On w-Linked Overrings

Lin XIE*, Fang Gui WANG, Yan TIAN
Department of Mathematics, Sichuan Normal University, Sichuan 610068, P. R. China

Abstract

Let $R \subseteq T$ be an extension of commutative rings. T is called w-linked over R if T as an R-module is a w-module. In the case of $R \subseteq T \subseteq Q_{0}(R), T$ is called a w-linked overring of R. As a generalization of Wang-McCsland-Park-Chang Theorem, we show that if R is a reduced ring, then R is a w-Noetherian ring with w - $\operatorname{dim}(R) \leqslant 1$ if and only if each w-linked overring T of R is a w-Noetherian ring with $w-\operatorname{dim}(T) \leqslant 1$. In particular, R is a w-Noetherian ring with $w-\operatorname{dim}(R)=0$ if and only if R is an Artinian ring.

Keywords $G V$-ideal; w-module; w-linked; w-Noetherian ring.
Document code A
MR(2010) Subject Classification 13B02; 13E05
Chinese Library Classification O153.3

1. Introduction

There has been considerable amount of research on w-theory over domains. Recently, by virtue of homological algebra, Yin [1] constructed w-module over arbitrary commutative rings. Let R be a commutative ring and J a finitely generated ideal of R. J is called a $G V$-ideal, denoted by $J \in G V(R)$, if the natural homomorphism $R \rightarrow \operatorname{Hom}_{R}(J, R)$ is an isomorphism. An R-module M is called a $G V$-torsion-free module if whenever $J x=0$ for some $J \in G V(R)$ and $x \in M$, then $x=0$. A $G V$-torsion-free module M is called a w-module if $\operatorname{Ext}_{R}^{1}(R / J, M)=0$ for any $J \in G V(R)$, and the w-envelope of M is the set given by

$$
M_{w}=\{x \in E(M) \mid J x \subseteq M \text { for some } J \in G V(R)\}
$$

where $E(M)$ is the injective hull of M. Therefore, M is a w-module if and only if $M_{w}=M$. For w-modules, readers are refereed to literature [1, 2].

Throughout this paper R denotes a commutative ring with identity, $T(R)$ denotes the total quotient ring of R, and $Q_{0}(R)$ denotes the ring of finite fractions over R. In this paper, we introduce the notion of w-linked. Let $R \subseteq T$ be an extension of commutative rings. T is called w-linked over R if T as an R-module is a w-module. In the case of $R \subseteq T \subseteq Q_{0}(R), T$ is called a w-linked overring of R. In particular, $T(R)$ and $Q_{0}(R)$ are w-linked overrings of R.

[^0]The Krull-Akizuki Theorem states that if R is a Noetherian domain with $\operatorname{dim}(R)=1$, then each overring T of R is a Noetherian domain with $\operatorname{dim}(T) \leqslant 1$. This was generalized to reduced Noetherian rings by Matijevic [3]. Let R be a reduced Noetherian ring. He introduced the transform ring R^{g}, and proved that every ring between R and R^{g} is a Noetherian ring. Wang and McCsland [4] generalized Krull-Akizuki Theorem to strong Mori domains. Let R be a strong Mori domain with w - $\operatorname{dim}(R) \leqslant 1$. They showed that every t-linked overring T of R is a strong Mori domain with w - $\operatorname{dim}(T) \leqslant 1$. Park [5] introduced the w-transform ring $R^{w g}$, and proved that every t-linked overring between R and $R^{w g}$ is a strong Mori domain. As a corollary, she obtained Wang and McCsland's theorem again. By considering valuation overrings of strong Mori ring, Chang [6] showed that Wang and McCsland's theorem is necessary and sufficient. By introducing the concept of w-Noetherian ring, Yin [1] generalized Matijevic's result to w-Noetherian rings. R is called a w-Noetherian ring if it has the ascending chain condition on w-ideals. Let R be a w Noetherian ring with w - $\operatorname{dim}(R) \leqslant 1, T$ a w-linked overring of R, and $T \subseteq T(R)$. She showed that T has the ascending chain condition on regular w-ideals with w - $\operatorname{dim}(T) \leqslant 1$. By considering the ring $R\{X\}$ of fractions over $R[X]$, we obtain a similar Wang-McCsland-Park-Chang Theorem: If R is a reduced ring, then R is a w-Noetherian ring with w - $\operatorname{dim}(R) \leqslant 1$ if and only if each w-linked overring T of R is a w-Noetherian ring with w - $\operatorname{dim}(T) \leqslant 1$. In particular, R is a w-Noetherian ring with w - $\operatorname{dim}(R)=0$ if and only if R is an Artinian ring.

2. Some results on w-module

Let M be an R-module and $M[X]=R[X] \bigotimes_{R} M=\left\{\sum_{i} u_{i} X^{i} \mid u_{i} \in M\right\}$. For any $\alpha \in M[X]$, $c(\alpha)$ is a submodule of M generated by coefficients of α. For any $R[X]$-module $N \subseteq M[X], c(N)$ is a submodule of M generated by coefficients of elements in N.

