Characteristic Conditions for the Generation of α -Times Resolvent Families on a Hilbert Space

Ru LIU*, Miao LI

Department of Mathematics, Sichuan University, Sichuan 610064, P. R. China

Abstract In 2000, Shi and Feng gave the characteristic conditions for the generation of C_0 semigroups on a Hilbert space. In this paper, we will extend them to the generation of α -times resolvent operator families. Such characteristic conditions can be applied to show rank-1 perturbation theorem and relatively-bounded perturbation theorem for α -times resolvent operator families.

Keywords α -times resolvent family; resolvent; rank-1 perturbation; relatively-bounded perturbation.

Document code A MR(2010) Subject Classification 45L05 Chinese Library Classification 0175.4

1. Introduction

The Hille-Yosida theorem told us how to characterize an operator which is generator of some strongly continuous semigroup. However, it is hard to use the Hille-Yosida theorem to check whether an operator generates a C_0 -semigroup. In fact, the difficulty is in finding the expression of $R^k(\lambda, A)$ and their estimates for all $k \geq 2$. Shi and Feng in 2000 gave a new necessary and sufficient condition in terms of $R(\lambda, A)$ and $R(\lambda, A^*)$ which makes sure that A generates a C_0 -semigroup on a Hilbert space. Such condition is easy to verify and convenient to use.

The notion of α -times resolvent families was introduced by Bajlecova [2] to study the Cauchy problem of fractional order:

$$D_t^{\alpha}u(t) = Au(t).$$

It is known that the class of α -times resolvent operator families interpolates C_0 -semigroups and cosine functions. So it is also interesting to consider the characterization of the generators of these families on Hilbert spaces.

Let us first recall the definitions of α -times resolvent operator families. Let A be a closed densely defined linear operator on a Banach space X and $\alpha \in (0, 2]$.

Received July 8, 2009; Accepted April 26, 2010

Supported by the National Natural Science Foundation of China (Grant No. 10971146).

* Corresponding author

E-mail address: srb40305079@163.com (R. LIU)

Definition 1.1 A family $S_{\alpha}(t) \subset B(X)$ is called an α -times resolvent operator family for A if the following conditions are satisfied:

- 1) $S_{\alpha}(t)$ is strongly continuous for $t \ge 0$ and $S_{\alpha}(0) = I$;
- 2) $S_{\alpha}(t)D(A) \subset D(A)$ and $AS_{\alpha}(t)x = S_{\alpha}(t)Ax$ for $x \in D(A)$ and $t \ge 0$;
- 3) For $x \in D(A)$, $S_{\alpha}(t)x$ satisfies

$$S_{\alpha}(t)x = x + \int_0^t g_{\alpha}(t-s)S_{\alpha}(s)Ax\mathrm{d}s, \ t \ge 0,$$

where $g_{\alpha}(t) := \frac{t^{\alpha-1}}{\Gamma(\alpha)}, t > 0.$ If $||S_{\alpha}(t)|| \leq M_A e^{\omega_A t}$ where $M_A \geq 1, \omega_A \geq 0$, we write as $A \in C^{\alpha}(M_A, \omega_A)$ (or shortly $A \in C^{\alpha}$).

Lemma 1.2 ([2]) Let $0 \le \alpha \le 2$. Then $A \in C^{\alpha}(M_A, \omega_A)$ if and only if $(\omega_A^{\alpha}, \infty) \subset \rho(A)$ and there is a strongly continuous operator-valued function S(t) satisfying $||S(t)|| \le M_A e^{\omega_A t}$, $t \ge 0$, and such that

$$\lambda^{\alpha-1}R(\lambda^{\alpha}, A)x = \int_0^\infty e^{-\lambda t} S(t)x dt, \quad \lambda > \omega_A, \ x \in X$$

In Section 2, we will give characteristic conditions for α -times resolvent operator families on a Hilbert space, which extends the result for C_0 -semigroups [1]. As an application, we will show some perturbation theorems in Section 3.

2. Characteristic conditions of the generation

Theorem 2.1 Let A be a closed densely defined linear operator on a Hilbert space H and $\alpha \in [1, 2]$. Then the following statements are equivalent:

- 1) $A \in C^{\alpha}$;
- 2) There is a constant $\omega_A \in \mathbb{R}$ such that $\{\lambda^{\alpha} : \operatorname{Re} \lambda > \omega_A\} \subseteq \rho(A)$,

$$\sup_{\omega > \omega_A} (\omega - \omega_A) \int_{\mathbb{R}} \| (\omega + i\tau)^{\alpha - 1} R((\omega + i\tau)^{\alpha}, A) x \|^2 \mathrm{d}\tau < +\infty, \quad \forall x \in H,$$
(1)

and

$$\sup_{\omega > \omega_A} (\omega - \omega_A) \int_{\mathbb{R}} \| (\omega - i\tau)^{\alpha - 1} R((\omega - i\tau)^{\alpha}, A^*) y \|^2 \mathrm{d}\tau < +\infty, \quad \forall y \in H.$$
⁽²⁾

In order to prove the theorem, we need the following lemmas.

