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Abstract A gap theorem on complete noncompact n-dimensional locally conformally flat Rie-

mannian manifold with nonnegative and bounded Ricci curvature is proved. If there holds the

following condition: ∫
r

0

sk(x0, s)ds = o(log r)

then the manifold is flat.
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1. Introduction

Let M be an n-dimensional complete noncompact Riemannian manifold with nonnegative

Ricci curvature. Mok, Siu and Yau [7] proved that if a complete noncompact Kähler-Stein

manifold of nonnegative and bounded holomorphic bisectional curvature of complex dimension

n ≥ 2 has maximal volume growth and the scalar curvature decays faster than quadratic, in

the sense that, for some C > 0 and ε > 0, R(x) ≤ Cd(x0, x)−(2+ε), then M is isometrically

biholomorphic to Cn. This can be interpreted as a gap phenomenon of the bisectional curvature

on Kähler manifolds (A more general theorem in Riemannian category was proved by Greene

and Wu in [10]).

Later the similar result was extended to the Riemannian manifold with maximal volume

growth and nonnegative Ricci curvature by Bando, Kasue and Nakajima in [11]. Recently, Chen

and Zhu obtained the gap theorem on the locally conformally flat manifolds [2]. They showed

that:

Let M be an n-dimensional (n ≥ 3) complete noncompact locally conformally flat Riemannian

manifolds with nonnegative Ricci curvature. If the scalar curvature is bounded and there exists
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a positive function ε : R → R with limr→∞ ε(r) = 0 such that

1

vol(B(x0, r))

∫

B(x0, r)

R(x)dv ≤ ε(r)

r2
, for x0 ∈ M, r > 0, (1)

then M is flat.

Later in [3], they used the theory of the Ricci flow to obtain the analogous gap theorem on

Kähler manifold as follows.

Suppose M is a complete noncompact Kähler manifold of complex dimension n ≥ 2 with

bounded and nonnegative holomorphic bisectional curvature, and the condition (1) is satisfied,

then M is flat.

In [9], Ni and Tam changed condition (1) into the following condition (∗)
∫ r

0

sk(x0, s)ds = o(log r) (*)

where k(x0, s) = 1
vol(B(x0,s))

∫
B(x0,s) R(x)dv. They got the same result on Kähler manifold.

Stimulated by Ni and Tam’s result, we consider condition (∗) on the locally conformally flat

Riemannian manifold, and also get the analogous gap theorem.

Theorem Let M be an n-dimensional (n ≥ 3) complete noncompact locally conformally flat

manifolds with nonnegative Ricci curvature. If the scalar curvature is bounded and satisfies

condition (∗), then M is flat.

We remark that the condition (1) is stronger than condition (∗), because from (∗), we can

only know the average curvature decay in infinity. In fact, if the scalar curvature satisfies the

condition (1), then

lim
r→∞

∫ r

0
sk(x0, s)ds

log r
= lim

r→∞

∫ r

0
ε(s)

s
ds

log r
= lim

r→∞
ε(r) = 0.

2. Yamabe flow and estimate for its solution

Suppose gij and Rij are the metric tensor and the Ricci tensor on M , respectively. The

Yamabe flow is the following evolution equation for the metric:
{

∂gij

∂t = −R(x, t)gij(x, t), x ∈ M, t > 0;

gij(x, 0) = gij(x), x ∈ M.
(2.1)

Write gij(x, t) = (u(x, t))
4

n−2 gij(x) for some positive function u(x, t). Then (2.1) can be written

in the equivalent form:




∂uN (x, t)
∂t = (n − 1)N

[
△u(x, t) − n−2

4(n−1)R(x)u(x, t)
]
;

u(x, t) > 0, x ∈ M, t > 0;

u(x, 0) = 1, x ∈ M,

(2.2)

where N = n+2
n−2 , △ is the Laplace operator with respect to the initial metric gij(x).