Lemma 2.1 ([1]) (1) $R \in G V(R)$.
(2) Let J_{1}, J_{2} be finitely generated ideals of R, and $J_{1} \subseteq J_{2}$. If $J_{1} \in G V(R)$, then $J_{2} \in$ $G V(R)$.
(3) Let J_{1} and J_{2} be $G V$-ideals of R. Then $J_{1} J_{2} \in G V(R)$.
(4) Let R_{1} and R_{2} be rings. Set $R=R_{1} \times R_{2}$. Then $J=J_{1} \times J_{2} \in G V(R)$ if and only if $J_{i} \in G V\left(R_{i}\right)$ for $i=1,2$.

Remark 2.2 Let J be a finitely generated ideal of R. When R is a domain, then $J \in G V(R)$ if and only if $(R: J)=\{x \in T(R) \mid x J \subseteq R\}=R$, since $J \in G V(R)$ if and only if $J_{w}=R$. For any commutative ring $R, J \in G V(R)$ implies that $(R: J)=J^{-1}=\left\{x \in Q_{0}(R) \mid x J \subseteq R\right\}=R$, since $\left(R: J_{w}\right)=R$ and $\left(J_{w}\right)^{-1}=J^{-1}$. For the converse, we show it is false by constructing an example.

Example 2.3 Let $R=\mathbb{Q} \times \mathbb{Z}$ and $A=0 \times \mathbb{Z}$ a finitely generated ideal of R. Then $T(R)=\mathbb{Q} \times \mathbb{Q}$ and $(R: A)=A^{-1}=R$. However, A is not a $G V$-ideal of R by Lemma 2.1.

The consideration to establish the following lemma thanks to [1]. Here we show a better
result.
Lemma 2.4 Let J be a finitely generated ideal of R. Then $J \in G V(R)$ if and only if $J[X] \in G V(R[X])$.

Proof It is clear that J is a $G V$-ideal if and only if $\operatorname{Hom}_{R}(R / J, R)=0$ and $\operatorname{Ext}_{R}^{1}(R / J, R)=0$. Since $R[X]$ is a faithfully flat R-module, it suffices to show that $R[X] \underset{R}{\bigotimes} \operatorname{Hom}_{R}(R / J, R) \cong$ $\operatorname{Hom}_{R[X]}(R[X] / J[X], R[X])$ and $R[X] \underset{R}{\bigotimes} \operatorname{Ext}_{R}^{1}(R / J, R) \cong \operatorname{Ext}_{R[X]}^{1}(R[X] / J[X], R[X])$. By [7, Theorem 4.10.1], the former holds. Since $0 \rightarrow J \rightarrow R \rightarrow R / J \rightarrow 0$ and $0 \rightarrow J[X] \rightarrow R[X] \rightarrow$ $R[X] / J[X] \rightarrow 0$ are short exact sequences, we have commutative diagram with exact rows:

By [7, Theorem 4.10.1], θ_{1} is isomorphism. Therefore, θ_{2} is isomorphism.
Corollary 2.5 Let $B \in G V(R[X])$. Then $c(B) \in G V(R)$, and hence there exists a non-zerodivisor $f \in B$ of $R[X]$ such that $c(f)_{w}=R$.

Proof Since B is a finitely generated ideal of $R[X], c(B)[X]$ is a finitely generated ideal of $R[X]$ and $B \subseteq c(B)[X]$. By Lemma 2.1, $c(B)[X] \in G V(R[X])$, and hence $c(B) \in G V(R)$ by Lemma 2.4. Note that $c(B)$ is a finitely generated ideal of R, there exists $f \in B$ such that $c(f)_{w}=R$. If f is a zero-divisor of $R[X]$, then $b f=0$ for some nonzero element $b \in R$. Thus $b \in b c(f)_{w} \subseteq(b c(f))_{w}=c(b f)_{w}=0$, a contradiction.

Remark 2.6 By Corollary 2.5, $\mathcal{N}_{w}=\left\{f \in R[X] \mid c(f)_{w}=R\right\}$. Then \mathcal{N}_{w} is a multiplicatively closed set of non-zero-divisors of $R[X]$, and hence $R\{X\}=R[X]_{\mathcal{N}_{w}}$ is a ring of fractions over $R[X]$.

Lemma 2.7 Let M be a $G V$-torsion-free R-module and N a submodule of $M, x \in M$. If $J x \subseteq N$ for some $J \in G V(R)$, then $x \in N_{w}$.

Proof Assume that $x \neq 0$. Since M is a $G V$-torsion-free module, $0 \neq r x \in N$ for some $0 \neq r \in J$. Thus M is an essential extension of N, and hence $x \in E(N)$. Therefore, $x \in N_{w}$.

Lemma 2.8 Let M be a $G V$-torsion-free R-module and $\left\{A_{i}\right\}$ a collection w-submodules of M. Then $\bigcap A_{i}$ is a w-module.

