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Abstract In this paper, we prove the existence and uniqueness of the local generalized solution

of the Cauchy problem for a class of nonlinear hyperbolic equation of higher order are proved.

Moreover, we give the sufficient conditions for blow-up of the solution of the problem in finite

time will be given.
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1. Introduction

In this paper, we study the following Cauchy problem for a class of nonlinear hyperbolic

equation

utt + αuxxxx + βuxxxxtt = f(u)xx, x ∈ R, t > 0, (1.1)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ R, (1.2)

where, u(x, t) denotes the unknown function with respect to variables x and t, α > 0 and β > 0

are physical constants, f(x) is the given nonlinear function, and ϕ(x) and φ(x) are known initial

functions.

In the study of lattice dynamics and the study of water wave, the following model equation

can be obtained [1]

utt + αuxxxx + βuxxxxtt = γ(u2)xx, (1.3)

where α > 0, β > 0 and γ 6= 0 are constants. Obviously, Eq.(1.1) is the generalized type of

Eq.(1.3). This kind of equation is also called the Boussinesq type equation (Bq equation). There

are a lot of results on the solitary wave solution and traveling wave solution of Bq equations

[2–6]. The paper [3] studied the initial boundary value problem for the Eq.(1.1), and proved

the existence and uniqueness of the local generalized solution for the problem. Moreover, the
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blow-up properties of the solution for the problem was discussed in [3]. The initial boundary

problem or initial value problem for some Bq type equations were studied in [4–6].

In this paper, we first prove the existence and uniqueness of the local generalized solution

of the Cauchy problem (1.1), (1.2), and then we discuss the blow-up of solution by means of

concavity method.

Throughout the paper, we use the following notations: L2 denotes the usual space of all

L2-functions on R with norm ‖u‖ = ‖u‖L2; Hs denotes the usual Sobolev space on R with norm

‖u‖Hs = ‖(I − ∂2
x)

s

2 ‖ = ‖(1 + |ξ|2)
s

2 û‖, Ḣs denotes the corresponding homogeneous space on

R with semi-norm ‖u‖Ḣs = ‖|ξ|sû‖, where s ∈ R, I is a unitary operator, û(ξ, t) is the Fourier

transformation of u(x, t) with respect to x, i.e.,

û(ξ, t) =
1

2π

∫ +∞

−∞

e−ixξu(x, t)dx.

2. Local solution and the nonexistence of the global solution

By the standard method as in [3], we can prove the following conclusion about the problem

(1.1), (1.2):

Theorem 2.1 Assume that s ≥ 1, ϕ ∈ Hs, ψ ∈ Hs and f ∈ C [s]+3(R), then the problem (1.1),

(1.2) has a unique local solution u(x, t), defined on a maximal time interval [0, T0), T0 > 0 with

u ∈ C([0, T0); H
s) ∩C1([0, T0); H

s) ∩ C2([0, T0); H
s).

In order to investigate the nonexistence of the global solution for the problem (1.1), (1.2),

let us introduce the following lemma:

Lemma 2.1 ([7]) Suppose that for t ≥ 0, a positive twice-differentiable H(t) satisfies the

inequality

ḦH − (1 + δ)Ḣ2 ≥ 0,

where δ > 0 is a constant. If H(0) > 0 and Ḣ(0) > 0, then there is a t1 ≤
H(0)

δḢ(0)
such that

H(t) → ∞ as t→ t1.

Next, we give the energy identity for the solution u(x, t) of the problem (1.1), (1.2).

Lemma 2.2 Suppose that f ∈ C(R), F (s) =
∫ s

0
f(τ)dτ , ϕ ∈ H1, ψ ∈ H1 ∩ Ḣ−1, F (ϕ) ∈ L1.

Then the following energy identity holds

E(t) = ‖ut(·, t)‖
2
Ḣ−1

+ α‖ux(·, t)‖2 + β‖uxt(·, t)‖
2 + 2

∫ +∞

−∞

F (u(x, t))dx = E(0). (2.1)

Proof By the straightforward calculation, it follows from the equation (1.1) that

d

dt
E(t) = 0.

Integrating the above identity with respect to t, we can obtain (2.1).

Theorem 2.2 Under the assumptions of Lemma 2.2, if sf(s) ≤ 2(1 + 2λ)F (s), ∀s ∈ R (λ > 0
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is a constant), then the solution u(x, t) of the problem (1.1), (1.2) blows up in finite time if one

of the following conditions holds:

(1) E(0) < 0;

(2) E(0) = 0, (|ξ|−1ϕ̂, |ξ|−1ψ̂) + β(|ξ|ϕ̂, |ξ|ψ̂) > 0;

(3) E(0) > 0, (|ξ|−1ϕ̂, |ξ|−1ψ̂) + β(|ξ|ϕ̂, |ξ|ψ̂) > 2
√
E(0)(‖ϕ‖2

Ḣ−1
+ β‖ϕ‖2

Ḣ1
).