Lemma 2.2 If (1) and (2) hold, then for every $x \in H$, $\omega > \omega_A$,

$$\|\lambda^{\alpha-1}R(\lambda^{\alpha},A)x\| \to 0$$
, when $\operatorname{Re}\lambda > \omega$ and $|\lambda| \to +\infty$.

Proof Without loss of generality, we assume that $\omega_A \ge 0$. Under the conditions (1) and (2), we have

$$\int_{\mathbb{R}} \|(\omega + i\tau)^{\alpha - 1} R((\omega + i\tau)^{\alpha}, A)x\|^2 \mathrm{d}\tau \le \frac{M_1^2}{\omega - \omega_A} \|x\|^2, \quad \forall x \in H,$$
(3)

$$\int_{\mathbb{R}} \|(\omega - i\tau)^{\alpha - 1} R((\omega - i\tau)^{\alpha}, A^*)y\|^2 \mathrm{d}\tau \le \frac{M_2^2}{\omega - \omega_A} \|y\|^2, \quad \forall y \in H,$$

$$\tag{4}$$

for some constants M_1 , $M_2 > 0$. By the Schwartz inequality and Cauchy inequality,

$$\begin{split} &\int_{\tau_{1}}^{\tau_{2}} \|(\omega+i\tau)^{2\alpha-2}R^{2}((\omega+i\tau)^{\alpha},A)x\|d\tau \\ &= \sup_{y\in H, \|y\|=1} \int_{\tau_{1}}^{\tau_{2}} ((\omega+i\tau)^{2\alpha-2}R^{2}((\omega+i\tau)^{\alpha},A)x,y)_{H}d\tau \\ &= \sup_{y\in H, \|y\|=1} \int_{\tau_{1}}^{\tau_{2}} ((\omega+i\tau)^{\alpha-1}R((\omega+i\tau)^{\alpha},A)x,(\omega-i\tau)^{\alpha-1}R((\omega-i\tau)^{\alpha},A^{*})y)_{H}d\tau \\ &\leq \sup_{y\in H, \|y\|=1} \left(\int_{\tau_{1}}^{\tau_{2}} \|(\omega+i\tau)^{\alpha-1}R((\omega+i\tau)^{\alpha},A)x\|^{2}d\tau\right)^{1/2} \\ &\quad \left(\int_{\tau_{1}}^{\tau_{2}} \|(\omega-i\tau)^{\alpha-1}R((\omega-i\tau)^{\alpha},A^{*})y\|^{2}d\tau\right)^{1/2} \\ &\leq \frac{M_{1}M_{2}}{\omega-\omega_{4}}\|x\|, \ \forall \tau_{1}, \ \tau_{2} \in \mathbb{R}. \end{split}$$

Therefore, the integral $\int_{\mathbb{R}} (\omega + i\tau)^{2\alpha - 2} R^2 ((\omega + i\tau)^{\alpha}, A) x d\tau$ exists. Similarly,

$$\begin{split} &\int_{\tau_1}^{\tau_2} \|(\omega+i\tau)^{\alpha-2} R((\omega+i\tau)^{\alpha},A)x\| \mathrm{d}\tau \\ &= \sup_{y \in H, \|y\|=1} \int_{\tau_1}^{\tau_2} ((\omega+i\tau)^{\alpha-2} R((\omega+i\tau)^{\alpha},A)x,y)_H \mathrm{d}\tau \\ &= \sup_{y \in H, \|y\|=1} \int_{\tau_1}^{\tau_2} ((\omega+i\tau)^{\alpha-1} R((\omega+i\tau)^{\alpha},A)x,(\omega-i\tau)^{-1}y)_H \mathrm{d}\tau \\ &\leq \sup_{y \in H, \|y\|=1} \left(\int_{\tau_1}^{\tau_2} \|(\omega+i\tau)^{\alpha-1} R((\omega+i\tau)^{\alpha},A)x\|^2 \mathrm{d}\tau\right)^{1/2} \cdot \\ &\quad \left(\int_{\tau_1}^{\tau_2} \|(\omega-i\tau)^{-1}y\|^2 \mathrm{d}\tau\right)^{1/2} \\ &\leq \frac{M_1 \|x\|}{(\omega-\omega_A)^{1/2}} (\frac{\arctan\frac{\tau_2}{\omega} - \arctan\frac{\tau_1}{\omega}}{\omega})^{1/2} \leq \frac{M_1 M_3}{\omega - \omega_A} \|x\|, \ \ \forall \tau_1, \ \tau_2 \in \mathbb{R}, \end{split}$$

