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1. Introduction

In this paper, we consider the following initial boundary value problem of Cahn-Hilliard

equation with concentration dependent mobility and gradient dependent potential

∂u

∂t
+ div

[

m(u)

(

k∇∆u −
⇀

Φ(∇u)

)]

= 0, (x, t) ∈ QT , (1.1)

∇u · ν
∣

∣

∣

∂Ω
= µ · ν

∣

∣

∣

∂Ω
= 0, t ∈ (0, T ), (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

where Ω is a bounded domain in R
3 with smooth boundary, QT = Ω× (0, T ), ν denotes the unit

exterior normal to the boundary ∂Ω, µ = k∇∆u −
⇀

Φ(∇u) is the flux, k is a positive constant,

m(u) denotes the mobility which is dependent on the concentration u, and
⇀

Φ = (Φ1, Φ2, Φ3) is

a smooth vector function from R
3 to R

3.

The problem (1.1)–(1.3) models many interesting phenomena in mathematical biology, fluid

mechanics, phase transition, etc. We refer the readers to [1] for the derivation of the equation

(1.1) based on the continuum model for epitaxial thin film growth. Recently, such type of

equations, especially in the case of one spatial dimension, have aroused the interests of many
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mathematicians, for example [2–5]. For the multi-dimensional case of the equation (1.1) with

constant mobility, there are also some results which have been obtained recently. For example,

Yin and Huang [1] proved the existence and uniqueness of global solutions. Li et al. [6] considered

the time periodic solutions. For the equation (1.1) with concentration dependent mobility and

gradient dependent potential, Huang et al. [7] considered the problem (1.1)–(1.3), and proved

the existence and uniqueness of the classical solutions in 2-dimensional space. In this paper, we

consider the problem (1.1)–(1.3) in 3-dimensional space, and obtain the existence and uniqueness

of the classical solutions with small initial data by the energy method combined with the theory

of Campanato spaces. This paper can be viewed as an extension to the previous work [7].

The main result of this paper is the following theorem.

Theorem 1.1 Suppose m(s) and
⇀

Φ(ξ) satisfy the following assumptions:

(H1) m(s) ∈ C1+α(R), 0 < α < 1, M1 ≤ m(s) ≤ M2, |m
′(s)| ≤ M3, ∀s ∈ R;

(H2) Φi(ξ) ∈ C1+α(R3) and

|
⇀

Φ(ξ)| ≤ C|ξ|, |
∂Φi

∂ξj
| ≤ C, 1 ≤ i, j ≤ 3, ∀ξ ∈ R

3;

(H3)
⇀

Φ(ξ) · ν = 0, ∀ξ ∈
{

ξ ∈ R
3; ξ · ν = 0

}

,

where C, M1, M2 and M3 are positive constants. If u0(x) ∈ C4+α(Ω̄), and ‖u0(x)‖H1(Ω) is

suitably small, then the problem (1.1)–(1.3) admits a unique classical solution on QT .

Remark 1.1 Comparing to the previous work [7], in this paper we consider the problem in

3-dimensional space. Obviously, the main difficulty comes from the proof of the regularity of

the solutions. In this paper, we use the energy method combined with the theory of Campanato

spaces to overcome this difficulty provided that the initial value is suitably small.

2. Proof of main result

In this section we give the proof of the main result in this paper. We first have the following

lemma.

Lemma 2.1 If u is a solution of the problem (1.1)–(1.3), then

|u(x1, t1) − u(x2, t2)| ≤ C
(

|x1 − x2|
α + |t1 − t2|

α/4
)

holds for any given (x1, t1), (x2, t2) ∈ QT with 0 < α < 1.

Proof Multiplying both sides of the equation (1.1) by ∆u and integrating the result with respect

to x on Ω, we have
∫

Ω

ut∆udx +

∫

Ω

div

[

m(u)

(

k∇∆u −
⇀

Φ(∇u)

)]

∆udx = 0.

