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Abstract This paper considers such a group G which possesses nontrivial proper subgroups

H1, H2 such that any proper subgroup of G not contained in H1 ∪ H2 is p-closed and obtains

that if G is soluble, then the number of prime divisors contained in |G| is 2, 3 or 4; if not, then

it has a form 〈x〉⋉ N where N/Φ(N) is a non-abelian simple group. Then the structure of such

a group is determined for p = 2, H1 = H2 under some conditions.
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1. Introduction

There has been a fair amount of interest for generalized nilpotent groups, such as, local

nilpotent groups, Engel groups, nilpotent-by-(finite exponent) groups, etc. [1–3]. On the other

hand, finite nilpotent groups possess nice properties. A well-known result is that finite groups

are nilpotent if and only if all of their Sylow subgroups are normal.

To generalize nilpotency of finite groups, one considered p-closed groups and inner-p-closed

groups (A finite group G is said to be p-closed, if its Sylow p-subgroup is normal. Particularly,

if p ∤ |G|, G is p-closed. If G is non-p-closed but all of its proper subgroups are p-closed, then it

is called an inner-p-closed group [4]). Chen showed that if a group G is inner-p-closed, then it is

a q-basic group of order pαqβ or G/Φ(G) is a non-abelian simple group [5, Theorem 4.1].

Li [6] further considered a generalized inner-p-closed group, i.e., a group G which has a proper

subgroup H such that any proper subgroup of G not contained in H is p-closed. He proved that

if such a group G is soluble, then the number of prime divisors contained in the order of G is

2 or 3; if G is not soluble, then it has a form 〈x〉 ⋉ N , where N/Φ(N) is a non-abelian simple

group [6, Theorem 1].

The aim of this paper is further to generalize the work of [6]. We introduce

Definition 1 Let G be a non-p-closed group. G is called an almost p-closed group, if there exist
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nontrivial proper subgroups H1, H2 of G such that for any proper subgroup R of G, if R 
 H1

and R 
 H2, then R is p-closed.

Remark 1 Observe that if H1 ≤ H2 (resp. H2 ≤ H1), or one of H1, H2 is p-closed, then G is

the group of [6]. For convenience, let (G,H) denote the group of [6] for which H is non-p-closed

and let (G,H1, H2) denote the almost p-closed group G for which none of H1, H2 is p-closed,

H1 
 H2 and H2 
 H1.

This paper uses standard notations. |G| denotes the order of a finite group G, π(G) the set

of prime divisors contained in |G| and Gp a Sylow p-subgroup of G. By H ⋖G we mean that H

is a maximal subgroup of G.

2. Properties

In this section we consider some properties of almost p-closed groups.

Proposition 1 Let (G,H1, H2) be an almost p-closed group. Then H1, H2 are normal maximal

subgroups of G.

Proof It suffices to show that H1 is a normal maximal subgroup of G.

If there exists a subgroup L such that H1 < L < G, then L ≤ H2 since otherwise, L is

p-closed, so is H1, a contradiction. Thus H1 < L ≤ H2, a contrary to H2 
 H1. Hence H1 is a

maximal subgroup of G.

Assume that there is g ∈ G such that Hg
1 6= H1. If Hg

1 6= H2, then Hg
1 is p-closed, and so

is H1, a contradiction. Thus Hg
1 = H2. This deduces that |G : H1| = |G : NG(H1)| = 2 and it

follows that H1 is normal in G, a contrary to the assumption. Hence H1 �G. 2

Remark 2 In (G,H), it is easy to know that H ⋖G and H �G.

Proposition 2 Let (G,H1, H2) be an almost p-closed group. If N �G, N ≤ Φ(G), then G/N

is still almost p-closed.

Proof H1, H2 are maximal subgroups of G by Proposition 1. Thus N ≤ H1 and N ≤ H2.

Let P ∈ SylpG. Then PN/N ∈ Sylp(G/N). If G/N is p-closed, then PN � G. By Frattini

argument G = PNNG(P ) = NNG(P ) = NG(P ), in contradiction to G non-p-closed. Hence

G/N is non-p-closed. For any proper subgroup R = R/N of G/N , if R 
 H1/N and R 
 H2/N ,

then R 
 H1 and R 
 H2, and thus R is p-closed, so is R, as required. 2

Proposition 3 Let (G,H1, H2) be an almost p-closed group. Then H1 ∩H2 6= 1.