where $M_3 = (\arctan \frac{\tau_2}{\omega} - \arctan \frac{\tau_1}{\omega})^{1/2}$. Thus the integral $\int_{\mathbb{R}} (\omega + i\tau)^{\alpha-2} R((\omega + i\tau)^{\alpha}, A) x d\tau$ is also convergent. Since

$$\begin{aligned} (\omega+i\tau_1)^{\alpha-1}R((\omega+i\tau_1)^{\alpha},A)x\\ &=(\omega+i\tau_0)^{\alpha-1}R((\omega+i\tau_0)^{\alpha},A)x+i(\alpha-1)\int_{\tau_0}^{\tau_1}(\omega+i\tau)^{\alpha-2}R((\omega+i\tau)^{\alpha},A)x\mathrm{d}\tau -\\ &i\alpha\int_{\tau_0}^{\tau_1}(\omega+i\tau)^{2\alpha-2}R^2((\omega+i\tau)^{\alpha},A)x\mathrm{d}\tau,\end{aligned}$$

the limit $\lim_{|\tau|\to\infty} (\omega + i\tau)^{\alpha-1} R((\omega + i\tau)^{\alpha}, A)x$ exists. Together with (3), we have

$$\lim_{|\tau|\to\infty} (\omega+i\tau)^{\alpha-1} R((\omega+i\tau)^{\alpha}, A)x = 0, \quad \forall x \in H, \ \omega > \omega_A.$$

Moreover,

$$\begin{aligned} \|(\omega + i\tau_1)^{\alpha - 1} R((\omega + i\tau_1)^{\alpha}, A)x\| \\ &\leq \|(\omega + i\tau_0)^{\alpha - 1} R((\omega + i\tau_0)^{\alpha}, A)x\| + \frac{\alpha M_1 M_2}{\omega - \omega_A} \|x\| + \frac{(\alpha - 1)M_1 M_3}{\omega - \omega_A} \|x\| \end{aligned}$$

Characteristic conditions for the generation of α -times resolvent families on a Hilbert space

$$\leq \|(\omega+i\tau_0)^{\alpha-1}R((\omega+i\tau_0)^{\alpha},A)x\| + \frac{M_4}{\omega-\omega_A}\|x\|,$$

where $M_4 = \alpha M_1 M_2 + (\alpha - 1) M_1 M_3$. Letting $\tau_0 \to \infty$ gives

$$\|(\omega + i\tau)^{\alpha - 1} R((\omega + i\tau)^{\alpha}, A)\| \le \frac{M_4}{\omega - \omega_A}$$

Let $\omega_1 > \omega_A$. If $\omega \ge \max\{\omega_1, \tau\}$, then $\omega \to \infty$ if and only if $|\lambda| \to \infty$,

$$\|\lambda^{\alpha-1}R(\lambda^{\alpha}, A)x\| \le \frac{M_4}{\omega - \omega_A} \|x\| \to 0, \text{ as } |\lambda| \to \infty.$$

Otherwise if $\omega_1 \leq \omega \leq |\tau|$, without loss of generality, we assume ω is bounded, then $|\tau| \to \infty$ if and only if $|\lambda| \to \infty$. Since

$$\begin{aligned} (\omega+i\tau)^{\alpha-1}R((\omega+i\tau)^{\alpha},A)x &- (\omega_1+i\tau)^{\alpha-1}R((\omega_1+i\tau)^{\alpha},A)x \\ &= (\omega+i\tau)^{\alpha-1}R((\omega+i\tau)^{\alpha},A)\frac{(\omega_1+i\tau)^{\alpha}-(\omega+i\tau)^{\alpha}}{(\omega_1+i\tau)^{\alpha-1}}(\omega_1+i\tau)^{\alpha-1}R((\omega_1+i\tau)^{\alpha},A)x + \\ &[(\frac{\omega+i\tau}{\omega_1+i\tau})^{\alpha-1}-1](\omega_1+i\tau)^{\alpha-1}R((\omega_1+i\tau)^{\alpha},A)x, \end{aligned}$$

the limit $\|(\frac{\omega+i\tau}{\omega_1+i\tau})^{\alpha-1}-1\| \to 0$ as $|\tau| \to \infty$ implies

$$\|[(\frac{\omega+i\tau}{\omega_1+i\tau})^{\alpha-1}-1](\omega+i\tau)^{\alpha-1}R((\omega_1+i\tau)^{\alpha},A)x\|\to 0 \text{ as } |\tau|\to\infty.$$
(5)