We know from [2] that the Yamabe flow (2.1) has a smooth solution, namely,

Proposition 2.1 Let M be an n-dimensional (n ≥ 3) complete noncompact Riemannian man-

ifolds with nonnegative Ricci curvature. If the scalar curvature is bounded, then the Yamabe
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flow (2.1) has a smooth solution on a maximal time interval [0, tmax) with tmax > 0 such that

either tmax = +∞, or the evolving metric contracts to a point at a finite time tmax in the sense

that for any curve γ on M, the length of γ with respect to the evolving metric gij(x, t) tends to

zero as t → tmax.

Now we want to drive some estimate for the solution of the Yamabe flow (2.2). From above

proposition we have a smooth solution gij(x, t) of (2.1) on a maximal time interval [0, tmax).

Write the solution as gij(x, t) = (u(x, t))
4

n−2 gij(x), where u(x, t) is a positive solution of (2.2)

on [0, tmax).

Lemma 2.1 For r → +∞, t > 0, we have

−
∫

B(x0, r)

log u(x, t)dv ≤ C [1 − (log u)min(t)] tr
−2vol(B(x0, r)), (2.3)

where (log u)min(t) is the infimum of log u(x, t) for x ∈ M, ǫ > 0 and C is some positive constant

depending only on n.

Proof Since the Ricci curvature of the initial metric gij(x) is nonnegative, we know that there

exists a constant C > 0 depending only on the dimension such that for any fixed point x0 ∈ M

and r > 0 there exists a smooth function ϕ(x) ∈ C∞(M) such that




exp
[
−C(1 + d(x, x0)

r
)
]
≤ ϕ(x) ≤ exp

[
−(1 + d(x, x0)

r
)
]
,

| ∇ϕ(x) |≤ C
r
ϕ(x),

| △ϕ(x) |≤ C
r2 ϕ(x).

(2.4)

Suppose u(x, t) is solution of (2.2). Since ∂u
∂t

< 0 and u(x, o) = 1, we have u ≤ 1, and

∂

∂t

∫

M

ϕuNdv =

∫

M

ϕ

[
(n − 1)N△u − n − 2

4
Ru

]
dv

= (n − 1)N

∫

M

△ϕudv − n − 2

4

∫

M

Rϕudv. (2.5)

So by integrating (2.5) from 0 to t, we obtain:
∫

M

ϕ(1 − uN )dv ≤ C

r2

∫ t

0

dt

∫

M

uϕdv C

∫ t

0

dt

∫

M

Rϕudv. (2.6)

From (∗) we know

lim
r→∞

k(x0, r) ≤ o(
1

r2
) ≤ Ct(

1

r2

∫

M

ϕdv +

∫

M

Rϕdv),

∫

M

Rϕdv ≤
∫

M

Re−(1+
d(x, x0)

r
)dv

= lim
r→∞

∫

B(x0, r)

R(x)e−(1+
d(x, x0)

r
)dv + lim

r→∞

∫

M\B(x0, r)

R(x)e−(1+
d(x, x0)

r
)dv

≤ lim
r→∞

∫

B(x0, r)

R(x)dv ≤ lim
r→∞

o(r−2)(vol(B(x0, r))).

Thus we get ∫

M

Rϕdv ≤ lim
r→∞

o(r−2)vol(B(x0, r)). (2.7)
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Similarly, we have ∫

M

ϕdv ≤ lim
r→∞

Cvol(B(x0, r)). (2.8)

Substituting (2.7) and (2.8) into (2.6), we deduce
∫

M

ϕ(1 − uN)dv ≤ lim
r→∞

Ct(
1

r2
)vol(B(x0, r)) (2.9)

for some positive constant C depending only on n.

On the other hand, since u ≤ 1 and 1 − ex ≥ −x
2 for −1 ≤ x ≤ 0, we get

∫

M

ϕ(1 − uN)dv ≥
∫

M

ϕ(1 − u)dv

=

∫

{log u≥−1}
ϕ(1 − elog u)dv +

∫

{log u≤−1}
ϕ(1 − elog u)dv

≥ −1

2

∫

{log u≥−1}
ϕ log udv +

1

2

∫

{log u≤−1}
ϕdv.

