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Abstract Let R ⊆ T be an extension of commutative rings. T is called w-linked over R if T as

an R-module is a w-module. In the case of R ⊆ T ⊆ Q0(R), T is called a w-linked overring of

R. As a generalization of Wang-McCsland-Park-Chang Theorem, we show that if R is a reduced

ring, then R is a w-Noetherian ring with w-dim(R) 6 1 if and only if each w-linked overring T

of R is a w-Noetherian ring with w-dim(T ) 6 1. In particular, R is a w-Noetherian ring with

w-dim(R) = 0 if and only if R is an Artinian ring.
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1. Introduction

There has been considerable amount of research on w-theory over domains. Recently, by

virtue of homological algebra, Yin [1] constructed w-module over arbitrary commutative rings.

Let R be a commutative ring and J a finitely generated ideal of R. J is called a GV -ideal,

denoted by J ∈ GV (R), if the natural homomorphism R → HomR(J, R) is an isomorphism. An

R-module M is called a GV -torsion-free module if whenever Jx = 0 for some J ∈ GV (R) and

x ∈ M , then x = 0. A GV -torsion-free module M is called a w-module if Ext1R(R/J, M) = 0 for

any J ∈ GV (R), and the w-envelope of M is the set given by

Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈ GV (R)},

where E(M) is the injective hull of M . Therefore, M is a w-module if and only if Mw = M . For

w-modules, readers are refereed to literature [1, 2].

Throughout this paper R denotes a commutative ring with identity, T (R) denotes the total

quotient ring of R, and Q0(R) denotes the ring of finite fractions over R. In this paper, we

introduce the notion of w-linked. Let R ⊆ T be an extension of commutative rings. T is called

w-linked over R if T as an R-module is a w-module. In the case of R ⊆ T ⊆ Q0(R), T is called

a w-linked overring of R. In particular, T (R) and Q0(R) are w-linked overrings of R.
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The Krull-Akizuki Theorem states that if R is a Noetherian domain with dim(R) = 1, then

each overring T of R is a Noetherian domain with dim(T ) 6 1. This was generalized to reduced

Noetherian rings by Matijevic [3]. Let R be a reduced Noetherian ring. He introduced the

transform ring Rg, and proved that every ring between R and Rg is a Noetherian ring. Wang

and McCsland [4] generalized Krull-Akizuki Theorem to strong Mori domains. Let R be a strong

Mori domain with w-dim(R) 6 1. They showed that every t-linked overring T of R is a strong

Mori domain with w-dim(T ) 6 1. Park [5] introduced the w-transform ring Rwg, and proved that

every t-linked overring between R and Rwg is a strong Mori domain. As a corollary, she obtained

Wang and McCsland’s theorem again. By considering valuation overrings of strong Mori ring,

Chang [6] showed that Wang and McCsland’s theorem is necessary and sufficient. By introducing

the concept of w-Noetherian ring, Yin [1] generalized Matijevic’s result to w-Noetherian rings. R

is called a w-Noetherian ring if it has the ascending chain condition on w-ideals. Let R be a w-

Noetherian ring with w-dim(R) 6 1, T a w-linked overring of R, and T ⊆ T (R). She showed that

T has the ascending chain condition on regular w-ideals with w-dim(T ) 6 1. By considering the

ring R{X} of fractions over R[X ], we obtain a similar Wang-McCsland-Park-Chang Theorem:

If R is a reduced ring, then R is a w-Noetherian ring with w- dim(R) 6 1 if and only if each

w-linked overring T of R is a w-Noetherian ring with w- dim(T ) 6 1. In particular, R is a

w-Noetherian ring with w- dim(R) = 0 if and only if R is an Artinian ring.

2. Some results on w-module

Let M be an R-module and M [X ] = R[X ]
⊗

R

M = {
∑

iuiX
i | ui ∈ M}. For any α ∈ M [X ],

c(α) is a submodule of M generated by coefficients of α. For any R[X ]-module N ⊆ M [X ], c(N)

is a submodule of M generated by coefficients of elements in N .

