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Abstract In this paper, the closeness of the τ -standard part of a set is discussed. Some related

propositions of the τ -neighborhood system of a set are given. And then some related conclusions

of the τ -monad of a set and the τ -standard part of a set are presented. And based on it, the

necessary and sufficient conditions of the enlarged model and the saturated model are showed.

Finally, some sufficient conditions that the τ -standard part of a set is closed are proved in the

enlarged model and the saturated model.
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1. Introduction and preliminaries

Nonstandard analysis is the mathematical theory which studies all kinds of mathematical

problems by nonstandad models. Aside from theorems that tell us that nonstandard notions are

equivalent to corresponding standard notions, all the results we obtain can be proved by standard

methods. Therefore, nonstandard analysis can only be claimed to be of importance insofar as

it leads to simpler, more accessible expositions, or to mathematical discoveries. Usually, we

require these nonstandard models with better properties. There are two kinds of important

models which are nonstandard enlarged models and saturated models in nonstandard analysis.

We discuss many problems in nonstandard enlarged models. For example, Abraham Robinson

proved many theorems in nonstandard enlarged models in [1]. But only the enlarged models are

not enough, the saturated models are also important. For example, infinitesimal prolongation

theorem was extended from sequences to nets based on κ-saturated model in [2]. The structure

of ∗τx and its properties were discussed in κ-saturated model in [3]. The extension of Robinson’s

sequential lemma and its applications were presented in κ-saturated model in [4]. The necessary

and sufficient conditions and some applications of nonstandard enlarged models and saturated

models were showed in [5] and [6]. In this paper, the closeness of the τ -standard part of a set

will be discussed in the two kinds of models.
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Let S be a set of individuals. And assume that V(S) and V(∗S) are universes with individuals

S and ∗S respectively, and V(∗S) is a nonstandard model of V(S).

Definition 1 Let S be a set of individuals and let V(S) be a superstructure with individuals

S. Then a relation r is called concurrent in V(S) if r ∈ V(S) and if whenever x1, x2, . . . , xn ∈

dom(r), there is an element y ∈ ran(r) such that 〈xi, y〉 ∈ r for i = 1, 2, . . . , n.

Definition 2 Let S be a set of individuals and let V(S) be a superstructure with individuals S,

and let V(∗S) be a nonstandard model of V(S). Then V(∗S) is called a nonstandard enlargement

of V(S) whenever for every concurrent relation r of V(S), there exists an element y ∈ V(∗S)

such that 〈∗x, y〉 ∈ ∗r for all x ∈ dom(r).

Definition 3 Let κ be an infinite cardinal. A nonstandard model V(∗S) of V(S) is called

κ-saturated whenever for every internal binary relation r in V(∗S), it is concurrent on a subset

A of dom(r), that is, for every finite set x1, x2, . . . , xn ∈ A there exists an element y ∈ ran(y)

such that 〈x, y〉 ∈ r and if card(A) < κ, then there exists an element y in V(∗S) in the range of

r such that for all x ∈ A, 〈x, y〉 ∈ r.

Let (X, τ) be a topological space and let X be contained in the set of individuals of standard

universe V(S), and let V(∗S) be an enlargement of V(S). Then we have X ⊆ ∗X. Suppose

A ⊆ ∗X, then Nτ (A) = {H ⊆ X | ∃G ∈ τ, A ⊆ ∗G ⊆ ∗H} is called the τ -neighborhood system

of A. In particular, N ◦
τ (A) = {H ∈ τ | A ⊆ ∗H} is called the τ -open neighborhood system of A.

Proposition 1 Let A ⊆ ∗X. Then Nτ (A) is a filter on ∗X .