Noting that the last two terms are positive, we deduce

−
∫

{log u≥−1}
ϕ log udv ≤ 2

∫

M

ϕ(1 − uN)dv

and

−
∫

{log u≤−1}
ϕ log udv ≤ −(log u)min(t)

∫

{log u≤−1}
ϕdv

≤ −2(logu)min(t)

∫

M

ϕ(1 − uN)dv.

So

−
∫

M

ϕ log udv ≤ 2(1 − (log u)min(t))

∫

M

ϕ(1 − uN )dv. (2.10)

By (2.4), we get

−
∫

M

ϕ log udv ≥ −
∫

M

log u e−C(1+
d(x, x0)

r
)dv ≥ −e−2c(n)

∫

B(x0, r)

log udv. (2.11)

Combining (2.9) and (2.10) with (2.11), we obtain the estimate (2.3). 2

Lemma 2.2 There exists a positive constant C such that

log u(x, t) ≥ −C
[ ∫ r

0

sk(x0, s)ds − 1

vol(B(x0, r))

∫

B(x0, r)

log udv
]

(2.12)

for ∀ t > 0 and ∀ r ≥ 1.

Proof Since in general M must not be nonparabolic, we use a trick of Shi in [6] by considering

a new manifold M̃ = M × R3, where R3 is equipped with the flat Euclidean metric and M̃ is

equipped with the product metric. Let x ∈ M, x̃ ∈ M̃. Denote by R(x) and R̃(x̃) the scalar

curvature of M at x, and the scalar curvature of M̃ at x̃, respectively. Obviously R̃(x̃) = R(x)

for ∀x ∈ M, x̃ = (x, y) ∈ M̃, ∀y ∈ R3. Thus we define ũ(x̃, t) = u(x, t) for ∀ x̃ ∈ M̃, ∀ t > 0,
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then ũ is a solution of the following evolution equation.




∂ũ
∂t = (n − 1)N [△̃ũ − n−2

4(n−1) R̃(x̃)ũ], x̃ ∈ M̃, ∀ t > 0;

ũ(x̃, t) > 0, x̃ ∈ M̃, ∀ t > 0;

ũ(x̃, 0) = 1, x̃ ∈ M̃,

where △̃ is the Laplacian operator of M̃.

As we know, M̃ still has nonnegative Ricci curvature and bounded scalar curvature, moreover

BM (x0,
r

2
) × BR3(y0,

r

2
) ⊂ B̃(x̃0, r) ⊂ BM (x0, r) × BR3(y0, r) (2.13)

where x̃0 = (x0, y0), x0 ∈ M, y0 ∈ R3. So from (2.13) and the volume comparison theorem, we

get

C (
r2

r1
)3 ≤ vol[B̃(x̃0, r2)]

vol[B̃(x̃0, r1)]
≤ (

r2

r1
)n+3, for r1 ≤ r2. (2.14)

Then ∫ r

0

sk(x̃0, s)ds =

∫ r

0

s

vol(B(x̃0, s))

∫

B(x̃0,s)

R(x̃)dṽds

≤ C

∫ r

0

s

( s
2 )3vol(BM (x0,

s
2 ))

∫

BM (x0,s)×B
R3 (y0,s)

R̃(x̃)dṽds

≤ C

∫ r

0

s

vol(BM (x0, s))

∫

BM (x0,s)

R(x)dvds ≤ C

∫ r

0

sk(x0, s)ds.

Thus from (∗), we have
∫ r

0 sk(x̃0, s)ds = o(log r). Since R̃(x̃) = R(x), we only prove that

R̃(x̃) ≡ 0. So we can discuss the problem on M̃ . For convenience, we drop off the symbol ˜ in

the following.