Proof It is straightforward.
Lemma 2.9 Let M be a $G V$-torsion-free R-module with submodules A and B. Then the following hold.
(1) $c A_{w} \subseteq(c A)_{w}$ for all $c \in R$.
(2) $A \subseteq A_{w}$, and $A \subseteq B \Rightarrow A_{w} \subseteq B_{w}$.
(3) $\left(A_{w}\right)_{w}=A_{w}$.
(4) $(u)_{w}=(u)$ for a non-zero-divisor u of R.
(5) $M_{w}=\bigcup N_{w}$ where N runs over finitely generated R-submodule of M.
(6) $(I M)_{w}=\left(I_{w} M_{w}\right)_{w}$ for any ideal I of R.
(7) $(A \bigcap B)_{w}=A_{w} \bigcap B_{w}$.

Proof (1)-(5) see [1].
(6) Clearly, $(I M)_{w} \subseteq\left(I_{w} M_{w}\right)_{w}$. On the other hand, suppose $x \in\left(I_{w} M_{w}\right)_{w}$. Then $J_{1} x \subseteq$ $I_{w} M_{w}$ for some $J_{1} \in G V(R)$. Since J_{1} is finitely generated, $J_{1} J_{2} x \subseteq I M$ for some $J_{2} \in G V(R)$. By Lemma 2.7, $x \in(I M)_{w}$, and hence $(I M)_{w}=\left(I_{w} M_{w}\right)_{w}$.
(7) By Lemma 2.8, $(A \bigcap B)_{w} \subseteq A_{w} \bigcap B_{w}$. Let $x \in A_{w} \bigcap B_{w}$. Then $J_{1} x \in A, J_{2} x \in B$ for $J_{1}, J_{2} \in G V(R)$, and hence $J_{1} J_{2} x \in A \bigcap B$. By Lemma 2.7, $x \in(A \bigcap B)_{w}$. Therefore, $(A \bigcap B)_{w}=A_{w} \bigcap B_{w}$.

Lemma 2.10 Let M be a $G V$-torsion-free R-module, $\alpha \in M[X], g \in \mathcal{N}_{w}$. Then $c(\alpha)_{w}=c(g \alpha)_{w}$.
Proof Since $c(g)^{n+1} c(\alpha)=c(g)^{n} c(g \alpha)$ for some integer $n, c(g \alpha)_{w}=\left(\left(c(g)_{w}\right)^{n} c(g \alpha)_{w}\right)_{w}=$ $\left(c(g)^{n} c(g \alpha)\right)_{w}=\left(c(g)^{n+1} c(\alpha)_{w}\right)_{w}=c(\alpha)_{w}$ by Lemma 2.9.

It is easy to see that, M is a $G V$-torsion-free R-module if and only if $\operatorname{Hom}_{R}(R / J, M)=0$ for any $J \in G V(R)$. Here we have

Proposition 2.11 Let S be a multiplicatively closed set of non-zero-divisors of R and N a w-module. If natural homomorphism $N \rightarrow N_{S}$ is monomorphism, then N_{S} as an R-module is w-module.

Proof Since $\operatorname{Hom}_{R}\left(R / J, N_{S}\right) \cong R_{S} \bigotimes_{R} \operatorname{Hom}_{R}(R / J, N)$ for any $J \in G V(R), N_{S}$ is a $G V$-torsionfree R-module. Since N_{S} is an essential extension of $N, E\left(N_{S}\right)=E(N)$. Let $J x \subseteq N_{S}$ for some $J \in G V(R)$ where $x \in E(N)$. Then $J s x \subseteq N$ for some $s \in S$, since J is finitely generated. Thus $s x \in N$, and hence $x \in N_{S}$.

It is well-known that M is a torsion-free R-module if $M[X]$ is a torsion-free $R[X]$-module, the converse is false. However, we have

Theorem $2.12 M$ is a $G V$-torsion-free R-module if and only if $M[X]$ is a $G V$-torsion-free $R[X]$-module.

Proof Let M be a $G V$-torsion-free R-module and $\alpha \in M[X]$. If $B \alpha=0$ for some $B \in G V(R[X])$, then there exists $g \in B$ such that $c(g) \in G V(R)$ and $g \alpha=0$. By Lemma 2.10, $c(\alpha) \subseteq c(\alpha)_{w}=$ $\left(c(g \alpha)_{w}\right)=0$, and so $\alpha=0$. Therefore, $M[X]$ is a $G V$-torsion-free $R[X]$-module.
Suppose $M[X]$ is a $G V$-torsion-free $R[X]$-module and $\alpha \in M$. If $J \alpha=0$ for some $J \in G V(R)$, then $J[X] \alpha=0$. Since $J[X] \in G V(R[X]), \alpha=0$. Therefore, M is a $G V$-torsion-free R-module. \square

Theorem 2.13 Let M be a $G V$-torsion-free module. Then the following hold.
(1) $\left(M[X]_{W}\right)_{\mathcal{N}_{w}}=M\{X\}$.
(2) $M\{X\}$ as an $R[X]$-module is a w-module, and hence $M_{w} \subseteq M_{w}[X] \subseteq M[X]_{W} \subseteq M\{X\}$.

