y be two topological spaces. We denote by C(X, Y ) the class of single-valued continuous

maps of X into Y . Let X be a nonempty set and Y a topological space. A mapping G : X → 2Y

is said to be transfer compactly open (resp., closed) valued if for each x ∈ X and for each

compact set K ⊂ Y , y ∈ G(x) ∩ K (resp., y 6∈ G(x) ∩ K) implies that there exists x′ ∈ X such

that y ∈ intK(G(x′) ∩ K) (resp., y 6∈ clK(G(x′) ∩ K)) (see [15, 17]).

Following Wen [15–17], an L-convexity structure on a topological space X is given by a

mapping Γ : F(X) → 2X satisfying the following condition: for each A ∈ F(X) with |A| = n+1,

there exists a continuous mapping φA : ∆n → Γ(A) such that B ∈ F(A) with |B| = J + 1,

implies φA(∆J) ⊂ Γ(B), where ∆J denotes the face of ∆n corresponding to B ∈ F(A). The

pair (X, Γ) is then called an L-convex space. A set D ⊂ X is said to be L-convex if for each

A ∈ F(D), Γ(A) ⊂ D. Let X be a nonempty set and (Y, Γ) be an L-convex space. A mapping

G : X → 2Y is said to be a GLKKM mapping if for each {x1, . . . , xn} ∈ F(X), there exists

{y1, . . . , yn} ∈ F(Y ) such that for any nonempty subset {yi1 , . . . , yik
} ⊂ {y1, . . . , yn}, we have

Γ({yij
: j = 1, . . . , k}) ⊂

⋃k
j=1

G(xij
). (M, d, Γ) is said to be an L-convex metric space if (M, d)

is a metric space and (M, Γ) is an L-convex space such that Γ(A) ⊂ co(A) for each A ∈ F(M).

The following result, in which Y need not be a topological space, is Lemma 1.3 of Wen [17],

which is the improving version of Lemma 1.1 of Wen [6] and Lemma 2.1 of Ding [18].

Lemma 2.1 ([17]) Let X be a topological space, Y a nonempty set, K a nonempty compact

subset of X and G : X → 2Y a mapping such that G(x) 6= ∅ for each x ∈ K. Then the following

conditions are equivalent:

(a) G has the compactly local intersection property;

(b) For each y ∈ Y , there exists an open subset Oy of X such that Oy ∩ K ⊂ G−1(y) and

K =
⋃

y∈Y (Oy ∩ K);

(c) There exists a mapping F : X → 2Y such that for each y ∈ Y , F−1(y) is open in X ,

F−1(y) ∩ K ⊂ G−1(y), and K =
⋃

y∈Y (F−1(y) ∩ K);

(d) For each x ∈ K, there exists y ∈ Y such that x ∈ cintG−1(y)∩K and K =
⋃

y∈Y (cintG−1(y)∩

K) =
⋃

y∈Y (G−1(y) ∩ K);

(e) G−1 is transfer compactly open valued on X .

Now, we introduce the following definitions and lemmas.

Definition 2.1 Let X be a nonempty set, (Y, Γ) an L-convex space and A, B : X → 2Y two

mappings. A is said to be relatively L-convex valued in B if for each x ∈ X and for each

{y1, . . . , yn} ∈ F(B(x)), Γ({y1, . . . , yn}) ⊂ A(x).

Remark 2.1 Obviously, A is relatively L-convex valued in A if A is L-convex valued, but A

need not be L-convex valued if A is relatively L-convex valued in B. A is relatively L-convex
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valued in B if A is L-convex valued and for each x ∈ X, B(x) ⊂ A(x), but the inverse is not true.

A is nonempty valued if A is relatively L-convex valued in B and B is nonempty valued.

Definition 2.2 Let X be an nonempty set, (Y, Γ) an L-convex space, γ ∈ R a real number and

f, g : X ×Y → R̄ := R∪ {±∞} two functions. f is said to be relatively L-γ-quasiconcave (resp.,

L-γ-quasiconvex) in g on y if for each x ∈ X and for each {y1, . . . , yn} ∈ F({y ∈ Y : g(x, y) > γ})

(resp., {y1, . . . , yn} ∈ F({y ∈ Y : g(x, y) < γ})), Γ({y1, . . . , yn}) ⊂ {y ∈ Y : f(x, y) > γ} (resp.,

Γ({y1, . . . , yn}) ⊂ {y ∈ Y : f(x, y) < γ}). Where the strict inequality > (resp., <) can be

replaced equivalently by the inequality ≥ (resp., ≤).