Proof Let

H(t) = ‖|ξ|−1û‖2 + β‖|ξ|û‖2 + γ0(t+ t0)
2, (2.2)

where γ0 and t0 are non-negative constants to be defined later. Then

Ḣ(t) = 2(|ξ|−1û, |ξ|−1ût) + 2β(|ξ|û, |ξ|ût) + 2γ0(t+ t0).

Using the Schwartz inequality, we can get

Ḣ(t)2 ≤ 4H(t)[‖|ξ|−1ût‖
2 + β‖|ξ|ût‖

2 + γ0]. (2.3)

By the aid of the equation (1.1) and the energy identity (2.1), we have

Ḧ(t) =2‖|ξ|−1ût‖
2 + 2β‖|ξ|ût‖

2 + 2γ0 + 2(|ξ|−1û, |ξ|−1ûtt) + 2β(|ξ|û, |ξ|ûtt)

=2‖|ξ|−1ût‖
2 + 2β‖|ξ|ût‖

2 + 2γ0 + 2(û, −α|ξ|2û− f̂(u))

=2‖|ξ|−1ût‖
2 + 2β‖|ξ|ût‖

2 + 2γ0 − 2α‖|ξ|û‖2 − 2

∫ +∞

−∞

uf(u)dx

= − (2 + 4λ)(E(0) + γ0) + 4(1 + λ)(‖|ξ|−1ût‖
2 + β‖|ξ|ût‖

2 + γ0)

4λα‖|ξ|û‖2 + 2

∫ +∞

−∞

[2(1 + 2λ)F (u) − uf(u)]dx. (2.4)

From (2.2)–(2.4), it follows that

H(t)Ḧ(t) − (1 + λ)Ḣ(t)2 ≥ −2(1 + 2λ)(E(0) + γ0)H(t). (2.5)

If E(0) < 0, taking γ0 = −E(0) > 0, from (2.5) we have

H(t)Ḧ(t) − (1 + λ)Ḣ(t)2 ≥ 0. (2.6)

Obviously, if t0 is sufficiently large, Ḣ(0) > 0. From Lemma 2.1, we know that H(t) becomes

infinite at T1 at most equal to H(0)

λḢ(0)
< +∞.

If E(0) = 0, taking γ0 = 0, we see that (2.6) holds too. Noting the assumption (2) of Theorem

2.2, it follows that Ḣ(0) > 0. By the aid of Lemma 2.1, we know that H(t) becomes infinite at

T2 at most equal to H(0)

λḢ(0)
< +∞.

If E(0) > 0, taking γ0 = 0, then H(t) satisfies

H(t)Ḧ(t) − (1 + λ)Ḣ(t)2 ≥ −2(1 + 2λ)E(0)H(t).

Define I(t) = H−λ(t), we see

İ(t) = − λH−λ−1(t)Ḣ(t),

Ï(t) =λ(λ + 1)H−λ−2(t)Ḣ(t)2 − λH−λ−1(t)Ḧ(t)

= − λH−λ−2(t)[H(t)Ḧ(t) − (1 + λ)Ḣ(t)2]
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≤2λ(1 + 2λ)E(0)H−λ−1(t). (2.7)

By the assumption (3) in Theorem 2.2 we have İ(0) < 0. Let

t̃ = sup{t|İ(τ) < 0, τ ∈ [0, t)}.

By the continuity of İ(t), t̃ is positive.

Multiplying (2.7) by 2İ(t), we obtain

d

dt
(İ(t)2) ≥ −4(1 + 2λ)λ2E(0)H−2λ−2(t)Ḣ(t)

= 4λ2E(0)
d

dt
H−2λ−1(t), ∀t ∈ [0, t̃). (2.8)

Integrating (2.8) with respect to t in [0, t) for t ∈ [0, t̃) yields

İ(t)2 ≥ İ(0)2 + 4λ2E(0)[H−2λ−1(t) −H−2λ−1(0)].

By the assumption (3), it is true that

İ(0)2 − 4λ2E(0)H−2λ−1(0) > 0.

It follows from the continuity of İ(t) that

İ(t) ≤ −

√
İ(0)2 − 4λ2E(0)H−2λ−1(0), t ∈ [0, t̃).

By the definition of t̃, the above inequality holds for all t ≥ 0. Hence,

I(t) ≤ I(0) − t

√
İ(0)2 − 4λ2E(0)H−2λ−1(0), ∀t > 0.

Therefore, I(T1) = 0 for some T1 and 0 < T1 ≤ T0, where

T0 = I(0)[İ(0)2 − 4λ2E(0)H−2λ−1(0)]−
1

2 .

Thus, H(t) becomes infinite at T1.

This completes the proof of the theorem. 2
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