Proof (1) By Theorem 2.12, $M[X]$ is a $G V$-torsion-free $R[X]$-module, and hence $M[X]_{W}$ is a $G V$-torsion-free $R[X]$-module. For $0 \neq \alpha \in M[X]_{W}$, we have $f \alpha \neq 0$ for any $f \in \mathcal{N}_{w}$. Suppose $u \in M[X]_{W}$. Then $B u \subseteq M[X]$ for some $B \in G V(R[X])$, and so $f u \in M[X]$ for some $f \in B \cap \mathcal{N}_{w}$ by Corollary 2.5. So $u \in M\{X\}$, and hence $\left(M[X]_{W}\right)_{\mathcal{N}_{w}}=M\{X\}$.
(2) Since $\left(M[X]_{W}\right)_{\mathcal{N}_{w}}$ is a $G V$-torsion-free $R[X]$-module, $M\{X\}=\left(M[X]_{W}\right)_{\mathcal{N}_{w}}$ as an $R[X]$-module is a w-module by Proposition 2.11. Let $\beta=\sum_{i=0}^{n} a_{i} X^{i} \in M_{w}[X], a_{i} \in M_{w}$. Then there exists $J \in G V(R)$ such that $J a_{i} \subseteq M$ for any i, and hence $J[X] \beta \in M[X]$. Since $J[X] \in$ $G V(R[X]), M_{w}[X] \subseteq M[X]_{W}$ by Lemma 2.7, and so $M_{w} \subseteq M_{w}[X] \subseteq M[X]_{W} \subseteq M\{X\}$.

3. w-linked

Following Lucas [8], $Q_{0}(R)$ consists of those elements $\frac{a(X)}{b(X)}$, where $a(X), b(X) \in R[X]$ and $b(X)$ is a non-zero-divisor of $R[X]$ with the coefficient relations $a_{i} b_{j}=a_{j} b_{i}$ for each i and j. For any commutative ring $R, T(R) \subseteq Q_{0}(R)$. When R is a domain, then $T(R)=Q_{0}(R)$ is the quotient field of R.

Let $R \subseteq T$ be an extension of domains. Following Dobbs [9], T is called t-linked over R if $(R: J)=R$ (i.e., $J_{t}=R$) implies that $(T: J T)=T$ (i.e., $\left.(J T)_{t}=T\right)$ for any non-zero finitely generated ideal J. Wang [10] proved that T is t-linked over R if and only if $T_{w}=T$. Following the result, we extend t-linked to the extension of commutative rings.

Definition 3.1 Let $R \subseteq T$ be an extension of commutative rings. T is called w-linked over R if T as an R-module is a w-module. In the case of $R \subseteq T \subseteq Q_{0}(R), T$ is called a w-linked overring of R.

Remark 3.2 When $R \subseteq T$ is an extension of domains, then w-linked coincides with t-linked. For any commutative ring $R, R[X]$ is w-linked over R. In the case of $R=T(R)=Q_{0}(R)$ and $\operatorname{nilradical}(R) \neq 0$, we have $(R: A)=R$ but $(R[X]: A[X]) \neq R[X]$ for any finitely generated nilpotent ideal A of R. Therefore, we use w-linked instead of t-linked.

Lemma 3.3 ([1]) Let $R \subseteq T$ be an extension of commutative rings and T a $G V$-torsion-free R-module. The following are equivalent.
(1) T is w-linked over R.
(2) $A \bigcap R$ is a w-ideal of R for any w-ideal A of T.
(3) Let P be a prime w-ideal of T. Then $P \cap R$ is a prime w-ideal of R.
(4) If $J \in G V(R)$, then $J T \in G V(R)$.
(5) Let L be a T-module. If L as a T-module is a w-module, then L as an R-module is a w-module.

Proposition 3.4 $T(R)$ and $Q_{0}(R)$ are w-linked overrings of R.
Proof Set $T=T(R[X])$. By Proposition 2.11, $T(R)$ is a w-linked overring of R and T is w -
linked over $R[X]$. Let $J \in G V(R)$. Then $J[X] \in G V(R[X])$, and hence $J T \in G V(T)$ by Lemma 3.3. Thus T is w-linked over R. Let $\frac{a(X)}{b(X)} \in T$ such that $J \frac{a(X)}{b(X)} \subseteq Q_{0}(R)$ for some $J \in G V(R)$. Then for any $u \in J$, we have the coefficient relations $u a_{i} b_{j}=u a_{j} b_{i}$ for each i and j, and so $J\left(a_{i} b_{j}-a_{j} b_{i}\right)=0$. Thus $a_{i} b_{j}=a_{j} b_{i}$, which implies that $\frac{a(X)}{b(X)} \in Q_{0}(R)$. Therefore, $Q_{0}(R)$ as an R-module is a w-module.

Lemma 3.5 Let $R \subseteq T$ be an extension of commutative rings, $x \in T$, and N an R-submodule of T. If T is a $G V$-torsion-free R-module, then the following hold.
(1) $x N_{w} \subseteq(x N)_{w}$.
(2) If x is a non-zero-divisor of N, then $x N_{w}=(x N)_{w}$.

Proof (1) Suppose $u \in N_{w}$. Then $J u \subseteq N$ for some $J \in G V(R)$, and hence $J x u \subseteq x N$. By Theorem 2.13, $T\{X\}$ is a $G V$-torsion-free R-module and $x u \in x N_{w} \subseteq T\{X\}$. By Lemma 2.7, $x N_{w} \subseteq(x N)_{w}$.
(2) It is clear that x is a non-zero-divisor of N_{w}. Since $x N_{w} \cong N_{w}, x N_{w}$ is a w-module, and hence $x N_{w}=(x N)_{w}$.