By the boundary value conditions (1.2) and using the assumptions (H1) and (H2), we have

d

dt

∫

Ω

|∇u|2dx + 2k

∫

Ω

m(u)|∇∆u|2dx = 2

∫

Ω

m(u)
⇀

Φ(∇u)∇∆udx

≤ k

∫

Ω

m(u)|∇∆u|2dx +
1

k

∫

Ω

m(u)|
⇀

Φ(∇u)|2dx
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≤ k

∫

Ω

m(u)|∇∆u|2dx + C

∫

Ω

|∇u|2dx.

Then
d

dt

∫

Ω

|∇u|2dx + kM1

∫

Ω

|∇∆u|2dx ≤ C

∫

Ω

|∇u|2dx.

It follows from the Gronwall inequality that
∫

Ω

|∇u|2dx ≤ C

∫

Ω

|∇u0|
2dx, ∀0 < t < T, (2.1)

∫∫

QT

|∇∆u|2dx ≤ C

∫

Ω

|∇u0|
2dx. (2.2)

By the assumption (H3), we know that the boundary value conditions (1.2) can be rewritten

as

∇u · ν
∣

∣

∣

∂Ω
= ∇∆u · ν

∣

∣

∣

∂Ω
= 0. (2.3)

Multiplying both sides of the equation (1.1) by ∆2u and integrating the result with respect to x

on Ω, we have
∫

Ω

ut∆
2udx +

∫

Ω

div

[

m(u)

(

k∇∆u −
⇀

Φ(∇u)

)]

∆2udx = 0.

By (2.3) and integrating by parts, we have

1

2

d

dt

∫

Ω

|∆u|2dx + k

∫

Ω

m(u)|∆2u|2dx + k

∫

Ω

m′(u)∇u∇∆u∆2udx−

∫

Ω

m(u)div
⇀

Φ(∇u)∆2udx −

∫

Ω

m′(u)∇u
⇀

Φ(∇u)∆2udx = 0.

It follows from (H1), (H2) and the Hölder inequality that

1

2

d

dt

∫

Ω

|∆u|2dx + kM1

∫

Ω

|∆2u|2dx

≤
kM1

4

∫

Ω

|∆2u|2dx + C

∫

Ω

|∇u|2|∇∆u|2dx+

C

∫

Ω

|∆u|2dx + C

∫

Ω

|∇u|4dx

≤
kM1

4

∫

Ω

|∆2u|2dx + C

(
∫

Ω

|∇u|8dx

)1/4(∫

Ω

|∇∆u|8/3dx

)3/4

+

C

∫

Ω

|∆u|2dx + C

∫

Ω

|∇u|4dx. (2.4)

Now we estimate the terms of the right hand side of (2.4). By the Cagliardo-Nirenberg

inequality, we have
(
∫

Ω

|∇u|8dx

)1/8

≤ C

(
∫

Ω

|∇u|2dx

)3/8
(

(
∫

Ω

|∆2u|2dx

)1/8

+

(
∫

Ω

|∇u|2dx

)1/8
)

,

and
(
∫

Ω

|∇∆u|8/3dx

)3/8

≤ C

(
∫

Ω

|∇u|2dx

)1/8
(

(
∫

Ω

|∆2u|2dx

)3/8

+

(
∫

Ω

|∇u|2dx

)3/8
)

.
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Combining (2.1) with the Young inequality, we have the following estimation on the second term

of the right hand side of (2.4)

(
∫

Ω

|∇u|8dx

)1/4(∫

Ω

|∇∆u|8/3dx

)3/4

≤ C

∫

Ω

|∇u|2dx

(

(
∫

Ω

|∆2u|2dx

)1/4

+

(
∫

Ω

|∇u|2dx

)1/4
)

·

(

(
∫

Ω

|∆2u|2dx

)3/4

+

(
∫

Ω

|∇u|2dx

)3/4
)

≤ C

∫

Ω

|∇u|2dx

(
∫

Ω

|∆2u|2dx +

∫

Ω

|∇u|2dx+

(
∫

Ω

|∆2u|2dx

)1/4

·

(
∫

Ω

|∇u|2dx

)3/4

+

(
∫

Ω

|∆2u|2dx

)3/4

·

(
∫

Ω

|∇u|2dx

)1/4
)

≤ C

∫

Ω

|∇u|2dx

(
∫

Ω

|∆2u|2dx +

∫

Ω

|∇u|2dx

)

≤ C

∫

Ω

|∇u0|
2dx

(
∫

Ω

|∆2u|2dx +

∫

Ω

|∇u0|
2dx

)

.