Proof Obviously, X ∈ Nτ (A) and ∅ /∈ Nτ (A). Let H1, H2 ∈ Nτ (A). Then there exist G1, G2 ∈ τ

such that A ⊆ ∗G1 ⊆ ∗H1, A ⊆ ∗G2 ⊆ ∗H2. Since G1 ∩ G2 ∈ τ and A ⊆ ∗(G1 ∩ G2) ⊆
∗(H1 ∩ H2), H1 ∩ H2 ∈ Nτ (A). Suppose H1 ∈ Nτ (A) and H1 ⊆ H2. Then there exists G ∈ τ

such that A ⊆ ∗G ⊆ ∗H1 ⊆ ∗H2, and thus H2 ∈ Nτ (A). It is proved that Nτ (A) is a filter on
∗X. 2

Definition 4 Let A be a nonempty family of sets of V(S). Then A has the finite intersection

property if
⋂n

i=1
Ai 6= ∅ for A1, A2, . . . , An ∈ A.

Proposition 2 Let B be a nonempty family of subsets on I. Then B has the finite intersection

property if and only if there exists a filter F on I such that B ⊆ F .

Proof If B ⊆ F , then B1 ∈ F , B2 ∈ F , . . . , Bn ∈ F for all {B1, B2, . . . , Bn} ⊆ B. Since F

is a filter on I,
⋂n

i=1
Bi 6= ∅. That is, B has the finite intersection property. Conversely, let

F = {F ⊆ I | F contain the intersection of finite elements of B}. Then B ⊆ F is obvious. Since
⋂n

i=1
Bi 6= ∅ for every nonempty set B1, B2, . . . , Bn ∈ B, we have ∅ /∈ F . Clearly, I ∈ F . If

F1 ∈ F , F2 ∈ F , then there exist B1, B2, . . . , Bm ∈ B, Bm+1, . . . , Bn ∈ B such that F1 ⊇
⋂m

i=1
Bi,

F2 ⊇
⋂n

i=m+1
Bi. Thus F1 ∩ F2 ⊇

⋂n

i=1
Bi, and then F1 ∩ F2 ∈ F . Let F1 ∈ F and F1 ⊆ F2.

Then for some B1, B2, . . . , Bn ∈ B, we have
⋂n

i=1
Bi ⊆ F1 ⊆ F2, and so F2 ∈ F . This shows that
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F is a filter on I and B ⊆ F . 2

Lemma 1 (Transfer Principle) ([7]) Let L be a language of V(S) and α be a sentence of L.

Then ∗α is true in V(∗S) if and only if α is true in V(S).

Proposition 3 Let A ⊆ ∗X. Then N ◦
τ (A) is a filter subbasis of Nτ (A).

Proof For every H1, H2, . . . , Hn ∈ N ◦
τ (A), we have A ⊆ ∗H1, A ⊆ ∗H2, . . . , A ⊆ ∗Hn. Thus

A ⊆ ∗H1 ∩ ∗H2 ∩ · · · ∩ ∗Hn = ∗(H1 ∩ H2 ∩ · · · ∩ Hn), and then ∗(H1 ∩ H2 ∩ · · · ∩ Hn) 6= ∅. By

Transfer Principle, we have H1 ∩ H2 ∩ · · · ∩ Hn 6= ∅, that is, N ◦
τ (A) has the finite intersection

property. Then N ◦
τ (A) is a filter subbasis of Nτ (A) by Proposition 2. 2

2. The τ-standard part of a set

In this section, some related conclusions of the τ -standard part of a set will be given.

Definition 5 Let A ⊆ ∗X . The monad of the filter Nτ (A) is called τ -monad of A. It is denoted

by µτ (A).

In particular, if A = {x}, we shall denote µτ (A) by µτ (x).

Proposition 4 If B is a subbasis of a filter F , then µ(F) = µ(B).

Proof B is a subbasis of the filter F , so B ⊆ F . Then µ(B) ⊇ µ(F). On the other hand, for

every F ∈ F and B is a subbasis of the filter F , so there exist B1, B2, . . . , Bn ∈ B such that F ⊇
⋂n

i=1
Bi. By Transfer Principle, we have ∗F ⊇ ∗

⋂n

i=1
Bi =

⋂n

i=1
∗Bi. Since

⋂n

i=1
∗Bi ⊇ µ(B),

⋂
F∈F

F = µ(F) ⊇
⋂n

i=1
∗Bi ⊇ µ(B). So µ(F) = µ(B). 2

We know µτ (A) = µ(Nτ (A)) = µ(N ◦
τ (A)) by Definitions 4 and 5. So for convenience we shall

use µτ (A) = µ(N ◦
τ (A)) in the following discussion.