Lemma 2.1 ([1]) (1) R ∈ GV (R).

(2) Let J1, J2 be finitely generated ideals of R, and J1 ⊆ J2. If J1 ∈ GV (R), then J2 ∈

GV (R).

(3) Let J1 and J2 be GV -ideals of R. Then J1J2 ∈ GV (R).

(4) Let R1 and R2 be rings. Set R = R1 × R2. Then J = J1 × J2 ∈ GV (R) if and only if

Ji ∈ GV (Ri) for i = 1, 2.

Remark 2.2 Let J be a finitely generated ideal of R. When R is a domain, then J ∈ GV (R)

if and only if (R : J) = {x ∈ T (R) | xJ ⊆ R} = R, since J ∈ GV (R) if and only if Jw = R. For

any commutative ring R, J ∈ GV (R) implies that (R : J) = J−1 = {x ∈ Q0(R) | xJ ⊆ R} = R,

since (R : Jw) = R and (Jw)−1 = J−1. For the converse, we show it is false by constructing an

example.

Example 2.3 Let R = Q×Z and A = 0×Z a finitely generated ideal of R. Then T (R) = Q×Q

and (R : A) = A−1 = R. However, A is not a GV -ideal of R by Lemma 2.1.

The consideration to establish the following lemma thanks to [1]. Here we show a better
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result.

Lemma 2.4 Let J be a finitely generated ideal of R. Then J ∈ GV (R) if and only if

J [X ] ∈ GV (R[X ]).

Proof It is clear that J is a GV -ideal if and only if HomR(R/J, R) = 0 and Ext1R(R/J, R) = 0.

Since R[X ] is a faithfully flat R-module, it suffices to show that R[X ]
⊗

R

HomR(R/J, R) ∼=

HomR[X](R[X ]/J [X ], R[X ]) and R[X ]
⊗

R

Ext1R(R/J, R) ∼= Ext1R[X](R[X ]/J [X ], R[X ]). By [7, The-

orem 4.10.1], the former holds. Since 0 → J → R → R/J → 0 and 0 → J [X ] → R[X ] →

R[X ]/J [X ] → 0 are short exact sequences, we have commutative diagram with exact rows:

R[X ]
⊗

R HomR(R, R) //

∼=
��

R[X ]
⊗

R HomR(J, R) //

θ1

��

R[X ]
⊗

R Ext1R(R/J, R) //

θ2

��

0

HomR[X](R[X ], R[X ]) // HomR[X](J [X ], R[X ]) // Ext1R[X](R[X ]/J [X ], R[X ]) // 0

By [7, Theorem 4.10.1], θ1 is isomorphism. Therefore, θ2 is isomorphism. 2

Corollary 2.5 Let B ∈ GV (R[X ]). Then c(B) ∈ GV (R), and hence there exists a non-zero-

divisor f ∈ B of R[X ] such that c(f)w = R.

Proof Since B is a finitely generated ideal of R[X ], c(B)[X ] is a finitely generated ideal of

R[X ] and B ⊆ c(B)[X ]. By Lemma 2.1, c(B)[X ] ∈ GV (R[X ]), and hence c(B) ∈ GV (R) by

Lemma 2.4. Note that c(B) is a finitely generated ideal of R, there exists f ∈ B such that

c(f)w = R. If f is a zero-divisor of R[X ], then bf = 0 for some nonzero element b ∈ R. Thus

b ∈ bc(f)w ⊆ (bc(f))w = c(bf)w = 0, a contradiction. 2

Remark 2.6 By Corollary 2.5, Nw = {f ∈ R[X ] | c(f)w = R}. Then Nw is a multiplicatively

closed set of non-zero-divisors of R[X ], and hence R{X} = R[X ]Nw

is a ring of fractions over

R[X ].