For the third term of the right hand side of (2.4), we first notice that
∫

Ω

|∆u|2dx = −

∫

Ω

∇u∇∆udx

≤

(
∫

Ω

|∇u|2dx

)1/2(∫

Ω

|∇∆u|2dx

)1/2

=

(
∫

Ω

|∇u|2dx

)1/2(

−

∫

Ω

∆u∆2udx

)1/2

≤

(
∫

Ω

|∇u|2dx

)1/2(∫

Ω

|∆u|2dx

)1/4(∫

Ω

|∆2u|2dx

)1/4

≤ C

(
∫

Ω

|∇u0|
2dx

)1/2(∫

Ω

|∆u|2dx

)1/4(∫

Ω

|∆2u|2dx

)1/4

.

Combining the above inequality with the Young inequality, we have

∫

Ω

|∆u|2dx ≤ C

(
∫

Ω

|∇u0|
2dx

)2/3 (∫

Ω

|∆2u|2dx

)1/3

≤ ε

∫

Ω

|∆2u|2dx + Cε

∫

Ω

|∇u0|
2dx,

where ε is a positive constant which can be small enough, and Cε is a positive constant depending

on ε.

For the fourth term of the right hand side of (2.4), it follows from the Cagliardo-Nirenberg

inequality that

(
∫

Ω

|∇u|4dx

)1/4

≤ C

(
∫

Ω

|∇u|2dx

)5/12 (∫

Ω

|∆2u|2dx

)1/12

+ C

(
∫

Ω

|∇u|2dx

)1/2

.
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By (2.1) and the Young inequality, we have

∫

Ω

|∇u|4dx ≤ C

(
∫

Ω

|∇u|2dx

)5/3(∫

Ω

|∆2u|2dx

)1/3

+ C

(
∫

Ω

|∇u|2dx

)2

≤ C

(
∫

Ω

|∇u0|
2dx

)5/3(∫

Ω

|∆2u|2dx

)1/3

+ C

(
∫

Ω

|∇u0|
2dx

)2

≤ C

∫

Ω

|∇u0|
2dx

∫

Ω

|∆2u|2dx + C

(
∫

Ω

|∇u0|
2dx

)2

.

For the inequality (2.4), we know from the assumptions of the Theorem 1.1 that for suitably

small ‖u0(x)‖H1(Ω), there holds

d

dt

∫

Ω

|∆u|2dx + kM1

∫

Ω

|∆2u|2dx ≤ C.

Then

sup
0<t<T

∫

Ω

|∆u(x, t)|2dx ≤ C, (2.5)

∫∫

QT

|∆2u|2dxdt ≤ C.

By the inequality (2.5) and Sobolev embedding theorem, we conclude that there exists a constant

0 < α < 1 such that

|u(x1, t) − u(x2, t)| ≤ C|x1 − x2|
α

holds for any given (x1, t), (x2, t) ∈ QT . Then by using the inequality (2.2) and the equation

(1.1) itself, we are informed by a completely similar argument of the proof of the Lemma 2.3 of

[8] that

|u(x, t1) − u(x, t2)| ≤ C|t1 − t2|
α/4

holds for any given (x, t1), (x, t2) ∈ QT . The proof of this lemma is completed. 2

Before giving the proof of the main theorem, we first give the following technical lemma

which is required to estimate the Hölder norm of ∇u. One can find its proof in Giaquinta [9].