Definition 6 A point a ∈ ∗X is called a τ -near-standard point whenever there exists a standard

point x ∈ X such that a ∈ µτ (x). The set of all τ -near-standard points will be denoted by

nsτ (∗(X, τ)) or simply nsτ (∗X).

Definition 7 Let A ⊆ ∗X . Then stτ (A) = {x | x ∈ A and µτ (x) ∩ A 6= ∅} is called τ -standard

part of A.

3. The closeness of the τ-standard part of a set in enlarged models

The definition of the enlarged model and some propositions have been known. In this section,

the sufficient conditions that the τ -standard part of A is closed in the enlarged model will be

showed.

Definition 8 Let A ⊆ V(∗S). The monad is called the discrete monad of A whenever there

exists the smallest filter monad containing A. It is denoted by µd(A).
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Lemma 2 ([8]) Let ∅ 6= A ⊆ ∗X. Then DA = {F | F ⊆ X and A ⊆ ∗F} is a filter which

satisfies µd(A) = µ(DA).

This Lemma was proved by Luxemburg [8]. He also proved that µd is a closure operator

and defined the discrete S-topology (the topology induced by the closure poerator µd on ∗X),

or simply the S-topology. A is called S-closed, if µd(A) = A. In the following lemma, ∨F and

µ(F ∨DA) = µ(F) ∩ µd(A) are also showed in [8].

Lemma 3 Let V(∗S) be an enlargement of V(S) and let F be a filter. If A is S-closed, that

is, A is the monad of a filter, and ∗F ∩ A 6= ∅ for all F ∈ F , then A ∩ µ(F) 6= ∅.

Proof Since A is S-closed, it follows that A = µd(A) = µ(DA). For every F ∈ F , ∗F ∩ A 6= ∅,

so µ(DA) ∩ ∗F 6= ∅. And then we have ∗E ∩ ∗F 6= ∅ for all E ∈ DA. By Transfer Principle,

E ∩F 6= ∅ implies that F ∨DA exists. So we have ∅ 6= µ(F ∨DA) = µ(F)∩µd(A) = µ(F)∩A. 2

Lemma 4 ([9]) A is closed if and only if A = A.

Theorem 1 Let V(∗S) be an enlargement of V(S). If A ⊆ ∗X is S-closed, that is, A is the

monad of a filter, then stτ (A) is τ -closed.

Proof Obviously, stτ (A) ⊆ stτ (A). On the other hand, for all a ∈ stτ (A), we have V ∩stτ (A) 6= ∅

for every V ∈ N ◦
τ (a), so there exists an element y ∈ V and y ∈ stτ (A). Then µτ (y) ⊆ ∗V and

A ∩ µτ (y) 6= ∅. Thus we have A ∩ ∗V 6= ∅ for every V ∈ N ◦
τ (a), A ∩ µτ (a) 6= ∅ by Lemma 3. It

follows that a ∈ stτ (A), and then stτ (A) ⊆ stτ (A), so stτ (A) = stτ (A). It is proved that stτ (A)

is τ -closed. 2

Proposition 5 Let ∅ 6= A ⊆ ∗X . Then A is standard if and only if A is S-open and S-closed.

Proof Assume that A is standard. Then there exists E ⊆ X such that A = ∗E, and so

µd(A) = µd(
∗E) = ∗E = A. That is, A is S-closed. Since ∗X \ A = ∗(X \ E), µd(

∗X \ A) =

µd(
∗(X \ E)) = ∗(X \ E) = ∗X \A. So ∗X \A is S-closed, and then A is S-open. Conversely, if

A is S-open, then ∗X \ A is S-closed. Since A is S-closed, A = ∗X or A = ∅. This means that

A is standard. 2

Corollary 1 Let V(∗S) be an enlargement of V(S). If A is standard, then stτ (A) is τ -closed.