Lemma 2.7 Let M be a GV -torsion-free R-module and N a submodule of M , x ∈ M . If

Jx ⊆ N for some J ∈ GV (R), then x ∈ Nw.

Proof Assume that x 6= 0. Since M is a GV -torsion-free module, 0 6= rx ∈ N for some 0 6= r ∈ J.

Thus M is an essential extension of N , and hence x ∈ E(N). Therefore, x ∈ Nw. 2

Lemma 2.8 Let M be a GV -torsion-free R-module and {Ai} a collection w-submodules of M .

Then
⋂

Ai is a w-module.

Proof It is straightforward. 2

Lemma 2.9 Let M be a GV -torsion-free R-module with submodules A and B. Then the

following hold.

(1) cAw ⊆ (cA)w for all c ∈ R.

(2) A ⊆ Aw, and A ⊆ B ⇒ Aw ⊆ Bw.
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(3) (Aw)w = Aw.

(4) (u)w = (u) for a non-zero-divisor u of R.

(5) Mw =
⋃

Nw where N runs over finitely generated R-submodule of M .

(6) (IM)w = (IwMw)w for any ideal I of R.

(7) (A
⋂

B)w = Aw

⋂
Bw.

Proof (1)–(5) see [1].

(6) Clearly, (IM)w ⊆ (IwMw)w. On the other hand, suppose x ∈ (IwMw)w. Then J1x ⊆

IwMw for some J1 ∈ GV (R). Since J1 is finitely generated, J1J2x ⊆ IM for some J2 ∈ GV (R).

By Lemma 2.7, x ∈ (IM)w, and hence (IM)w = (IwMw)w.

(7) By Lemma 2.8, (A
⋂

B)w ⊆ Aw

⋂
Bw. Let x ∈ Aw

⋂
Bw. Then J1x ∈ A, J2x ∈ B

for J1, J2 ∈ GV (R), and hence J1J2x ∈ A
⋂

B. By Lemma 2.7, x ∈ (A
⋂

B)w. Therefore,

(A
⋂

B)w = Aw

⋂
Bw. 2

Lemma 2.10 Let M be a GV -torsion-free R-module, α ∈ M [X ], g ∈ Nw. Then c(α)w = c(gα)w.

Proof Since c(g)n+1c(α) = c(g)nc(gα) for some integer n, c(gα)w = ((c(g)w)nc(gα)w)w =

(c(g)nc(gα))w = (c(g)n+1c(α)w)w = c(α)w by Lemma 2.9. 2

It is easy to see that, M is a GV -torsion-free R-module if and only if HomR(R/J, M) = 0

for any J ∈ GV (R). Here we have

Proposition 2.11 Let S be a multiplicatively closed set of non-zero-divisors of R and N a

w-module. If natural homomorphism N → NS is monomorphism, then NS as an R-module is

w-module.

Proof Since HomR(R/J, NS) ∼= RS

⊗

R

HomR(R/J, N) for any J ∈ GV (R), NS is a GV -torsion-

free R-module. Since NS is an essential extension of N , E(NS) = E(N). Let Jx ⊆ NS for some

J ∈ GV (R) where x ∈ E(N). Then Jsx ⊆ N for some s ∈ S, since J is finitely generated. Thus

sx ∈ N , and hence x ∈ NS . 2

It is well-known that M is a torsion-free R-module if M [X ] is a torsion-free R[X ]-module,

the converse is false. However, we have

Theorem 2.12 M is a GV -torsion-free R-module if and only if M [X ] is a GV -torsion-free

R[X ]-module.

Proof Let M be a GV -torsion-free R-module and α ∈ M [X ]. If Bα = 0 for some B ∈ GV (R[X ]),

then there exists g ∈ B such that c(g) ∈ GV (R) and gα = 0. By Lemma 2.10, c(α) ⊆ c(α)w =

(c(gα)w) = 0, and so α = 0. Therefore, M [X ] is a GV -torsion-free R[X ]-module.