It is easy to know that $\|(\omega + i\tau)^{\alpha-1}R((\omega + i\tau)^{\alpha}, A)\|$ is bounded because of the boundedness of ω . Moreover, $\|\frac{(\omega_1+i\tau)^{\alpha}-(\omega+i\tau)^{\alpha}}{(\omega+i\tau)^{\alpha-1}}\| \to \alpha |\omega_1 - \omega|$ as $|\tau| \to \infty$, we get

$$\|(\omega+i\tau)^{\alpha-1}R((\omega+i\tau)^{\alpha},A)\frac{(\omega_{1}+i\tau)^{\alpha}-(\omega+i\tau)^{\alpha}}{(\omega+i\tau)^{\alpha-1}}(\omega+i\tau)^{\alpha-1}R((\omega_{1}+i\tau)^{\alpha},A)x\| \to 0$$

as $|\tau| \to \infty.$ (6)

By (5) and (6), we can obtain that $\|\lambda^{\alpha-1}R(\lambda^{\alpha}, A)x\| \to 0$ as $|\lambda| \to \infty$ following by $\|(\omega_1 + i\tau)^{\alpha-1}R((\omega_1 + i\tau)^{\alpha}, A)x\| \to 0$ as $|\tau| \to \infty$. From the above discussion, the desired is obtained. \Box

Lemma 2.3 Let A be a closed densely defined linear operator on a Hilbert space H. If $A \in C^{\alpha}(M_A, \omega_A)$, then $A^* \in C^{\alpha}(M_A, \omega_A)$.

Proof We will show that $S^*_{\alpha}(t) := (S_{\alpha}(t))^*$ is the α -times resolvent operator family generated by A^* . If $y \in D(A^*)$, then for $T \ge t > s \ge 0$ and any $x \in H$,

$$\begin{aligned} |(x, S^*_{\alpha}(t)y - S^*_{\alpha}(s)y)| &= |(S_{\alpha}(t)x - S_{\alpha}(s)x, y)| = \left| (A \int_s^t g_{\alpha}(t-\tau)S_{\alpha}(\tau)x\mathrm{d}\tau, y) \right| \\ &= \left| (\int_s^t g_{\alpha}(t-\tau)S_{\alpha}(\tau)x\mathrm{d}\tau, A^*y) \right| \le M_T(t-s) \|x\| \|A^*y\|, \end{aligned}$$

where M_T is a constant depending on T. This shows that $t \mapsto S^*_{\alpha}(t)y$ is continuous. Since $D(A^*)$ is dense [4], we show that $S^*_{\alpha}(t)x$ is continuous for all $x \in H$. Moreover $||S^*_{\alpha}(t)|| = ||S_{\alpha}(t)||$, by Lemma 1.2 we obtain that $S^*_{\alpha}(t)$ is the α -times resolvent family generated by A^* . \Box

The Proof of Theorem 2.1 1) \Longrightarrow 2). For every $\omega > \omega_A$,

$$(\omega + i\tau)^{\alpha - 1} R((\omega + i\tau)^{\alpha}, A)x = \int_0^{+\infty} e^{-(\omega + i\tau)t} S_{\alpha}(t) x dt = \int_0^{+\infty} e^{-i\tau t} (e^{-\omega t} S_{\alpha}(t) x) dt$$
$$= e^{-\widehat{\omega t} S_{\alpha}(t)} x(\tau).$$

Since $||e^{-\omega t}S_{\alpha}(t)|| \leq M_A e^{(\omega_A - \omega)t}$, $e^{-\omega t}S_{\alpha}(t)x \in L^2(\mathbb{R}_+)$, by using the Plancherel's theorem [6], we obtain

$$\begin{split} &\int_{\mathbb{R}} \|(\omega+i\tau)^{\alpha-1} R((\omega+i\tau)^{\alpha},A)x\|^2 \mathrm{d}\tau \\ &= \int_{\mathbb{R}} \|\widehat{e^{-\omega t}S_{\alpha}(t)}x(\tau)\|^2 \mathrm{d}\tau = 2\pi \int_{0}^{+\infty} e^{-2\omega t} \|S_{\alpha}(t)x\|^2 \mathrm{d}t \\ &\leq 2\pi \|x\|^2 \int_{0}^{+\infty} M_A^2 e^{-2(\omega-\omega_A)t} \mathrm{d}t = \frac{\pi M_A^2}{\omega-\omega_A} \|x\|^2. \end{split}$$

This means that (1) holds. And (2) follows by Lemma 2.3.