Remark 2.2 Definition 2.2 unifies and generalizes the definition of L-quasiconcave (resp., L-

quasiconvex) of Lu et al. [19] and Ding et al. [20], Definition 2.5(1) of Kirk et al. [4], Definition

1.1 of Wen [6], Definition 1.4 of Zhang [21], Definition 5 of Liu [22] and Definition 1.2(2) of Tan

[23].

Clearly, we have the following lemmas.

Lemma 2.2 Let X be a nonempty set, (Y, Γ) an L-convex space, γ ∈ R a real number,

f, g : X × Y → R̄ two functions and A, B : X → 2Y two mappings defined by A(x) := {y ∈ Y :

f(x, y) > γ} and B(x) := {y ∈ Y : g(x, y) > γ} for each x ∈ X , respectively. Then f is relatively

L-γ-quasiconcave in g on y if and only if A is relatively L-convex valued in B.

Lemma 2.3 Let X be a nonempty set, (Y, Γ) an L-convex space, γ ∈ R a real number,

f, g : X × Y → R̄ two functions. Then f is relatively L-γ-quasiconcave in g on y if and only if

−f is relatively L-γ-quasiconvex in −g on y.

Definition 2.3 ([17]) Let X be a nonempty set, Y a topological space and γ ∈ R a real number.

A function g : X × Y → R̄ is said to be γ-transfer compactly lower semicontinuous (in short,

γ-t.c.l.s.c.) (resp., γ-transfer compactly upper semicontinuous (in short, γ-t.c.u.s.c.)) in y if for

each nonempty compactly subset K of Y and for each x ∈ X and y ∈ K, g(x, y) > γ (resp.,

g(x, y) < γ) implies that there exist x′ ∈ X and a relatively open neighborhood N (y) of y in K

such that g(x′, z) > γ (resp., g(x′, z) < γ) for all z ∈ N (y).

Lemma 2.4 ([17]) Let X be a nonempty set, Y a topological space and γ ∈ R a real number.

Then a function g : X × Y → R̄ is γ-t.c.l.s.c. (resp., γ-t.c.u.s.c.) in y if and only if the mapping

G : X → 2Y defined by G(x) := {y ∈ Y : g(x, y) ≤ γ} (resp., G(x) := {y ∈ Y : g(x, y) ≥ γ}) for

each x ∈ X is transfer compactly closed valued.

3. Main results

Theorem 3.1 Let X be a topological space, Y a nonempty subset of a complete L-convex

metric space (M, d, Γ). Suppose s ∈ C(M, X) is a continuous map and A, B : X → 2Y \ {∅} are

two nonempty valued mappings satisfying

(i) infy∈Y µ(s−1(X \ B−1(y))) = 0;
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(ii) B satisfies one of the conditions (a)∼(e) in Lemma 2.1;

(iii) A is relatively L-convex valued in B.

Then, there exists y0 ∈ Y such that y0 ∈ A(s(y0)).

Proof Since B is nonempty valued, we have:

(a) X =
⋃

y∈Y B−1(y).

We claim that

(b) There exist {y1, . . . , yn} ∈ F(Y ) and y0 ∈ Γ({y1, . . . , yn}) such that s(y0) ∈
⋂n

i=1
B−1(yi).

Suppose the conclusion of (b) is false, which implies that for each {y1, . . . , yn} ∈ F(Y ),

s(Γ({y1, . . . , yn})) ⊂ X \
⋂n

i=1
B−1(yi). Define the mapping B∗ : Y → 2X by

B∗(y) := X \ B−1(y) for each y ∈ Y.

Then s(Γ({y1, . . . , yn})) ⊂
⋃n

i=1
B∗(yi), and hence, Γ({y1, . . . , yn}) ⊂

⋃n
i=1

(s−1B∗)(yi). Define

G : Y → 2M by

G(y) := (s−1B∗)(y) for each y ∈ Y.