Proposition 3.6 Let $R \subseteq T$ be an extension of commutative rings and T a $G V$-torsion-free R-module. Then the following hold
(1) T_{w} is w-linked over R.
(2) A_{w} is an ideal of T_{w} for any ideal A of T.
(3) Let P be a prime ideal of T and $P \cap R$ a w-ideal of R. Then $P_{w} \neq T_{w}$.
(4) Let P be a prime ideal of T and $P_{w} \neq T_{w}$. Then P_{w} is a prime ideal of T_{w} and $P_{w} \cap T=P$.
(5) Let P be a prime ideal of $T, P_{w} \neq T_{w}, P_{1}$ a prime ideal of T_{w} such that $P_{1} \subseteq P_{w}$, and $P_{1} \bigcap T=P$. Then $P_{1}=P_{w}$.
(6) Let P be a prime ideal of T. If ht $P_{w}=0$, then ht $P=0$.

Proof (1) It suffices to show that T_{w} is a ring. Suppose $a, b \in T_{w}, a b \neq 0$. Then $J_{1} a \subseteq T, J_{2} b \subseteq T$ for $J_{1}, J_{2} \in G V(R)$, and hence $J_{1} J_{2} a b \subseteq T$. By Theorem 2.13, $T\{X\}$ is a $G V$-torsion-free R module and $a b \in T\{X\}$. Therefore, $a b \in T_{w}$.
(2) It is similar to (1).
(3) If $P_{w}=T_{w}$, then $J \subseteq P$ for some $J \in G V(R)$. Thus $J \subseteq P \bigcap R$, a contradiction.
(4) Suppose $x \in P_{w} \bigcap T$. Then $J x \subseteq P$ for some $J \in G V(R)$. Since $J \nsubseteq P, P_{w} \bigcap T=P$.
(5) Suppose $x, y \in T_{w}, x y \in P_{w}$. Then $J_{1} x \subseteq T, J_{2} y \subseteq T$ for $J_{1}, J_{2} \in G V(R)$. Thus $J x y \subseteq T$ for some $J=J_{1} J_{2} \in G V(R)$, and hence $J x \subseteq P$ or $J y \subseteq P$. Therefore, $x \in P_{w}$ or $y \in P_{w}$.
(6) It follows from (4).

For a T-module Y, we denote by Y_{w} the w-envelope of Y as an R-module and by Y_{W} the w-envelope of Y as a T-module.

Theorem 3.7 Let $R \subseteq T$ be an extension of commutative rings and T a $G V$-torsion-free R-module. The following are equivalent.
(1) $I_{w} \subseteq(I T)_{W}$ for any ideal I of R;
(2) $\left(I_{w} T\right)_{W}=(I T)_{W}$ for any ideal I of R;
(3) $(I T)_{W} \bigcap R$ is a w-ideal of R for any ideal I of R;
(4) $(I T)_{W} \bigcap R$ is a w-ideal of R for any finitely generated ideal I of R;
(5) T is w-linked over R.

Proof $(1) \Rightarrow(2)$. Since $\left(I_{w} T\right)_{W} \subseteq\left((I T)_{W}\right)_{W}=(I T)_{W}, I_{w} \subseteq(I T)_{W}$.
$(2) \Rightarrow(3)$. Set $J=(I T)_{W} \bigcap R$. Then $J_{w} \subseteq\left(I_{w} T\right)_{W} \bigcap R=(I T)_{W} \bigcap R=J$, and hence $J=J_{w}$.
$(3) \Rightarrow(4)$. Clearly.
$(4) \Rightarrow(1)$. Let B be a finitely generated subideal of I. Since $B_{w} \subseteq(B T)_{W} \bigcap R, I_{w}=\bigcup B_{w} \subseteq$ $(I T)_{W}$ by Lemma 2.9.
$(1) \Rightarrow(5)$. Since $R=J_{w} \subseteq(J T)_{W}$ for any $J \in G V(R), T=(J T)_{W}$ by Proposition 3.5. Thus $J T \in G V(T)$, and hence T is w-linked over R by Lemma 3.3.
$(5) \Rightarrow(2)$. Clearly $(I T)_{W} \subseteq\left(I_{w} T\right)_{W}$. On the other hand, suppose $x=\sum_{i=1}^{n} a_{i} t_{i} \in I_{w} T$ where $a_{i} \in I_{w}$ and $t_{i} \in T$. Thus $J x \subseteq I T$ for some $J \in G V(R)$, and hence $J T x \subseteq I T$. By Lemma 3.3, $\left(I_{w} T\right)_{W} \subseteq(I T)_{W}$.

Let T be w-linked over R and A an ideal of $T . A$ is called a w_{R}-ideal (or w-linked ideal) if A as an R-module is a w-module.