Lemma 2.2 Let ϕ(ρ) be a nonnegative and nondecreasing function satisfying

ϕ(ρ) ≤ A
( ρ

R

)α

ϕ(R) + BRβ, ∀0 < ρ ≤ R ≤ R0,

where A, B, α, β are positive constants with β < α. Then there exists a positive constant C

depending only on α, β and A, such that

ϕ(ρ) ≤ C
( ρ

R

)β
[

ϕ(R) + BRβ
]

, ∀0 < ρ ≤ R ≤ R0.

Now we are in the position to give the proof of the main result of this paper.

The Proof of Theorem 1.1 We first rewrite the equation (1.1) into the following form

∂u

∂t
+ div(a(x, t)∇∆u) = div

⇀

F ,

where a(x, t) = km(u(x, t)),
⇀

F = m(u)
⇀

Φ(∇u). The key step of the proof is the Hölder norm

estimation of ∇u. In the following text, we employ the theory of Campanato spaces to obtain
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this key estimation. For any given point (x0, t0) in Ω × (0, T ), we define

ϕ(u, ρ) =

∫∫

Sρ

(

|∇u − (∇u)ρ|
2 + ρ4|∇∆u|2

)

dxdt,

where

Sρ = (t0 − ρ4, t0 + ρ4) × Bρ(x0), (∇u)ρ =
1

|Sρ|

∫∫

Sρ

∇udxdt,

where Bρ(x0) is the ball with radius ρ and center at the point x0 in the Euclidean space.

We split the solution u of the problem (1.1)–(1.3) on SR as u = u1 + u2, where u1 is the

solution of the following problem

∂u1

∂t
+ a(x0, t0)∆

2u1 = 0, (x, t) ∈ SR, (2.6)

∂u1

∂ν
=

∂u

∂ν
,

∂∆u1

∂ν
=

∂∆u

∂ν
, (x, t) ∈ (t0 − R4, t0 + R4) × ∂BR(x0), (2.7)

u1 = u, t = t0 − R4, x ∈ BR(x0), (2.8)

and u2 solves the problem

∂u2

∂t
+ a(x0, t0)∆

2u2 = div [(a(x0, t0) − a(x, t))∇∆u] + div
⇀

F , (x, t) ∈ SR, (2.9)

∂u2

∂ν
= 0,

∂∆u2

∂ν
= 0, (x, t) ∈ (t0 − R4, t0 + R4) × ∂BR(x0), (2.10)

u2 = 0, t = t0 − R4, x ∈ BR(x0). (2.11)

By the classical linear theory, the above decomposition is uniquely determined by u.

By the Lemma 2.1 and the assumption (H1), we know that the function a(x, t) is also Hölder

continuous. Namely, there exists a σ ∈ (0, 1) such that for any (x, t) ∈ BR(x0)×(t0−R4, t0+R4)

we have

|a(x, t) − a(x0, t0)| ≤ C
(

|x − x0|
σ + |t − t0|

σ/4
)

. (2.12)

Multiplying both sides of the equation (2.9) by ∆u2 and integrating the resulting with respect

to (t, x) on (t0 −R4, t)×BR(x0), we know from the inequality (2.12) and the assumptions (H1)

and (H2) that

1

2

∫

BR(x0)

|∇u2(x, t)|2dx + a(x0, t0)

∫ t

t0−R4

∫

BR(x0)

|∇∆u2|
2dxdt

=

∫ t

t0−R4

∫

BR(x0)

(a(x0, t0) − a(x, t))∇∆u∇∆u2dxdt+

∫ t

t0−R4

∫

BR(x0)

⇀

F∇∆u2dxdt

≤
a(x0, t0)

2

∫ t

t0−R4

∫

BR(x0)

|∇∆u2|
2
dxdt + C

∫ t

t0−R4

∫

BR(x0)

∣

∣

∣

∣

⇀

F

∣

∣

∣

∣

2

dxdt+

C

∫ t

t0−R4

∫

BR(x0)

|(a(x, t) − a(x0, t0))∇∆u|
2
dxdt

≤
a(x0, t0)

2

∫ t

t0−R4

∫

BR(x0)

|∇∆u2|
2
dxdt + CR7 sup

SR

|∇u|
2
+
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CR2σ

∫ t

t0−R4

∫

BR(x0)

|∇∆u|2 dxdt.