Then, Γ({y1, . . . , yn}) ⊂
⋃n

i=1
G(yi), thus, G is a GLKKM mapping, moreover, by (i), infy∈Y µ(G(y))

= 0. By (ii), B−1 is transfer compactly open valued, which implies that B∗ is transfer compactly

closed valued. By the continuity of s, G is also transfer compactly closed valued. In virtue

of Theorem 2.1 of Wen [17],
⋂

y∈Y G(y) =
⋂

y∈Y (s−1B∗)(y) is nonempty and compact, thus,
⋂

y∈Y B∗(y) = X \
⋃

y∈Y B−1(y) 6= ∅, which contradicts (a).

Finally, by (b), there exist {y1, . . . , yn} ∈ F(Y ) and y0 ∈ Γ({y1, . . . , yn}) such that s(y0) ∈
⋂n

i=1
B−1(yi), which results in that {y1, . . . , yn} ∈ F(B(s(y0))). By (iii), we have Γ({y1, . . . , yn}) ⊂

A(s(y0)). Therefore, y0 ∈ Γ({y1, . . . , yn}) ⊂ A(s(y0)).

Remark 3.1 Note that a metric space (M, d) is complete if (M, d) is hyperconvex by Proposition

1 of Khamsi [2]. If X = Y is a nonempty L-convex subset of (M, d, Γ) and s = IX , s ∈ C(X, X),

certainly. Let X = Y = M be a hyperconvex space, A = B and s = IX . If there exists a compact

subset K of X and y0 ∈ X such that X\K ⊂ intA−1(y0), then X\A−1(y0) ⊂ X\intA−1(y0) ⊂ K.

And hence, µ(s−1(X \ A−1(y0))) = µ(X \ A−1(y0)) = 0. Thus, the condition (i) holds. Suppose

X = Y is compact L-convex subset of (M, d, Γ). Then the condition (i) is also satisfied trivially.

If B−1 is open valued or transfer open valued, the condition (ii) is satisfied. If A = B is L-convex

valued, the condition (iii) holds, of course. Therefore, Theorem 3.1 unifies, improves and gener-

alizes Theorem 3 of Park [3], Theorem 3.1 of Kirk et al. [4], Theorem 3.1 of Wen [5], Theorem

2.5 of Wen [16], Theorem 2.6 of Wen [17], Lemma 2.2 of Zhang [21], Corollaries 2 and 3 of Chen

and Shen [24], Theorem 8 of Park [25], Theorem 3.6 of Yuan [26], Theorems 2.11, 2.22 of Yuan

[27] and Theorem 3.3 of Wen [28].

As an immediate consequence of Theorem 3.1, we have the following maximal element theo-

rem in L-convex metric spaces.

Theorem 3.2 Let X be a topological space, Y a nonempty subset of a complete L-convex

metric space (M, d, Γ). Suppose s ∈ C(M, X) is a continuous map and A, B : X → 2Y are two
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nonempty valued mappings satisfying

(i) infy∈Y µ(s−1(X \ B−1(y))) = 0;

(ii) B satisfies one of the conditions (a)∼(e) in Lemma 2.1;

(iii) A is relatively L-convex valued in B;

(iv) For each y ∈ Y , y 6∈ A(s(y)).

Then, there exists x0 ∈ X such that B(x0) = ∅.

Remark 3.2 Let X = Y = M be a hyperconvex metric space. Then M is a complete L-convex

metric space. Moreover, if X = Y = M is compact, the condition (i) is satisfied trivially. If

A−1 is transfer open valued, the condition (ii) is satisfied, certainly. If A(x) = B(x) is either

empty or admissible for each x ∈ X , the condition (iii) holds. If s = IX , of course, s ∈ C(X, X).

Therefore, Theorem 3.2 improves and generalizes Theorem 3.4 of Kirk et al. [4] in several aspects.

Meanwhile, Theorem 3.2 improves and generalizes Theorem 3.4 of Wen [28].