Theorem 3.8 Let T be w-linked over R and P a prime ideal of T. Then the following hold.
(1) $P \bigcap R$ is a w-ideal of R for any w_{R}-ideal P of T.
(2) P is a proper w_{R}-ideal of T if and only if $P_{w} \neq T$.
(3) If $P \bigcap R$ is a proper w-ideal of R, then P is a w_{R}-ideal of T.
(4) Let A be a w_{R}-ideal of T and P a minimal prime ideal over A. Then P is a w_{R}-ideal of T.
(5) Let P be a w_{R}-ideal of T, and Q a prime ideal of T such that $Q \subseteq P$. Then Q is a w_{R}-ideal of T.

Proof (1) It follows from Lemma 2.8.
(2) If P is a w_{R}-ideal of T, then $P_{w}=P \subset T$. On the other hand, let $x \in T, J x \subseteq P$ for some $J \in G V(R)$. If $J \subseteq P$, then $P_{w}=T$, a contradiction. Thus $J \nsubseteq P$, and hence $x \in P$.
(3) By Lemma 2.9, $P_{w} \neq T$.
(4) Let B be a finitely generated R-submodule of P. Since $P T_{P}$ is a minimal prime ideal over A_{P}, there exists some $s \in T \backslash P$ such that $s B^{n} \subseteq A$ for some integer n. By Lemma 3.6, $s\left(B_{w}\right)^{n} \subseteq s\left(\left(B_{w}\right)^{n}\right)_{w} \subseteq\left(s B^{n}\right)_{w} \subseteq A_{w}=A \subseteq P$. Therefore, $P_{w}=P$.
(5) Since $Q_{w} \subseteq P_{w}=P \neq T, Q$ is a w_{R}-ideal of T.

4. The generalization of Wang-McCsland-Park-Chang Theorem

Following Yin [1], R is called a w-Noetherian ring if R has the ascending chain condition on w ideals, which contains Noetherian ring, strong Mori domain and so on. Note that each maximal w ideal of R is a prime ideal, we use $w-\operatorname{Max}(R)$ to denote the set of all maximal w-ideals of R. Since
a prime ideal P of R is a w-ideal if and only if $P_{w} \neq R$, each prime ideal contained in a proper w-ideal of R is also a w-ideal. Following Wang [11], w - $\operatorname{dim}(R)=\operatorname{Sup}\{\operatorname{ht} P \mid P \in w-\operatorname{Max}(R)\}$. Following Matijevic [3], $R^{g}=\left\{x \in T(R) \mid x M_{1} M_{2} \cdots M_{n} \subseteq R\right.$ where $\left.M_{i} \in \operatorname{Max}(R)\right\}$. Then R^{g} is a ring and $R^{g} \subseteq T(R)$. Following Park [5], $R^{w g}=\left\{x \in T(R) \mid x M_{1} M_{2} \cdots M_{n} \subseteq R\right.$ where $\left.M_{i} \in w-\operatorname{Max}(R)\right\}$. Then $R^{w g}$ is a ring and $R^{w g} \subseteq T(R)$.

Lemma 4.1 $\operatorname{Max}(R\{X\})=\{M\{X\}\}$ where M runs over all maximal w-ideals of R.
Proof See [12, Proposition 2.1].
Lemma 4.2 For any ring R, we have $R\{X\}^{g} \bigcap T(R)=R^{w g}$, and $R^{w g}[X]_{\mathcal{N}_{w}} \subseteq R\{X\}^{g}$.
Proof Let $u \in T(R)$. Then $u \in R\{X\}^{g}$ if and only if $u M_{1} \cdots M_{n} \subseteq R\{X\}$ where $M_{i} \in$ $\operatorname{Max}(R\{X\})$. By Lemma 4.1, there exists $\mathrm{m}_{i} \in w-\operatorname{Max}(R)$ such that $M_{1}=\mathrm{m}_{i}\{X\}$ for all i. Thus $u \in R\{X\}^{g} \bigcap T(R)$ if and only if $u \mathrm{~m}_{1} \cdots \mathrm{~m}_{n} \subseteq R$, if and only if $u \in R^{w g}$. Thus $R\{X\}^{g} \bigcap T(R)=R^{w g}$, and hence $R^{w g} \subseteq R\{X\}^{g}$. Since $R\{X\}^{g}$ is an $R\{X\}=R[X]_{\mathcal{N}_{w}}$-module, $R^{w g}[X]_{\mathcal{N}_{w}} \subseteq R\{X\}^{g}$.

It is easy to see that, R is a w-Noetherian ring if and only if for each ideal I of $R, I_{w}=A_{w}$ for some finitely generated subideal A of I. Here we have

Proposition 4.3 The following are equivalent for a ring R.
(1) R is a w-Noetherian ring;
(2) $R[X]$ is a w-Noetherian ring;
(3) $R\{X\}$ is a Noetherian ring.