Then

sup
(t0−R4,t0+R4)

∫

BR(x0)

|∇u2(x, t)|2dx +

∫∫

SR

|∇∆u2|
2dxdt

≤ CR2σ

∫∫

SR

|∇∆u|
2
dxdt + CR7 sup

SR

|∇u|
2
. (2.13)

For u1, we first know from the Sobolev embedding theorem that, for any (x1, t1), (x2, t2) ∈ Sρ,

there holds

|∇u1(x1, t1) −∇u1(x2, t2)|
2

|x1 − x2|

≤ C sup
(t0−ρ4,t0+ρ4)

∫

Bρ(x0)

(

ρ−4 |∇u1 − (∇u1)ρ|
2

+ ρ|∇∆ku1|
2
)

dx,

where k is a positive constant which is not less than 5/4. Then by the equation (2.6) itself, we

have

|∇u1(x1, t1) −∇u1(x2, t2)|
2

|x1 − x2| + |t1 − t2|1/4

≤ C sup
(t0−ρ4,t0+ρ4)

∫

Bρ(x0)

(

ρ−4 |∇u1 − (∇u1)ρ|
2 + ρ|∇∆ku1|

2
)

dx+

C

∫∫

Sρ

(

ρ−4|∇∆u1|
2 + ρ|∇∆k+1u1|

)

dxdt, (2.14)

where k is a positive constant which is not less than 5/4. Similarly to the proof of the Lemma

4.4 in [1], we know that the following Caccioppoli type inequalities hold

sup
(t0−ρ4,t0+ρ4)

∫

Bρ(x0)

|∇u1 − (∇u1)R|
2dx +

∫∫

Sρ

|∇∆u1|
2dxdt

≤
C

(R − ρ)4

∫∫

SR

|∇u1 − (∇u1)R|
2dxdt, (2.15)

sup
(t0−ρ4,t0+ρ4)

∫

Bρ(x0)

|∆u1|
2dx +

∫∫

Sρ

|∆2u1|
2dxdt

≤
C

(R − ρ)4

∫∫

SR

|∆u1|
2dxdt ≤

C

(R − ρ)6

∫∫

S2R

|∇u1 − (∇u1)R|
2dxdt, (2.16)

sup
(t0−ρ4,t0+ρ4)

∫

Bρ(x0)

|∇∆u1|
2dx +

∫∫

Sρ

|∇∆2u1|
2dxdt

≤
C

(R − ρ)4

∫∫

SR

|∇∆u1|
2dxdt. (2.17)

Then, by (2.15) and (2.17), we have

sup
(t0−(R/2)4,t0+(R/2)4)

∫

BR/2

|∇∆nu1|
2dx ≤

C

R4n+4

∫∫

SR

|∇u1 − (∇u1)R|
2dx, (2.18)
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and
∫∫

SR/2

|∇∆n+1u1|
2dx ≤

C

R4n+4

∫∫

SR

|∇u1 − (∇u1)R|
2dx (2.19)

hold for all positive integer n.

Note that for any R/2 < ρ < R, we only need to take C = 28 to obtain

ϕ(u1, ρ) ≤ C
( ρ

R

)8

ϕ(u1, R).

If 0 < ρ ≤ R/2, by the mean value theorem we know that there exists a point (x∗, t∗) ∈ Sρ such

that

(∇u1)ρ = ∇u1(x
∗, t∗).