Suppose M [X ] is a GV -torsion-free R[X ]-module and α ∈ M . If Jα = 0 for some J ∈ GV (R),

then J [X ]α = 0. Since J [X ] ∈ GV (R[X ]), α = 0. Therefore, M is a GV -torsion-free R-module. 2

Theorem 2.13 Let M be a GV -torsion-free module. Then the following hold.

(1) (M [X ]W )N w
= M{X}.
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(2) M{X} as an R[X ]-module is a w-module, and hence Mw ⊆ Mw[X ] ⊆ M [X ]W ⊆ M{X}.

Proof (1) By Theorem 2.12, M [X ] is a GV -torsion-free R[X ]-module, and hence M [X ]W is

a GV -torsion-free R[X ]-module. For 0 6= α ∈ M [X ]W , we have fα 6= 0 for any f ∈ Nw.

Suppose u ∈ M [X ]W . Then Bu ⊆ M [X ] for some B ∈ GV (R[X ]), and so fu ∈ M [X ] for some

f ∈ B
⋂
Nw by Corollary 2.5. So u ∈ M{X}, and hence (M [X ]W )N w

= M{X}.

(2) Since (M [X ]W )N w

is a GV -torsion-free R[X ]-module, M{X} = (M [X ]W )N w

as an

R[X ]-module is a w-module by Proposition 2.11. Let β =
∑n

i=0 aiX
i ∈ Mw[X ], ai ∈ Mw. Then

there exists J ∈ GV (R) such that Jai ⊆ M for any i, and hence J [X ]β ∈ M [X ]. Since J [X ] ∈

GV (R[X ]), Mw[X ] ⊆ M [X ]W by Lemma 2.7, and so Mw ⊆ Mw[X ] ⊆ M [X ]W ⊆ M{X}. 2

3. w-linked

Following Lucas [8], Q0(R) consists of those elements a(X)
b(X) , where a(X), b(X) ∈ R[X ] and

b(X) is a non-zero-divisor of R[X ] with the coefficient relations aibj = ajbi for each i and j.

For any commutative ring R, T (R) ⊆ Q0(R). When R is a domain, then T (R) = Q0(R) is the

quotient field of R.

Let R ⊆ T be an extension of domains. Following Dobbs [9], T is called t-linked over R if

(R : J) = R (i.e., Jt = R) implies that (T : JT ) = T (i.e., (JT )t = T ) for any non-zero finitely

generated ideal J . Wang [10] proved that T is t-linked over R if and only if Tw = T. Following

the result, we extend t-linked to the extension of commutative rings.

Definition 3.1 Let R ⊆ T be an extension of commutative rings. T is called w-linked over R if

T as an R-module is a w-module. In the case of R ⊆ T ⊆ Q0(R), T is called a w-linked overring

of R.

Remark 3.2 When R ⊆ T is an extension of domains, then w-linked coincides with t-linked.

For any commutative ring R, R[X ] is w-linked over R. In the case of R = T (R) = Q0(R) and

nilradical(R) 6= 0, we have (R : A) = R but (R[X ] : A[X ]) 6= R[X ] for any finitely generated

nilpotent ideal A of R. Therefore, we use w-linked instead of t-linked.

Lemma 3.3 ([1]) Let R ⊆ T be an extension of commutative rings and T a GV -torsion-free

R-module. The following are equivalent.

(1) T is w-linked over R.

(2) A
⋂

R is a w-ideal of R for any w-ideal A of T .

(3) Let P be a prime w-ideal of T . Then P ∩ R is a prime w-ideal of R.

(4) If J ∈ GV (R), then JT ∈ GV (R).

(5) Let L be a T -module. If L as a T -module is a w-module, then L as an R-module is a

w-module.

Proposition 3.4 T (R) and Q0(R) are w-linked overrings of R.