Proof If A is standard, then A is S-closed by proposition 5. So stτ (A) is τ -closed by Theorem

1. 2

Corollary 2 Let V(∗S) be an enlargement of V(S) and A ⊆ X . Then stτ (∗A) = A.

Proof For all x ∈ stτ (∗a) if and only if µτ (x) ∩ ∗A 6= ∅ if and only if x ∈ A. So stτ (∗A) = A. 2

Lemma 5 If F is a filter, then stτ (
⋂

∗F ) =
⋂

stτ (∗F ) for every F ∈ F .

Proof Since ∗F ⊇
⋂

∗F , we have stτ (∗F ) ⊇ stτ (
⋂

∗F ), and then
⋂

stτ (∗F ) ⊇ stτ (
⋂

∗F ).

On the other hand, for every x ∈
⋂

stτ (∗F ), we have x ∈ stτ (∗F ) for all F ∈ F , and so
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∗F ∩µτ (x) 6= ∅. Since µτ (x) is S-closed, it follows that µτ (x)∩µ(F) 6= ∅, and then x ∈ stτ (µ(F)).

Thus
⋂

stτ (∗F ) ⊆ stτ (
⋂

∗F ) and so stτ (
⋂

∗F ) =
⋂

stτ (∗F ). 2

Theorem 2 Let V(∗S) be an enlargement of V(S). If F is a filter and A = µ(F), then

stτ (A) =
⋂
{F | F ∈ F}.

Proof stτ (A) = stτ (µ(F)) = stτ (
⋂

∗F ) =
⋂

stτ (∗F ) =
⋂

F , So stτ (A) =
⋂
{F | F ∈ F}. 2

Lemma 6 Let V(∗S) be an enlargement of V(S). If A is internal and F has a countable

subbasis, then A ∩ ∗F 6= ∅ for all F ∈ F implies A ∩ µ(F) 6= ∅.

Proof Let Ω = {Fn | n ∈ N} be a countable subbasis of F . If {F ′
n | n ∈ N} ∈ Ω, then

Fn =
⋂n

i=1
F ′

n. Let F : N −→ F . Then F : ∗N −→ ∗F and ∗Ω = {∗Fn | n ∈ ∗N} by Transfer

Principle. Since A is internal, we obtain that D = {m ∈ ∗N | Fm ∩ A 6= ∅ and Fm ∈ ∗Ω} is

internal. A ∩ ∗F 6= ∅ for every F ∈ F , so ∗Fn ∩ A 6= ∅ for all n ∈ ∗N . Then n ∈ D, and so

N ⊆ D. Since D is internal and N is external, N 6= D. Then D∩ (∗N \N) 6= ∅, and there exists

ν ∈ ∗N \ N such that ν ∈ D. It follows that ∗Fν ∩ A 6= ∅. Since Ω is a decreasing countable

subbasis of F for all n ∈ N , we have ∗Fn ⊇ ∗F ν . Then
⋂

n∈N
∗F = µ(F) ⊇ ∗F ν . We obtain

A ∩ µ(F) 6= ∅, since A ∩ ∗F ν 6= ∅. 2

Theorem 3 Let V(∗S) be an enlargement of V(S). If A ⊆ ∗X is internal, and the open

neighborhood system of a has countable subbasis for every a ∈ stτ (A), then stτ (A) is τ -closed.

Proof stτ (A) ⊆ stτ (A) is obvious. On the other hand, for all a ∈ stτ (A), we have V ∩stτ (A) 6= ∅

for every V ∈ N ◦
τ (a), so there exists an element y ∈ V and y ∈ stτ (A), and then µτ (y) ⊆ ∗V

and A ∩ µτ (y) 6= ∅. It follows that A ∩ ∗V 6= ∅ for all V ∈ N ◦
τ (a). Since A is internal and N ◦

τ (a)

has countable subbasis, we obtain that A ∩ µτ (a) 6= ∅ by Lemma 6. Then a ∈ stτ (A), and so

stτ (A) ⊆ stτ (A). It is proved that stτ (A) = stτ (A), that is, stτ (A) is τ -closed. 2

4. The closeness of the τ-standard part of a set in saturated models

The definition of κ-saturated models and some related conclusions have been known. In this

section, a sufficient condition that τ -standard part of a set is closed in saturated models will be

presented.