2) \Longrightarrow 1). Fix $\omega > \omega_A$ and define the linear operator $S_{\omega}(t)$ by

$$S_{\omega}(t)x = \frac{1}{2\pi i} \int_{\omega-i\infty}^{\omega+i\infty} e^{\lambda t} \lambda^{\alpha-1} R(\lambda^{\alpha}, A) x d\lambda = \frac{e^{\omega t}}{2\pi} \int_{-\infty}^{+\infty} e^{it\tau} (\omega+i\tau)^{\alpha-1} R((\omega+i\tau)^{\alpha}, A) x d\tau.$$

Since

$$\int_{\tau_1}^{\tau_2} e^{it\tau} (\omega + i\tau)^{\alpha - 1} R((\omega + i\tau)^{\alpha}, A) x d\tau$$

$$= \frac{e^{it\tau}}{it} (\omega + i\tau)^{\alpha - 1} R((\omega + i\tau)^{\alpha}, A) x|_{\tau_1}^{\tau_2} - \frac{\alpha - 1}{t} \int_{\tau_1}^{\tau_2} e^{it\tau} (\omega + i\tau)^{\alpha - 2} R((\omega + i\tau)^{\alpha}, A) x d\tau + \frac{\alpha}{t} \int_{\tau_1}^{\tau_2} e^{it\tau} (\omega + i\tau)^{2\alpha - 2} R^2((\omega + i\tau)^{\alpha}, A) x d\tau,$$

similarly to the proof of Lemma 2.2, we can obtain that the integral

$$\frac{e^{\omega t}}{2\pi} \int_{\mathbb{R}} e^{it\tau} (\omega + i\tau)^{\alpha - 1} R((\omega + i\tau)^{\alpha}, A) x \mathrm{d}\tau$$

converges, and

$$\left\|\frac{e^{\omega t}}{2\pi}\int_{\mathbb{R}}e^{it\tau}(\omega+i\tau)^{\alpha-1}R((\omega+i\tau)^{\alpha},A)x\mathrm{d}\tau\right\| \leq \frac{M_4e^{\omega t}}{2\pi t(\omega-\omega_A)}\|x\|.$$

This means that $S_{\omega}(t)$ is a linear bounded operator. Now we verify that $S_{\omega}(t)$ is an α -times resolvent family generated by A.

1) We show that $S_{\omega}(t)$ is independent of ω . Choose $\omega_1 > \omega_A$. Without loss of generality, assume $\omega_1 > \omega$.

For every $\beta > 0$, let $\Gamma_{\beta} := \{\omega_1 + i\tau, -\beta \le \tau \le \beta\} \cup \{s + i\beta, \omega \le s \le \omega_1\} \cup \{\omega + i\tau, -\beta \le \tau \le \beta\} \cup \{s - i\beta, \omega \le s \le \omega_1\}$ be oriented counterclockwise, and denote them by $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4$, respectively. By Cauchy's theorem,

$$\int_{\Gamma_{\beta}} e^{\lambda t} \lambda^{\alpha - 1} R(\lambda^{\alpha}, A) x \mathrm{d}\lambda = 0.$$

That is

$$\left(\int_{\Gamma_1} -\int_{\Gamma_2} -\int_{\Gamma_3} +\int_{\Gamma_4}\right) e^{\lambda t} \lambda^{\alpha-1} R(\lambda^\alpha, A) x \mathrm{d}\lambda = 0.$$
(7)

By Lemma 2.2,

$$\begin{split} \left\| \int_{\Gamma_2} e^{\lambda t} \lambda^{\alpha - 1} R(\lambda^{\alpha}, A) x \mathrm{d}\lambda \right\| &= \left\| \int_{\omega}^{\omega_1} e^{(s + i\beta)t} (s + i\beta)^{\alpha - 1} R((s + i\beta)^{\alpha}, A) x \mathrm{d}s \right\| \\ &\leq e^{\omega_1 t} \int_{\omega}^{\omega_1} \| (s + i\beta)^{\alpha - 1} R((s + i\beta)^{\alpha}, A) x \| \mathrm{d}s \to 0, \quad \text{as} \quad \beta \to \infty \end{split}$$

and similarly,

$$\left\|\int_{\Gamma_4} e^{\lambda t} \lambda^{\alpha-1} R(\lambda^{\alpha}, A) x \mathrm{d}\lambda\right\| \to 0, \text{ as } \beta \to \infty.$$

Letting $\beta \to \infty$ in (7) yields

$$\lim_{\beta \to \infty} \left(\int_{\Gamma_1} - \int_{\Gamma_3} \right) e^{\lambda t} \lambda^{\alpha - 1} R(\lambda^{\alpha}, A) x \mathrm{d}\lambda = 0.$$

Therefore

$$\int_{\omega-i\infty}^{\omega+i\infty} e^{\lambda t} \lambda^{\alpha-1} R(\lambda^{\alpha}, A) x \mathrm{d}\lambda = \int_{\omega_1-i\infty}^{\omega_1+i\infty} e^{\lambda t} \lambda^{\alpha-1} R(\lambda^{\alpha}, A) x \mathrm{d}\lambda,$$

that is to say $S_{\omega}(t) = S_{\omega_1}(t)$. So we can denote $S_{\omega}(t)$ as S(t).