Then, by the inequalities (2.14)–(2.19) and noticing that k ≥ 5/4, we have
∫∫

Sρ

|∇u1 − (∇u1)ρ|
2dxdt =

∫∫

Sρ

|∇u1 −∇u1(x
∗, t∗)|

2dxdt ≤ Cρ7 sup
(x,t)∈Sρ

|∇u1 −∇u1(x
∗, t∗)|

2

≤ Cρ8 sup
t∈(t0−(R/2)4,t0+(R/2)4)

∫

BR/2(x0)

(

R−4|∇u1 − (∇u1)R|
2 + R|∇∆ku1|

2
)

dx+

Cρ8

∫∫

SR/2

(R−4|∇∆u1|
2 + R|∇∆k+1u1|

2)dxdt

≤ Cρ8

∫∫

SR

(

1

R8
+

1

R4k+3

)

|∇u1 − (∇u1)R|
2dxdt

≤ C
( ρ

R

)8
∫∫

SR

|∇u1 − (∇u1)R|
2dxdt.

Thus

ϕ(u1, ρ) ≤ C
( ρ

R

)8

ϕ(u1, R), ∀ρ ∈ (0, R). (2.20)

By the inequalities (2.13) and (2.20) and using the Lemma 2.2, we conclude that for any constant

λ ∈ (7, 8) there holds

ϕ(u, ρ) ≤ C

(

1 + sup
SR

|∇u|
2

)

ρλ, ∀0 < ρ ≤ R ≤ R0, (2.21)

where R0
∆
= min{dist(x0, ∂Ω), t

1/4
0 }. The proof of the above inequality is completely similar to

the proof of the Lemma 4.7 in [1], and we omit the details here.

By the inequality (2.21), and noticing the integral character of the Hölder continuous func-

tions, we have

|∇u(x1, t1) −∇(x2, t2)| ≤ C

(

1 + sup
SR

|∇u|

)

(

|x1 − x2|
(λ−7)/2 + |t1 − t2|

(λ−7)/8
)

,

where (x1, t1), (x2, t2) are any given two points in SR. It follows from the interpolation inequality

that

|∇u(x1, t1) −∇u(x2, t2)| ≤ C
(

|x1 − x2|
(λ−7)/2 + |t1 − t2|

(λ−7)/8
)

.

For the estimations near the boundary of QT , we can obtain them by the same method. Let

(x0, t0) ∈ ∂Ω × (0, T ) be fixed and assume that ∂Ω can be explicitly expressed by a function
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x2 = φ(x1) in some neighborhood of x0. We split u as u1 +u2 in ŜR = (t0−R4, t0+R4)×ΩR(x0)

with ΩR(x0) = BR(x0) ∩ Ω. u1 solves the following problem

∂u1

∂t
+ a(x0, t0)∆

2u1 = 0, (x, t) ∈ ŜR,

∂u1

∂ν
=

∂u

∂ν
,

∂∆u1

∂ν
=

∂∆u

∂ν
, (x, t) ∈ ∂ΩR(x0) × (t0 − R4, t0 + R4),

u1 = u, t = t0 − R4, x ∈ ΩR(x0),

and u2 solves the problem

∂u2

∂t
+ a(x0, t0)∆

2u2 = div [(a(x0, t0) − a(x, t))∇∆u] + div
⇀

F , (x, t) ∈ ŜR,

∂u2

∂ν
= 0,

∂∆u2

∂ν
= 0, (x, t) ∈ ∂ΩR(x0) × (t0 − R4, t0 + R4),

u2 = 0, t = t0 − R4, x ∈ ΩR(x0).

We can modify the function ϕ(u, ρ) as

ϕ(u, ρ) =

∫∫

Sρ

(

|∂nu|2 + |∂τu − (∂τu)ρ|
2 + ρ4|∇∆u|2

)

dxdt,

where

∂n = φ′(x)
∂

∂x1
−

∂

∂x2
, ∂τ =

∂

∂x1
+ φ′(x)

∂

∂x2

denote the normal and tangential derivatives, respectively. The remaining part of the proof is

completely similar to that of Theorem 1.1 of [8]. Namely, we can employ the Leray-Schauder

fixed point theorem to prove the existence of the solutions and use the Holmgren’s approach to

prove the uniqueness of the solutions. We omit the details here. The proof of the theorem is

completed. 2
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