Proposition 6 Let V(∗S) be a nonstandard model of V(S). Then V(∗S) is κ-saturated if and

only if for every family {Ai}i∈I of internal set of V(∗S) with the finite intersection property and

card(I) < κ there holds
⋂

i∈I Ai 6= ∅.

Proof Assume that V(∗S) is κ-saturated. Let A = {Ai}i∈I and A ∈ A. We denote by Pint(A)

a family of all internal subsets. Let r = {〈x, y〉 | x ∈ Pint(A), y ∈ A, y ∈ x}. Then r is an

internal binary relation in V(∗S). Since A ∩ A = {A ∩ B | B ∈ A} ⊆ dom(r), there is an

element y ∈ (A ∩ A1) ∩ (A ∩ A2) ∩ · · · ∩ (A ∩ An) for all A ∩ A1, A ∩ A2, . . . , A ∩ An ∈ A ∩ A.

(A ∩ A1) ∩ (A ∩ A2) ∩ · · · ∩ (A ∩ An) 6= ∅, so y ∈ A, and then 〈A ∩ Ai, y〉 ∈ r for i = 1, 2, . . . , n.
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That is, r is a concurrent relation on A ∩ A. Since card(A ∩ A) < card(A) < κ and V(∗S) is

κ-saturated, there is an element y ∈
⋂

i∈I(A ∩ Ai) =
⋂

i∈I Ai such that 〈A ∩ Ai, y〉 ∈ r for all

A ∩ Ai ∈ A ∩A for i ∈ I. So
⋂

i∈I Ai 6= ∅.

Conversely, assume that r is an internal binary relation and assume that r is concurrent on

A ∩ A ⊆ dom(r) for A ∈ A. Let ran(r) = {y | y ∈ A ∩ Ai, i ∈ I}. Since the family {Ai}i∈I

of internal set has the finite intersection property, there exists an element y ∈ ran(r) such that

〈A∩A, y〉 ∈ r. Now card(A∩A) < card(A) < κ and
⋂

i∈I Ai 6= ∅, and so there exists an elememt

y ∈
⋂

i∈I Ai =
⋂

i∈I(A ∩ Ai) such that 〈A ∩ Ai, y〉 ∈ r for all A ∩ Ai ∈ A ∩ A. So V(∗S) is

κ-saturated. 2

Lemma 7 Let V(∗S) be a nonstandard model of V(S) and let V(∗S) be κ- saturated. If F is

a filter and A is internal such that A ∩ ∗F 6= ∅ for all F ∈ F , then µ(F) ∩ A 6= ∅.

Proof Let Ωi = {A ∩ ∗F i | Fi ∈ F} for i = 1, 2, . . . , n. Since F is a filter,
⋂n

i=1
Fi ∈ F . If A

is internal such that A ∩ ∗F 6= ∅ for all F ∈ F , then
⋂n

i=1
Ωi =

⋂n

i=1
{A ∩ ∗Fi | Fi ∈ F} 6= ∅.

Since V(∗S) is κ-saturated, by Proposition 6, we have
⋂

Ω =
⋂
{A ∩ ∗F | F ∈ F} 6= ∅. That is,

µ(F) ∩ A 6= ∅. 2

Theorem 4 Let V(∗S) be a nonstandard model of V(S) and let V(∗S) be κ-saturated. If

A ⊆ ∗X is internal, then stτ (A) is τ -closed.

Proof Clearly, stτ (A) ⊆ stτ (A). On the other hand, for every x ∈ stτ (A) and V ∈ Nτ (x), we

have ∗V ∩A 6= ∅. Since V(∗S) is κ-saturated and A is internal, we have µτ (A)∩A 6= ∅ and then

x ∈ stτ (A). So stτ (A) ⊆ stτ (A), and then stτ (A) = stτ (A). That is, stτ (A) is τ -closed. 2
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