2) We show that S(t) is exponential bounded. We have

$$\|S(t)\| \le \inf_{\omega > \omega_A} \frac{M_4 e^{\omega t}}{2\pi t (\omega - \omega_A)} = \frac{M_4 e^{\omega_A t}}{2\pi} \inf_{\omega > \omega_A} \frac{e^{(\omega - \omega_A)t}}{(\omega - \omega_A)t}.$$

Let $f(x) = \frac{e^x}{x}$. Then $f'(x) = \frac{e^x(x-1)}{x^2}$. Thus $\frac{e^x}{x}$ gets its minimum at x = 1, so we have $M_4 e$

$$\|S(t)\| \le \frac{M_4 e}{2\pi} e^{\omega_A t} = M_A e^{\omega_A t}$$

3) We show that S(t) is strongly continuous. Let $x \in D(A)$. Then

$$S(t)x - x = \frac{1}{2\pi i} \int_{\omega - i\infty}^{\omega + i\infty} e^{\lambda t} \lambda^{\alpha - 1} R(\lambda^{\alpha}, A) x d\lambda - x$$

$$= \frac{1}{2\pi i} \int_{\omega - i\infty}^{\omega + i\infty} \frac{e^{\lambda t} R(\lambda^{\alpha}, A) Ax}{\lambda} d\lambda + \frac{1}{2\pi i} \int_{\omega - i\infty}^{\omega + i\infty} \frac{e^{\lambda t}}{\lambda} x d\lambda - x$$

$$= \frac{1}{2\pi i} \int_{\omega - i\infty}^{\omega + i\infty} \frac{e^{\lambda t} R(\lambda^{\alpha}, A) Ax}{\lambda} d\lambda.$$

Since

$$\int_{\omega-i\infty}^{\omega+i\infty} \frac{\|e^{\lambda t}R(\lambda^{\alpha},A)Ax\|}{|\lambda|} \mathrm{d}\lambda \leq e^{\omega t} \Big(\int_{\omega-i\infty}^{\omega+i\infty} \|\lambda^{\alpha-1}R(\lambda^{\alpha},A)Ax\|^2 \mathrm{d}\lambda\Big)^{1/2} \Big(\int_{\omega-i\infty}^{\omega+i\infty} \frac{1}{|\lambda^{\alpha}|^2} \mathrm{d}\lambda\Big)^{1/2},$$

it follows from (1) and $\alpha \geq 1$ that the integral $\int_{\omega-i\infty}^{\omega+i\infty} \frac{\|e^{\lambda t}R(\lambda^{\alpha},A)Ax\|}{|\lambda|} d\lambda$ is convergent. Hence, we have by the Lebesgue's dominated convergence theorem and Cauchy theorem that

$$\lim_{t \to 0^+} \frac{1}{2\pi i} \int_{\omega - i\infty}^{\omega + i\infty} \frac{e^{\lambda t} R(\lambda^{\alpha}, A) A x}{\lambda} d\lambda = \frac{1}{2\pi i} \int_{\omega - i\infty}^{\omega + i\infty} \frac{R(\lambda^{\alpha}, A) A x}{\lambda} d\lambda = 0.$$

The strong continuity follows from the fact that D(A) is dense and S(t) is bounded near zero by 2).

425

4) For every $x \in H$, $\omega_1 > \omega > \omega_A$,

$$\begin{split} \int_{0}^{+\infty} e^{-\omega_{1}t} S(t) x \mathrm{d}t &= \int_{0}^{+\infty} e^{-\omega_{1}t} \frac{1}{2\pi i} \int_{\omega-i\infty}^{\omega+i\infty} e^{\lambda t} \lambda^{\alpha-1} R(\lambda^{\alpha}, A) x \mathrm{d}\lambda \mathrm{d}t \\ &= \frac{1}{2\pi i} \int_{\omega-i\infty}^{\omega+i\infty} \int_{0}^{+\infty} e^{(\lambda-\omega_{1})t} \mathrm{d}t \lambda^{\alpha-1} R(\lambda^{\alpha}, A) x \mathrm{d}\lambda \\ &= \frac{1}{2\pi i} \int_{\omega-i\infty}^{\omega+i\infty} \frac{\lambda^{\alpha-1} R(\lambda^{\alpha}, A) x}{\omega_{1} - \lambda} \mathrm{d}\lambda \\ &= \omega_{1}^{\alpha-1} R(\omega_{1}^{\alpha}, A) x. \end{split}$$

From all the verifications above and by Lemma 1.2, we obtain $A \in C^{\alpha}$. \Box

3. Perturbations of generators of α -times resolvent families

In this section, we will use the characteristic conditions given in the previous section to study the perturbations of α -times resolvent families. First we consider rank-1 perturbation.