Proof $(1) \Rightarrow(2)$. See [1].
$(2) \Rightarrow(3)$. Let A be an ideal of $R\{X\}$. Then $A=B_{\mathcal{N}_{w}}$ for some ideal B of $R[X]$. Since $R[X]$ is a w-Noetherian ring, $B_{w}=C_{w}$ for some finitely generated subideal C of B. For any $f \in B, J f \subseteq C$ for some $J \in G V(R[X])$. Note that $J_{\mathcal{N}_{w}}=R\{X\}$ and $f R\{X\} \subseteq C_{\mathcal{N}_{w}}$, we have $f \in C_{\mathcal{N}_{w}}$, and $B \subseteq C_{\mathcal{N}_{w}} \subseteq B_{\mathcal{N}_{w}}$. Therefore, $A=C_{\mathcal{N}_{w}}$ is a finitely generated ideal of $R\{X\}$, and hence $R\{X\}$ is a Noetherian ring.
$(3) \Rightarrow(1)$. Let I be a ideal of R. Then $I\{X\}$ is a finitely generated ideal of $R\{X\}$, and $I\{X\}=A_{\mathcal{N}_{w}}$ for some finitely generated ideal A of $R[X]$. Since $A \subseteq c(A)[X]_{\mathcal{N}_{w}} \subseteq I\{X\}$, $I\{X\}=c(A)[X]_{\mathcal{N}_{w}}$. For any $u=\frac{\alpha}{g} \in I \subseteq I\{X\}$, where $g \in \mathcal{N}_{w}, \alpha \in c(A)[X]$, we have $u c(g)=c(u g)=c(\alpha) \subseteq c(A)$, and hence $u \in u c(g)_{w} \subseteq c(u g)_{w}=c(\alpha)_{w} \subseteq c(A)_{w}$. Thus $I_{w}=c(A)_{w}$, and hence R is a w-Noetherian ring.

Lemma 4.4 Let R be a w-Noetherian ring. Then $w-\operatorname{dim}(R)=\operatorname{dim}(R\{X\})$.
Proof Let P be a prime w-ideal of R. Then $P\{X\}$ is a prime ideal of $R\{X\}$, and hence $w-\operatorname{dim}(R) \leqslant \operatorname{dim}(R\{X\})$. Assume that Q be a maximal ideal of $R\{X\}$, then $Q=M\{X\}$ for some $M \in w-\operatorname{Max}(R)$ by Lemma 4.1. Since $R[X] \backslash M[X] \supseteq \mathcal{N}_{w}, R\{X\}_{M\{X\}}=\left(R[X]_{\mathcal{N}_{w}}\right)_{M[X]} \mathcal{N}_{w}=$ $R[X]_{M[X]}=R_{M}[X]_{M R_{M}[X]}$. Since R_{M} is a Noetherian ring, ht $Q=\operatorname{dim}\left(R\{X\}_{M\{X\}}\right)^{w}=$
$\mathrm{ht} M R_{M}[X]=\mathrm{ht} M R_{M}=\mathrm{ht} M \leqslant w-\operatorname{dim}(R)$.
Proposition 4.5 Let R be a reduced w-Noetherian ring and $R \subseteq T \subseteq R^{w g}$. If T is a w-linked overring of R, then T is a w-Noetherian ring.

Proof Note that T is also a reduced ring. By Proposition 4.3, $R\{X\}$ is a reduced Noetherian ring. Since T is w-linked over $R, \mathcal{N}_{w} \subseteq \mathcal{N}_{w}(T)=\{f \in T[X] \mid c(f) \in G V(T)\}$ by Lemma 3.3, and hence $T\{X\}=\left(T[X]_{\mathcal{N}_{w}}\right)_{\mathcal{N}_{w}(T)}$. Since $R \subseteq T \subseteq R^{w g}, R\{X\} \subseteq T[X]_{\mathcal{N}_{w}} \subseteq(R\{X\})^{g}$ by Lemma 4.2. By [3, Corollary], $T[X]_{\mathcal{N}_{w}}$ is a Noetherian ring. Thus $T\{X\}$ is a Noetherian ring, and hence T is a w-Noetherian ring.

Corollary 4.6 Let R be a reduced w-Noetherian ring. Then $R^{w g}$ is a w-Noetherian ring.
Proof Let $x \in\left(R^{w g}\right)_{w} \subseteq T(R)$. Then $J x \subseteq R^{w g}$ for some $J \in G V(R)$. Since J is a finitely generated ideal of R, there exist $M_{1}, \ldots, M_{n} \in w-\operatorname{Max}(R)$ such that $M_{1} \cdots M_{n} J x \subseteq R$, and hence $M_{1} \cdots M_{n} x \subseteq R$, which implies that $x \in R^{w g}$, and $R^{w g}$ is a w-liked overring of R. By Lemma 4.5, $R^{w g}$ is a w-Noetherian ring.

Lemma 4.7 Let $R \subseteq T \subseteq T(R)$ be rings. If R is a Noetherian ring with $\operatorname{dim}(R) \leqslant 1$, then $\operatorname{dim}(T) \leqslant 1$.