Proof Set T = T (R[X ]). By Proposition 2.11, T (R) is a w-linked overring of R and T is w-
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linked over R[X ]. Let J ∈ GV (R). Then J [X ] ∈ GV (R[X ]), and hence JT ∈ GV (T ) by Lemma

3.3. Thus T is w-linked over R. Let a(X)
b(X) ∈ T such that J a(X)

b(X) ⊆ Q0(R) for some J ∈ GV (R).

Then for any u ∈ J, we have the coefficient relations uaibj = uajbi for each i and j, and so

J(aibj − ajbi) = 0. Thus aibj = ajbi, which implies that a(X)
b(X) ∈ Q0(R). Therefore, Q0(R) as an

R-module is a w-module. 2

Lemma 3.5 Let R ⊆ T be an extension of commutative rings, x ∈ T , and N an R-submodule

of T . If T is a GV -torsion-free R-module, then the following hold.

(1) xNw ⊆ (xN)w.

(2) If x is a non-zero-divisor of N , then xNw = (xN)w .

Proof (1) Suppose u ∈ Nw. Then Ju ⊆ N for some J ∈ GV (R), and hence Jxu ⊆ xN . By

Theorem 2.13, T {X} is a GV -torsion-free R-module and xu ∈ xNw ⊆ T {X}. By Lemma 2.7,

xNw ⊆ (xN)w.

(2) It is clear that x is a non-zero-divisor of Nw. Since xNw
∼= Nw, xNw is a w-module, and

hence xNw = (xN)w . 2

Proposition 3.6 Let R ⊆ T be an extension of commutative rings and T a GV -torsion-free

R-module. Then the following hold

(1) Tw is w-linked over R.

(2) Aw is an ideal of Tw for any ideal A of T .

(3) Let P be a prime ideal of T and P ∩ R a w-ideal of R. Then Pw 6= Tw.

(4) Let P be a prime ideal of T and Pw 6= Tw. Then Pw is a prime ideal of Tw and Pw∩T = P .

(5) Let P be a prime ideal of T , Pw 6= Tw, P1 a prime ideal of Tw such that P1 ⊆ Pw, and

P1

⋂
T = P . Then P1 = Pw.

(6) Let P be a prime ideal of T . If htPw = 0, then htP = 0.

Proof (1) It suffices to show that Tw is a ring. Suppose a, b ∈ Tw, ab 6= 0. Then J1a ⊆ T, J2b ⊆ T

for J1, J2 ∈ GV (R), and hence J1J2ab ⊆ T . By Theorem 2.13, T {X} is a GV -torsion-free R-

module and ab ∈ T {X}. Therefore, ab ∈ Tw.

(2) It is similar to (1).

(3) If Pw = Tw, then J ⊆ P for some J ∈ GV (R). Thus J ⊆ P
⋂

R, a contradiction.

(4) Suppose x ∈ Pw

⋂
T. Then Jx ⊆ P for some J ∈ GV (R). Since J * P, Pw

⋂
T = P.

(5) Suppose x, y ∈ Tw, xy ∈ Pw. Then J1x ⊆ T, J2y ⊆ T for J1, J2 ∈ GV (R). Thus Jxy ⊆ T

for some J = J1J2 ∈ GV (R), and hence Jx ⊆ P or Jy ⊆ P. Therefore, x ∈ Pw or y ∈ Pw.

(6) It follows from (4). 2

For a T -module Y , we denote by Yw the w-envelope of Y as an R-module and by YW the

w-envelope of Y as a T -module.

Theorem 3.7 Let R ⊆ T be an extension of commutative rings and T a GV -torsion-free

R-module. The following are equivalent.

(1) Iw ⊆ (IT )W for any ideal I of R;
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(2) (IwT )W = (IT )W for any ideal I of R;

(3) (IT )W

⋂
R is a w-ideal of R for any ideal I of R;

(4) (IT )W

⋂
R is a w-ideal of R for any finitely generated ideal I of R;

(5) T is w-linked over R.