Theorem 3.3 Let X be a topological space, Y a nonempty subset of a complete L-convex metric

space (M, d, Γ), s ∈ C(M, X) a continuous map, γ ∈ R a real number. Suppose f, g : X×Y → R̄

are two functions satisfying

(i) infy∈Y µ(s−1{x ∈ X : g(x, y) ≤ γ}) = 0;

(ii) g(x, y) is γ-t.c.l.s.c. in x;

(iii) f is relatively L-γ-quasiconcave in g on y;

(iv) For each y ∈ Y , f(s(y), y) ≤ γ.

Then, there exists x0 ∈ X such that supy∈Y g(x0, y) ≤ γ.

Proof Define A, B : X → 2Y by A(x) := {y ∈ Y : f(x, y) > γ} and B(x) := {y ∈ Y : g(x, y) >

γ} for each x ∈ X . Then, B∗(y) := X \ B−1(y) = {x ∈ X : g(x, y) ≤ γ} for each y ∈ Y . By (i),

infy∈Y µ(s−1(X \B−1(y))) = 0. By (ii) and Lemma 2.4, B∗ is transfer compactly closed valued,

and hence, B−1 is transfer compactly open valued. i.e., B satisfies the condition (e) in Lemma

2.1. By (iii) and Lemma 2.2, A is relatively L-convex valued in B. By (iv), for each y ∈ Y ,

y 6∈ A(s(y)). In virtue of Theorem 3.2, there exists x0 ∈ X such that B(x0) = ∅, i.e., g(x0, y) ≤ γ

for all y ∈ Y , and hence supy∈Y g(x0, y) ≤ γ.

Theorem 3.4 Let (X, d, Γ) be a complete L-convex metric space, s ∈ C(X, X) a continuous

map. Suppose f, g : X × X → R̄ are two functions satisfying

(i) infy∈Xµ(s−1{x ∈ X : g(x, y) ≤ 0}) = infx∈Xµ(s−1{y ∈ X : g(x, y) ≥ 0}) = 0;

(ii) g(x, y) is 0-t.c.l.s.c. in x and 0-t.c.u.s.c. in y;

(iii) f(x, y) is relatively L-0-quasiconcave in g on y and −f(x, y) is relatively L-0-quasiconvex

in −g on x;

(iv) For each y ∈ X , f(s(y), y) = f(y, s(y)) = 0.

Then g has a saddle point in X × X , i.e., there exists (x0, y0) ∈ X × X such that

sup
y∈X

inf
x∈X

g(x, y) = g(x0, y0) = inf
x∈X

sup
y∈X

g(x, y).
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Proof By conditions (i)–(iv), in virtue of Theorem 3.3, there exists x0 ∈ X such that

sup
y∈X

g(x0, y) ≤ 0. (1)

Define h: X × X → R̄ by h(x, y) = −g(y, x) for each (x, y) ∈ X × X . Then, by condition

(i), infy∈Xµ(s−1{x ∈ X : h(x, y) ≤ 0}) = 0. By condition (ii), h(x, y) is 0-t.c.l.s.c. in x. By

condition (iii) and Lemma 2.3, f(x, y) is relatively L-0-quasiconcave in h on y. By condition (iv)

and in virtue of Theorem 3.3, there exists y0 ∈ X such that supx∈X h(y0, x) ≤ 0, i.e.,

inf
x∈X

g(x, y0) ≥ 0. (2)

By inequalities (1) and (2), we have

g(x0, y0) = 0. (3)

Moreover, inequalities (1)–(3) imply

inf
x∈X

g(x, y) ≤ sup
y∈X

g(x0, y) ≤ g(x0, y0) ≤ inf
x∈X

g(x, y0) ≤ sup
y∈X

g(x, y). (4)

In turn inequality (4) implies

sup
y∈X

inf
x∈X

g(x, y) ≤ g(x0, y0) ≤ inf
x∈X

sup
y∈X

g(x, y), (5)

sup
y∈X

inf
x∈X

g(x, y) ≥ inf
x∈X

g(x, y0) ≥ g(x0, y0), (6)

inf
x∈X

sup
y∈X

g(x, y) ≤ sup
y∈X

g(x0, y) ≤ g(x0, y0). (7)

Therefore,

sup
y∈X

inf
x∈X

g(x, y) = g(x0, y0) = inf
x∈X

sup
y∈X

g(x, y),

i.e., (x0, y0) is a saddle point of g. The proof is completed. 2
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