Proof By Proposition 1, H1, H2 are normal maximal subgroups of G. Set |G : H1| = r1,

|G : H2| = r2, then r1, r2 are primes. If H1 ∩H2 = 1, then G = H1 ×H2. Thus |G| = r1r2 and

p = r1 or p = r2. This deduces that both of H1 and H2 are p-closed, a contradiction. Hence

H1 ∩H2 6= 1. 2
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Proposition 4 A group G has a non-p-closed proper subgroup H such that G is almost p-closed

iff there exists a minimal subgroup K in the set of all non-p-closed normal proper subgroups of

G such that G/K is a cyclic group of order prime power and for any L⋖G if only K 
 L, then

L is p-closed.

Proof Suppose that (G,H) is almost p-closed. By Remark 2, H is a normal maximal subgroup

of G. Suppose that K is a minimal one of non-p-closed normal subgroups of G contained in H .

Set |G : H | = r (a prime), and then choose x in Gr \ H . Thus 〈x〉K 
 H and it follows that

G = 〈x〉K because 〈x〉K is non-p-closed, where |x| = rs. Hence G/K is a cyclic group of order

prime power. Thus H is the solely maximal subgroup of G containing K. For any L ⋖ G if

K 
 L, then L 6= H and thus L is p-closed.

Conversely, let K be a non-p-closed proper normal subgroup of G satisfying the assumption.

Suppose that H is a maximal subgroup of G containing K. Since G/K is a cyclic group of order

a power of a prime, then H/K�G/K and H is the solely maximal subgroup of G containing K.

Suppose that R < G such that R 
 H and R ≤ L⋖G. If K ≤ L, then L = H , in contradiction

to R 
 H . Thus K 
 L. It follows that L is p-closed, so is R. Hence G is almost p-closed about

H . 2

Definition 2 Let (G,H) be an almost p-closed group. The subgroup K of G in the sense of

Proposition 4 is called a non-p-closed kernel of G.

3. Results

Now we have the following result.

Theorem 1 Let (G,H1, H2) be an almost p-closed group. Then

(1) If G is soluble, then 2 ≤ |π(G)| ≤ 4;

(2) If G is insoluble, then G = 〈a〉 ⋉N ,

where N/Φ(N) is a non-abelian simple group.

Note that the statement is true for inner-p-closed groups and almost p-closed groups like

(G,H).

Proof By Proposition 1, H1, H2 are normal maximal subgroups of G. Set |G : H1| = r1,

|G : H2| = r2, then r1, r2 are primes. By Proposition 3, H1 ∩ H2 6= 1. Now we consider the

situation:

I. Φ(G) = 1.

Let N be the minimal normal subgroup of G contained in H1 ∩H2 and let M be a minimal

supplement of N in G. Then by [7, p. 271, 618], G = MN,M ∩N ≤ Φ(M). Notice that M 
 H1,

M 
 H2 and M 6= G. Thus M is p-closed, i.e., Mp �M . Thus MpN � G. If N is a p-group,

then MpN ∈ SylpG, in contradiction to G non-p-closed. Hence N is not a p-group.

(1) If N is soluble, then M ∩N = 1 and N is a group of order qα where q 6= p is a prime. If

MpN is p-closed, then Mp char MpN �G, where Mp ∈ SylpG, a contradiction. Hence MpN is
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non-p-closed. If one of r1, r2 equals p and without loss of generality suppose that r2 = p, then

NMpMr1

 H1 and NMpMr1


 H2. Since NMpMr1
is non-p-closed, G = NMpMr1

is soluble

with 2 ≤ |π(G)| ≤ 3. Thus suppose that r1 6= p and r2 6= p. If r1 = r2, then similarly, we

have G = NMpMr1
. Now suppose that r1 6= r2, say r2 > r1. Then Mr1

≤ H2, Mr2
≤ H1 and

Mp ≤ H1∩H2. If Mr2
�G, then NMpMr1

Mr2
is a group. Observe that NMpMr1

Mr2

 H1, H2.

Hence G = NMpMr1
Mr2

because NMp is non-p-closed. Thus G is soluble with 3 ≤ |π(G)| ≤ 4.

LetMr2
5 G. If r2 6= q, then Mr2

is a Sylow r2-subgroup ofG; if r2 = q, thenNMr2
is a Sylow r2-

subgroup of G. For the later case, if NMr2
�G, then G = NMpMr1

NMr2
= G = NMpMr1

Mr2
;

if not, then set Gr2
= Mr2

(q 6= r2) or Gr2
= NMr2

(q = r2). Therefore, NG(Gr2
) < G and

NG(Gr2
) 6= H1 since NG(Gr2

) is self-normalizing. If NG(Gr2
) < H1, then 1 + k1r2 = |G :

NG(Gr2
)| = |G : H1||H1 : NG(Gr2

)|. Observe that NH1
(Gr2

) = NG(Gr2
) ∩ H1 = NG(Gr2

).