Proof Let P be a minimal prime of T. Then $\mathrm{p}=P \bigcap R$ is a prime of R, and hence R / p is a Noetherian domain with $\operatorname{dim}(R / \mathrm{p}) \leqslant \operatorname{dim}(R) \leqslant 1$. For any $x \in T$, there exists a non-zero-divisor s of R such that $s x \in R$, and $\bar{s} \bar{x} \in R / \mathrm{p}$. Since P is a minimal prime of $T, s \notin P$, and hence $s \notin \mathrm{p}$. Thus T / P is contained in the quotient field of R / p. If $\operatorname{dim}(R / \mathrm{p})=0$, then $\operatorname{dim}(T / P)=0$ and so $\operatorname{dim}(T)=0$. If $\operatorname{dim}(R / \mathrm{p})=1$, then T / P is a Noetherian domain and $\operatorname{dim}(T / P) \leqslant 1$ by the Krull-Akizuki Theorem. Therefore, $\operatorname{dim}(T) \leqslant 1$.

Following Lucas [8], I is called a semi-regular ideal of R if it contains a finitely generated ideal A of R such that ann $(A)=0$. If every semi-regular ideal I contains a non-zero-divisor of R, then $T(R)=Q_{0}(R)$. When R is a w-Noetherian ring, then $T(R)=Q_{0}(R)$ by [2, Theorem 3.19]. Combining with [1], we have

Proposition 4.8 Let R be a w-Noetherian ring with $w-\operatorname{dim}(R) \leqslant 1$. Then $R^{w g}=Q_{0}(R)$.
Theorem 4.9 Let R be a reduced ring. Then R is a w-Noetherian ring with w - $\operatorname{dim}(R) \leqslant 1$ if and only if each w-linked overring T of R is w-Noetherian ring with w - $\operatorname{dim}(T) \leqslant 1$.

Proof Necessity. By Proposition 4.5 and Proposition 4.8, T is a w-Noetherian ring, and hence $T\{X\}$ is a Noetherian ring. By Proposition 4.3, $R\{X\}$ is a Noetherian ring. By Lemma 4.4, $\operatorname{dim}(R\{X\})=w-\operatorname{dim}(R) \leqslant 1$. Since $T\{X\}$ is contained in the total quotient ring of $R\{X\}$, $w-\operatorname{dim}(T)=\operatorname{dim}(T\{X\}) \leqslant 1$ by Lemmas 4.4 and 4.7.

Sufficiency. Note that each T is also a reduced ring. Set $R=T$.
Theorem 4.10 R is a w-Noetherian ring with $w-\operatorname{dim}(R)=0$ if and only if R is an Artinian
ring.
Proof Sufficiency is immediate, since R is an Artinian ring if and only if R is a Noetherian ring with $\operatorname{dim}(R)=0$.

Necessity. Let u be a non-zero-divisor of R. Then $\operatorname{ht} P \geqslant 1$ for a prime ideal P of R minimal over (u), since each minimal prime ideal of R consists of zero-divisors. Repeating the way of Theorem 3.8(4), P is a w-ideal of R. Since w - $\operatorname{dim}(R)=0, P=R$, and so u is a unit of R. Thus $G V(R)=\{R\}$ by [2, Corollary 3.20], and hence each ideal of R is a w-ideal. Therefore, $\operatorname{dim}(R)=0$. For any ideal I of $R, I=I_{w}=B_{w}=B$ for some finitely generated subideal B of I, since R is a w-Noetherian ring. Therefore, R is a Noetherian ring.

References

[1] YIN Huayu. w-Modules over Commutative Rings [M]. Dissertation for the Doctoral Degree, Nanjing: Libraty of Nanjing Unversity, 2010.
[2] WANG Fanggui, ZHANG Jun. Injective modules over w-Noetherian rings [J]. Acta Math Sinica, 2010, 53(6): 1019-1030.
[3] MATIJEVIC J. Maximal ideal transforms of Noetherian rings [J]. Proc. Amer. Math. Soc., 1976, 54: 49-52.
[4] WANG Fanggui, MCCASLAND R L. On strong Mori domains [J]. J. Pure Appl. Algebra, 1999, 135(2): 155-165.
[5] PARK M H. On overrings of strong Mori domains [J]. J. Pure Appl. Algebra, 2002, 172(1): 79-85.
[6] CHANG G W. Strong Mori domains and the ring $D[X]_{N_{v}}[J]$. J. Pure Appl. Algebra, 2005, 197(1-3): 293-304.
[7] WANG Fanggui. Commutative Rings and Star-Operation Theory [M]. Beijing: Science Press, 2006.
[8] LUCAS T G. Strong Prüfer rings and the ring of finite fractions [J]. J. Pure Appl. Algebra, 1993, 84(1): 59-71.
[9] DOBBS D E, HOUSTON E G, LUCAS T G. On t-linked overrings [J]. Comm. Algebra, 1992, 20(5): 14631488.
[10] WANG Fanggui. w-dimension of domains (II) [J]. Comm. Algebra, 2001, 29(6): 2419-2428.
[11] WANG Fanggui. w-dimension of domains [J]. Comm. Algebra, 1999, 27 (5): 2267-2276.
[12] KANG B G. Prüfer v-multiplication domains and the ring $R[X]_{N_{v}}[J]$. J. Algebra, 1989, 123(1): 151-170.

[^0]: Received January 12, 2009; Accepted January 18, 2010
 Supported by the National Natural Science Foundation of China (Grant No. 10671137) and by Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060636001).

 * Corresponding author

 E-mail address: xielin7000@yahoo.cn (L. XIE)