Definition 3.1 Let A be a closed densely defined linear operator on a Banach space X, given $a \in X, b^* \in X^*$. We call the operator B a rank-1 perturbation of A, if

$$Bx = b^*(A_\beta x)a$$
, where $x \in D(A)$, $\beta > 0$, $A_\beta = (\sigma - A)^\beta$, $\sigma > \omega_A^\alpha$.

We denote this operator B by ab^*A_β .

Theorem 3.2 Let A be a closed densely defined linear operator on a Hilbert space H and $\alpha \in [1,2]$. If $A \in C^{\alpha}$ and A satisfies $||R(\sigma + is, A)|| = O(|s|^{-\beta})$ as $|s| \to \infty$ for $\beta > 0$, B is a rank-1 perturbation operator, then

1) There exists an $r \ge 0$, such that $\{\operatorname{Re}\mu \ge \sigma, |\mu| \ge r\} \subset \rho(A+B)$ and $\|R(\sigma+is, A+B)\| = O(|s|^{-\beta})$ as $|s| \to \infty$;

2) $A + B \in C^{\alpha}$.

Proof 1) The proof is similar to Proposition 4.2(1) in [3], so we omit it.

2) By Lemma 1.1 in [3], we obtain that if $\lambda^{\alpha} \in \rho(A)$ and $b^* A_{\beta} R(\lambda^{\alpha}, A) a \neq 1$, then $\lambda^{\alpha} \in \rho(A + ab^* A_{\beta})$ and

$$R(\lambda^{\alpha}, A + ab^*A_{\beta})x = R(\lambda^{\alpha}, A)x + \frac{b^*A_{\beta}R(\lambda^{\alpha}, A)x}{1 - b^*A_{\beta}R(\lambda^{\alpha}, A)a}R(\lambda^{\alpha}, A)a.$$

Set

$$Q(\lambda^{\alpha}) = \frac{b^* A_{\beta} R(\lambda^{\alpha}, A)}{1 - b^* A_{\beta} R(\lambda^{\alpha}, A) a} R(\lambda^{\alpha}, A) a.$$

From the proof of Proposition 4.2(1) in [3], we have that if $|\lambda^{\alpha}|$ is sufficiently large, then $\lambda^{\alpha} \in \rho(A+B)$ and

$$\lambda^{\alpha-1}R(\lambda^{\alpha},A+B) = \lambda^{\alpha-1}R(\lambda^{\alpha},A) + \lambda^{\alpha-1}Q(\lambda^{\alpha}),$$

where $\|\lambda^{\alpha-1}Q(\lambda^{\alpha})\| \leq c\|\lambda^{\alpha-1}R(\lambda^{\alpha},A)a\|$. Thus

$$\|\lambda^{\alpha-1}R(\lambda^{\alpha}, A+B)\| \le (1+c\|a\|)\|\lambda^{\alpha-1}R(\lambda^{\alpha}, A)\|.$$

Since $A \in C^{\alpha}$ for $x \in H$ and $\omega > \omega_A$, by the proof of Theorem 2.1 (1) \Longrightarrow 2))

$$\int_{\mathbb{R}} \|(\omega+i\tau)^{\alpha-1} R((\omega+i\tau)^{\alpha}, A)x\|^2 \mathrm{d}\tau \le \frac{\pi M_A^2}{\omega-\omega_A} \|x\|^2.$$

If ω is sufficiently large,

$$\int_{\mathbb{R}} \|\lambda^{\alpha-1}Q(\lambda^{\alpha})\|^2 \mathrm{d}\tau \le c^2 \int_{-\infty}^{+\infty} \|(\omega+i\tau)^{\alpha-1}R((\omega+i\tau)^{\alpha},A)ax\|^2 \mathrm{d}\tau \le \frac{\pi c^2 \|a\|^2 M_A^2}{\omega-\omega_A} \|x\|^2.$$

Then

$$\int_{\mathbb{R}} \|(\omega + i\tau)^{\alpha - 1} R((\omega + i\tau)^{\alpha}, A + B)x\|^2 \mathrm{d}\tau \le \frac{\pi (1 + c\|a\|)^2 M_A^2}{\omega - \omega_A} \|x\|^2.$$

Similarly, we have

$$\int_{\mathbb{R}} \|(\omega - i\tau)^{\alpha - 1} R((\omega - i\tau)^{\alpha}, A^* + B^*) x\|^2 \mathrm{d}\tau \le \frac{\pi (1 + c \|a\|)^2 M_A^2}{\omega - \omega_A} \|x\|^2$$

Then by Theorem 2.1, we have $A + B \in C^{\alpha}$. \Box

Next we consider relatively-bounded perturbation.