Hence |H1 : NG(Gr2
)| = 1+k2r2 and thus r1 = |G : H1| = 1+(k1−r1k2)r2 > r1, a contradiction.

Hence NG(Gr2
) 
 H1.

If NMpNG(Gr2
) < G, since NG(Gr2

) 
 H2, it follows that NMpNG(Gr2
) is p-closed, in

contradiction to NMp non-p-closed. Hence NMpNG(Gr2
) = G. Since Gr2

is a normal Sylow

r2-subgroup of NG(Gr2
), there exists a minimal complement Q of Gr2

in NG(Gr2
) such that

NG(Gr2
) = Gr2

Q, Gr2
∩Q = 1. Thus G = NMpGr2

Q = NMpMr2
Q. Set R = NMpMr2

, then

G = RQ. Note that Q normalizes Gr2
and NMp �G, thus Q normalizes R. Hence G = NG(R),

that is R � G. Since RMr1

 H1, H2, if RMr1

< G, then RMr1
is p-closed, so is NMp, a

contradiction. Hence G = RMr1
= NMpMr2

Mr1
is soluble and 3 ≤ |π(G)| ≤ 4.

(2) N is insoluble.

If N is a p′-group, then by Frattini argument G = NNG(Npi
), where pi ∈ π(N). Thus some

conjugate of Mp is contained in NG(Npi
), without loss of generality, assuming Mp ≤ NG(Npi

).

Note that NG(Npi
) < G and NG(Npi

) 
 H1, H2 since N ≤ H1 ∩H2, thus NG(Npi
) is p-closed,

i.e., Mp �NG(Npi
). Set U = 〈Npi

| pi ∈ π(N)〉, then U normalizes Mp. Note that |Npi
|||U | and

U ≤ N , then U = N and thus N normalizes Mp. Thus Mp �MN = G and Mp ∈ SylpG. By this

contradiction p | |N |. But N is not a p-group, thus it is non-p-closed. Since H1 
 H2, H2 
 H1,

there exists x1 ∈ H1 but x1 6∈ H2, x2 ∈ H2 but x2 6∈ H1. Thus x = x1x2 6∈ H1, H2. Hence

G = 〈x〉N in view of N non-p-closed.

Suppose that N = N1×N2×· · ·×Nt where Ni
∼= Nj are non-abelian simple groups. Then 〈x〉

acts transitively on N1, N2, . . . , Nt by conjugates. Let Nxi

1 = Ni+1 (i = 1, 2, . . . , t−1), Nx
t = N1.

Set D = {
∏t

i=1
αxi

| α ∈ N1}, then D is a subgroup of N and Dx = D, 〈x,D〉 = 〈x〉D. Consider

ψ : α→
∏t

i=1
αxi

, α ∈ N1, then ψ is an automorphism from N1 into D. Hence D is not p-closed.

If t > 1, then G 6= 〈x〉D. However, 〈x〉D 
 H1, 〈x〉D 
 H2, it deduces that 〈x〉D is p-closed, in

contradiction to D non-p-closed. Hence t = 1, N is simple.

II. Φ(G) 6= 1.

Set G = G/Φ(G), then by Proposition 2, G is also almost p-closed. By induction on the

order of groups we have:

(i) If G is soluble, then 2 ≤ |π(G)| ≤ 4, and thus 2 ≤ |π(G)| ≤ 4 since π(G) = π(G);

(ii) If G is not soluble, then G = 〈x〉⋉N , where N = N/Φ(G) is a non-abelian simple group
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and x = xΦ(G). Hence G = 〈x〉 ⋉N,Φ(G) = Φ(N). This completes the proof. 2

To deduce the structures of almost 2-closed groups, we recall the following result due to Chen.

Lemma 1 ([5, Theorem 4.5]) An inner-2-closed group G is a dihedral group: 〈a, b|a2
α

= bq =

1, ba = b−1〉, where q is an odd prime.

Proof In the first place, we show that G is soluble.

If there exists an element t of order 2 in G such that for each g in G, 〈t, tg〉 is a 2-group, then

by [8, Theorem 5.1], Q2(G) 6= 1. Since G is non-2-closed, Q2(G) is not a Sylow 2-subgroup of G.