Proof (1)⇒(2). Since (IwT )W ⊆ ((IT )W )W = (IT )W , Iw ⊆ (IT )W .

(2)⇒(3). Set J = (IT )W

⋂
R. Then Jw ⊆ (IwT )W

⋂
R = (IT )W

⋂
R = J , and hence

J = Jw.

(3)⇒(4). Clearly.

(4)⇒(1). Let B be a finitely generated subideal of I. Since Bw ⊆ (BT )W

⋂
R, Iw =

⋃
Bw ⊆

(IT )W by Lemma 2.9.

(1)⇒(5). Since R = Jw ⊆ (JT )W for any J ∈ GV (R), T = (JT )W by Proposition 3.5. Thus

JT ∈ GV (T ), and hence T is w-linked over R by Lemma 3.3.

(5)⇒(2). Clearly (IT )W ⊆ (IwT )W . On the other hand, suppose x =
∑n

i=1 aiti ∈ IwT where

ai ∈ Iw and ti ∈ T . Thus Jx ⊆ IT for some J ∈ GV (R), and hence JTx ⊆ IT . By Lemma 3.3,

(IwT )W ⊆ (IT )W . 2

Let T be w-linked over R and A an ideal of T . A is called a wR-ideal (or w-linked ideal) if

A as an R-module is a w-module.

Theorem 3.8 Let T be w-linked over R and P a prime ideal of T . Then the following hold.

(1) P
⋂

R is a w-ideal of R for any wR-ideal P of T .

(2) P is a proper wR-ideal of T if and only if Pw 6= T .

(3) If P
⋂

R is a proper w-ideal of R, then P is a wR-ideal of T .

(4) Let A be a wR-ideal of T and P a minimal prime ideal over A. Then P is a wR-ideal of

T .

(5) Let P be a wR-ideal of T , and Q a prime ideal of T such that Q ⊆ P . Then Q is a

wR-ideal of T .

Proof (1) It follows from Lemma 2.8.

(2) If P is a wR-ideal of T , then Pw = P ⊂ T . On the other hand, let x ∈ T , Jx ⊆ P for

some J ∈ GV (R). If J ⊆ P , then Pw = T , a contradiction. Thus J 6⊆ P , and hence x ∈ P .

(3) By Lemma 2.9, Pw 6= T .

(4) Let B be a finitely generated R-submodule of P . Since PTP is a minimal prime ideal

over AP , there exists some s ∈ T \P such that sBn ⊆ A for some integer n. By Lemma 3.6,

s(Bw)n ⊆ s((Bw)n)w ⊆ (sBn)w ⊆ Aw = A ⊆ P . Therefore, Pw = P .

(5) Since Qw ⊆ Pw = P 6= T , Q is a wR-ideal of T . 2

4. The generalization of Wang-McCsland-Park-Chang Theorem

Following Yin [1], R is called a w-Noetherian ring if R has the ascending chain condition on w-

ideals, which contains Noetherian ring, strong Mori domain and so on. Note that each maximal w-

ideal of R is a prime ideal, we use w-Max(R) to denote the set of all maximal w-ideals of R. Since



344 L. XIE, F. G. WANG and Y. TIAN

a prime ideal P of R is a w-ideal if and only if Pw 6= R, each prime ideal contained in a proper

w-ideal of R is also a w-ideal. Following Wang [11], w-dim(R) = Sup{htP | P ∈ w-Max(R)}.

Following Matijevic [3], Rg = {x ∈ T (R) | xM1M2 · · ·Mn ⊆ R where Mi ∈ Max(R)}. Then Rg

is a ring and Rg ⊆ T (R). Following Park [5], Rwg = {x ∈ T (R) | xM1M2 · · ·Mn ⊆ R where

Mi ∈ w-Max(R)}. Then Rwg is a ring and Rwg ⊆ T (R).