Theorem 3.3 Let A be a closed densely defined linear operator on a Hilbert space H and $\alpha \in [1,2]$. $(A, D(A)) \in C^{\alpha}(M_A, \omega_A)$ and (B, D(B)) is a closed operator on H such that $D(B) \supseteq D(A)$. Assume that there exists a constant $M \in [0,1)$ such that

$$||BR(\lambda, A)x|| \le M||x||$$
 and $||R(\lambda, A)By|| \le M||y||$

 $\text{for } \{\lambda \in \mathbb{C}; \mathrm{Re}\lambda > \omega_A^\alpha\} \text{ and } \forall x \in H, \, \forall y \in D(B), \, \text{then } (A+B,D(A)) \in C^\alpha.$

Proof For $\forall x \in D(A)$, when $\omega > \omega_A$, by the proof of Theorem 2.1 1) \Longrightarrow 2), we have

$$\int_{\mathbb{R}} \|(\omega + i\tau)^{\alpha - 1} R((\omega + i\tau)^{\alpha}, A)x\|^2 \mathrm{d}\tau \le \frac{\pi M_A^2}{\omega - \omega_A} \|x\|^2.$$

By the proof of Lemma 5.1 in [8], we have that (A+B, D(A)) is a closed densely defined operator and

$$(\omega+i\tau)^{\alpha-1}R((\omega+i\tau)^{\alpha},A+B)x = (1-R((\omega+i\tau)^{\alpha},A)B)^{-1}(\omega+i\tau)^{\alpha-1}R((\omega+i\tau)^{\alpha},A)x.$$

Therefore,

$$\begin{split} &\int_{\mathbb{R}} \|(\omega+i\tau)^{\alpha-1} R((\omega+i\tau)^{\alpha},A+B)x\|^2 \mathrm{d}\tau \\ &= \int_{\mathbb{R}} \|(1-R((\omega+i\tau)^{\alpha},A)B)^{-1}(\omega+i\tau)^{\alpha-1}R((\omega+i\tau)^{\alpha},A)x\|^2 \mathrm{d}\tau \\ &\leq \frac{1}{(1-M)^2} \int_{\mathbb{R}} \|(\omega+i\tau)^{\alpha-1}R((\omega+i\tau)^{\alpha},A)x\|^2 \mathrm{d}\tau \\ &\leq \frac{\pi M_A^2}{(1-M)^2(\omega-\omega_A)} \|x\|^2. \end{split}$$

Similarly,

$$\int_{\mathbb{R}} \|(\omega - i\tau)^{\alpha - 1} R((\omega - i\tau)^{\alpha}, A^* + B^*) x\|^2 d\tau \le \frac{\pi M_A^2}{(1 - M)^2 (\omega - \omega_A)} \|x\|^2.$$

Thus by Theorem 2.1, we have $((A + B, D(A)) \in C^{\alpha}$. \Box

References

- SHI Donghua, FENG Dexing. Characteristic conditions of the generation of C₀ semigroups in a Hilbert space [J]. J. Math. Anal. Appl., 2000, 247(2): 356–376.
- [2] BAJLEKOVA E. Fractional evolution equations in Banach spaces [D]. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, 2001.
- [3] ARENDT W, BATTY C J K. Rank-1 perturbations of cosine functions and semigroups [J]. J. Funct. Anal., 2006, 238(1): 340–352.
- [4] PAZY A. Semigroups of Linear Operators and Applications to Partial Differential Equations [M]. Springer-Verlag, New York, 1983.
- [5] ENGEL K J, NAGEL R. One-Parameter Semigroups for Linear Evolution Equations [M]. Springer-Verlag, New York, 2000.
- [6] ARENDT W. Vector-valued Laplace transforms and Cauchy problems [J]. Israel J. Math., 1987, 59(3): 327– 352.
- [7] ZHONG Yuquan. The Theory of Complex Functions [M]. Beijing: Higher Education Press, 1979.
- [8] KAISER C, WEIS L. A perturbation theorem for operator semigroups in Hilbert spaces [J]. Semigroup Forum, 2003, 67(1): 63–75.