Hence G/Q2(G) is inner-2-closed and thus it is soluble on induction. Therefore G is soluble. If

there exists an element t of order 2 in G such that for some g ∈ G, 〈t, tg〉 is not a 2-group, then

〈t, tg〉 is not 2-closed following that G = 〈t, tg〉 is also soluble.

Thus G is a q-basic group of order 2αqβ . Note that q ≡ 1 (mod 2), thus the Sylow q-subgroup

Q of G is a cyclic group of order q. The result follows. 2

Theorem 2 Suppose that (G,H) is an almost 2-closed group and G has an inner-2-closed

kernel K. Then G is a supersoluble group generated by two elements and is as follows: (q 6= 2)

I. If |G : H | = r 6= 2, then

1) G = 〈x〉〈a〉, xrβ

= a2
α

= 1;

2) G = 〈xa〉 × 〈b〉, xrβ

= a2
α

= bq = 1, a−1ba = b−1, ax = a, bx = bk, 2 ≤ k ≤ q − 1.

II. If r = 2, then

3) G = 〈x〉 × 〈b〉, xrβ

= bq = 1, bx = bk, 2 ≤ k ≤ q − 1;

4) G = 〈a〉〈xb〉, xrβ

= a2
α

= bq = 1, a−1ba = b−1, bx = b, ax = ai, 1 ≤ i ≤ 2α − 1.

Proof Suppose that K is an inner 2-closed kernel of G. By the lemma above

K = 〈a, b〉 = 〈a〉 × 〈b〉

such that a2
α

= bq = 1, q 6= 2 and a−1ba = b−1. By |G : H | = r, Gr 
 H . Choose x ∈ Gr \H ,

then 〈x〉K 
 H and 〈x〉K is non-2-closed. Thus

G = 〈x〉K = 〈x〉〈a〉〈b〉, |x| = rs.

Note that 〈b〉 charK � G, thus 〈b〉 � G. Since 〈a〉 ∈ Syl2K, by Frattini argument G =

KNG(〈a〉) = 〈b〉NG(〈a〉).

I. r 6= 2.

1) If 〈b〉 ≤ 〈x〉, then r = q and G = 〈x〉〈a〉〈b〉 = 〈x〉〈a〉 satisfying xrβ

= a2
α

= 1.

2) If 〈b〉 
 〈x〉, then 〈b〉 ∩ 〈x〉 = 1. Thus some conjugate of 〈x〉 is contained in NG(〈a〉), and

without loss of generality suppose that 〈x〉 ≤ NG(〈a〉). Set ax = aj , then axn

= ajn

, where n is

a natural number. Write t = rs, then t is odd. Note that

(xa)t = xtaxt−1

· · · ax2

axa = ajt−1

· · ·aj2

aja = ajt−1
+···+j2

+j+1.

All jk have the same odd-even, where k = 1, 2, . . . , t−1 and t−1 is even. So 2 | (jt−1+· · ·+j2+j).

It follows that jt−1+· · ·+j2+j+1 is prime to |a|. Thus 〈a〉 = 〈ajt−1
+···+j2

+j+1〉 = 〈(xa)t〉 ≤ 〈xa〉.

It is deduced that K = 〈a〉〈b〉 ≤ 〈xa〉〈b〉 = 〈xa〉 × 〈b〉 and thus 〈xa〉〈b〉 is non-p-closed. Note
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that a ∈ H , but x 6∈ H , then xa 6∈ H and thus 〈xa〉〈b〉 6∈ H . It is deduced that G = 〈xa〉 × 〈b〉,

〈xa〉 = 〈x〉 × 〈a〉. Thus xrβ

= a2
α

= bq = 1, a−1ba = b−1, ax = a, bx = bk, 2 ≤ k ≤ q − 1.

II. r = 2.

3) If 〈x〉〈b〉 is non-2-closed, then G = 〈x〉〈b〉 = 〈x〉 × 〈b〉 satisfying xrβ

= bq = 1, bx = bk,

where 2 ≤ k ≤ q − 1.

4) If 〈x〉〈b〉 is 2-closed, then 〈x〉〈b〉 = 〈x〉 × 〈b〉 = 〈xb〉. Thus G = 〈a〉〈xb〉 satisfying

xrβ

= a2
α

= bq = 1, a−1ba = b−1, bx = b, ax = ai, 1 ≤ i ≤ 2α − 1. 2
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