Lemma 4.1 Max(R{X}) = {M{X}} where M runs over all maximal w-ideals of R.

Proof See [12, Proposition 2.1]. 2

Lemma 4.2 For any ring R, we have R{X}g
⋂

T (R) = Rwg, and Rwg[X ]Nw

⊆ R{X}g.

Proof Let u ∈ T (R). Then u ∈ R{X}g if and only if uM1 · · ·Mn ⊆ R{X} where Mi ∈

Max(R{X}). By Lemma 4.1, there exists mi ∈ w-Max(R) such that M1 = mi{X} for all

i. Thus u ∈ R{X}g
⋂

T (R) if and only if um1 · · ·mn ⊆ R, if and only if u ∈ Rwg. Thus

R{X}g
⋂

T (R) = Rwg, and hence Rwg ⊆ R{X}g. Since R{X}g is an R{X} = R[X ]Nw
-module,

Rwg[X ]Nw

⊆ R{X}g. 2

It is easy to see that, R is a w-Noetherian ring if and only if for each ideal I of R, Iw = Aw

for some finitely generated subideal A of I. Here we have

Proposition 4.3 The following are equivalent for a ring R.

(1) R is a w-Noetherian ring;

(2) R[X ] is a w-Noetherian ring;

(3) R{X} is a Noetherian ring.

Proof (1)⇒(2). See [1].

(2)⇒(3). Let A be an ideal of R{X}. Then A = BNw
for some ideal B of R[X ]. Since

R[X ] is a w-Noetherian ring, Bw = Cw for some finitely generated subideal C of B. For any

f ∈ B, Jf ⊆ C for some J ∈ GV (R[X ]). Note that JNw
= R{X} and fR{X} ⊆ CN w

, we have

f ∈ CN w

, and B ⊆ CN w

⊆ BN w

. Therefore, A = CN w

is a finitely generated ideal of R{X},

and hence R{X} is a Noetherian ring.

(3)⇒(1). Let I be a ideal of R. Then I{X} is a finitely generated ideal of R{X}, and

I{X} = AN w
for some finitely generated ideal A of R[X ]. Since A ⊆ c(A)[X ]Nw

⊆ I{X},

I{X} = c(A)[X ]Nw

. For any u = α
g

∈ I ⊆ I{X}, where g ∈ Nw, α ∈ c(A)[X ], we have

uc(g) = c(ug) = c(α) ⊆ c(A), and hence u ∈ uc(g)w ⊆ c(ug)w = c(α)w ⊆ c(A)w . Thus

Iw = c(A)w, and hence R is a w-Noetherian ring. 2

Lemma 4.4 Let R be a w-Noetherian ring. Then w-dim(R) = dim(R{X}).

Proof Let P be a prime w-ideal of R. Then P{X} is a prime ideal of R{X}, and hence

w- dim(R) 6 dim(R{X}). Assume that Q be a maximal ideal of R{X}, then Q = M{X} for some

M ∈ w-Max(R) by Lemma 4.1. Since R[X ]\M [X ] ⊇ Nw, R{X}M{X} = (R[X ]Nw

)M [X]N w

=

R[X ]M [X] = RM [X ]MRM [X]. Since RM is a Noetherian ring, htQ = dim(R{X}M{X}) =
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htMRM [X ] = htMRM = htM 6 w-dim(R). 2

Proposition 4.5 Let R be a reduced w-Noetherian ring and R ⊆ T ⊆ Rwg. If T is a w-linked

overring of R, then T is a w-Noetherian ring.

Proof Note that T is also a reduced ring. By Proposition 4.3, R{X} is a reduced Noetherian

ring. Since T is w-linked over R, Nw ⊆ Nw(T ) = {f ∈ T [X ] | c(f) ∈ GV (T )} by Lemma 3.3,

and hence T {X} = (T [X ]Nw
)N w(T ). Since R ⊆ T ⊆ Rwg, R{X} ⊆ T [X ]Nw

⊆ (R{X})g by

Lemma 4.2. By [3, Corollary], T [X ]Nw

is a Noetherian ring. Thus T {X} is a Noetherian ring,

and hence T is a w-Noetherian ring. 2

Corollary 4.6 Let R be a reduced w-Noetherian ring. Then Rwg is a w-Noetherian ring.

Proof Let x ∈ (Rwg)w ⊆ T (R). Then Jx ⊆ Rwg for some J ∈ GV (R). Since J is a finitely

generated ideal of R, there exist M1, . . . , Mn ∈ w-Max(R) such that M1 · · ·MnJx ⊆ R, and

hence M1 · · ·Mnx ⊆ R, which implies that x ∈ Rwg, and Rwg is a w-liked overring of R. By

Lemma 4.5, Rwg is a w-Noetherian ring. 2

Lemma 4.7 Let R ⊆ T ⊆ T (R) be rings. If R is a Noetherian ring with dim(R) 6 1, then

dim(T ) 6 1.

Proof Let P be a minimal prime of T . Then p = P
⋂

R is a prime of R, and hence R/p is a

Noetherian domain with dim(R/p) 6 dim(R) 6 1. For any x ∈ T , there exists a non-zero-divisor

s of R such that sx ∈ R, and s̄x̄ ∈ R/p. Since P is a minimal prime of T , s 6∈ P , and hence

s 6∈ p. Thus T/P is contained in the quotient field of R/p. If dim(R/p) = 0, then dim(T/P ) = 0

and so dim(T ) = 0. If dim(R/p) = 1, then T/P is a Noetherian domain and dim(T/P ) 6 1 by

the Krull-Akizuki Theorem. Therefore, dim(T ) 6 1. 2

Following Lucas [8], I is called a semi-regular ideal of R if it contains a finitely generated

ideal A of R such that ann(A) = 0. If every semi-regular ideal I contains a non-zero-divisor of

R, then T (R) = Q0(R). When R is a w-Noetherian ring, then T (R) = Q0(R) by [2, Theorem

3.19]. Combining with [1], we have

Proposition 4.8 Let R be a w-Noetherian ring with w-dim(R) 6 1. Then Rwg = Q0(R).

Theorem 4.9 Let R be a reduced ring. Then R is a w-Noetherian ring with w-dim(R) 6 1 if

and only if each w-linked overring T of R is w-Noetherian ring with w-dim(T ) 6 1.

Proof Necessity. By Proposition 4.5 and Proposition 4.8, T is a w-Noetherian ring, and hence

T {X} is a Noetherian ring. By Proposition 4.3, R{X} is a Noetherian ring. By Lemma 4.4,

dim(R{X}) = w-dim(R) 6 1. Since T {X} is contained in the total quotient ring of R{X},

w-dim(T ) = dim(T {X}) 6 1 by Lemmas 4.4 and 4.7.

Sufficiency. Note that each T is also a reduced ring. Set R = T . 2

Theorem 4.10 R is a w-Noetherian ring with w-dim(R) = 0 if and only if R is an Artinian
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ring.

Proof Sufficiency is immediate, since R is an Artinian ring if and only if R is a Noetherian ring

with dim(R) = 0.

Necessity. Let u be a non-zero-divisor of R. Then htP > 1 for a prime ideal P of R minimal

over (u), since each minimal prime ideal of R consists of zero-divisors. Repeating the way of

Theorem 3.8(4), P is a w-ideal of R. Since w-dim(R) = 0, P = R, and so u is a unit of R.

Thus GV (R) = {R} by [2, Corollary 3.20], and hence each ideal of R is a w-ideal. Therefore,

dim(R) = 0. For any ideal I of R, I = Iw = Bw = B for some finitely generated subideal B of

I, since R is a w-Noetherian ring. Therefore, R is a Noetherian ring. 2
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