From the fact that gij(x, t) = (u(x, t))
4

n−2 gij(x), we can compute directly:

u
4

n−2 R(x, t) = R(x) − 4(n − 1)

n − 2
△ log u. (2.15)

From Li-Yau-Hamilton inequality on locally conformally flat manifolds [12], we obtain

∂R

∂t
+

R

t
≥ 0,

∂(R(x, t)t)

∂t
≥ 0.

Thus R(x, t)t is nondecreasing in time. Since R(x, 0) = R(x) is bounded, R(x, t)t ≥ 0, for t ≥ 0.

Thus R(x, t) ≥ 0.

From (2.15), we have

△ log u(x, t) ≤ n − 2

4(n − 1)
R(x), x ∈ M, t ≥ 0. (2.16)

Since the Ricci curvature of M is nonnegative and (2.14) holds, we know from [6] that there

exists a positive Green function G(x0, x) satisfying




d2(x0, x)

C vol[B(x0, d(x0, x))]
≤ G(x0, x) ≤ C

d2(x0, x)

vol[B(x0, d(x0, x))]
,

| ∇G(x0, x) |≤ C
d(x0, x)

vol[B(x0, d(x0, x))]
.

(2.17)

For ∀α > 0, we define Ωα = {x ∈ M | G(x0, x) ≥ α}.
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From (2.14) and (2.17), we have

1

C (d(x0, x))n+1vol[B(x0, 1)]
≤ G(x0, x) ≤ C

d(x0, x)vol[B(x0, 1)]

for d(x0, x) ≥ 1. Thus Ωα is compact subset of M , and ∂Ωα = {x ∈ M | G(x0, x) = α} .

Moreover we assume that α satisfies α > 0, then there exists a number d(α) ≥ 1 such that

d2(α)

vol[B(x0, d(α))]
= α. (2.18)

Thus combining (2.17) and (2.18), we have: for ∀x ∈ ∂Ωα

d2(α)

vol[B(x0, d(α))]
≤ C d2(x0, x)

vol[B(x0, d(x0, x))]
,

d2(α)

d2(x0, x)
≤ C vol[B(x0, d(α))]

vol[B(x0, d(x0, x))]

which together with (2.14) implies d(x0, x) ≤ C d(α), ∀x ∈ ∂Ωα. Thus

Ωα ⊂ B(x0, C d(α)). (2.19)

By the Green formula, it follows

log u(x0, t) =

∫

Ωα

(α − G(x0, x))△ log u(x, t)dv −
∫

∂Ωα

log u
∂G

∂~r
dσ,

where ~r denotes the outer unit normal vectors of ∂Ωα, dσ denotes the volume element of ∂Ωα.

From (2.16), we get

log u(x0, t) ≥
∫

Ωα

(α − G(x0, x))
n − 2

4(n − 1)
R(x)dv −

∫

∂Ωα

log u
∂G

∂~r
dσ

≥ −C

∫

Ωα

G(x0, x)R(x)dv +

∫

∂Ωα

log u | ∇G(x0, x) | dσ. (2.20)

Now we estimate the last two terms respectively. Since Ricci curvature is nonnegative, from

Ni-Shi-Tam’s result [9], we know that
∫

B(x0,r)

G(x0, x)R(x)dv ≤ C

∫ r

0

sk(x0, s)ds.

Thus from (∗) and (2.19), we obtain that
∫

Ωα

G(x0, x)R(x)dv ≤
∫

B(x0,Cd(α))

G(x0, x)R(x)dv

≤
∫ Cd(α)

0

sk(x0, s)ds. (2.21)

By (2.17), we have
∫

∂Ωα

log u | ∇G(x0, x)dσ ≥ Cd(α)

vol(B(x0, d(α)))

∫

∂Ωα

log u(x, t)dσ.

By integrating two sides from α to 2α, we get
∫ 2α

α

∫

∂Ωβ

log u | ∇G(x0, x) | dσ dβ ≥ Cd(α)

vol(B(x0, d(α)))

∫ 2α

α

∫

∂Ωβ

log udσ dβ. (2.22)

We know from the definition of d(α) that for α ≤ β ≤ 2α

d2(α)

vol(B(x0, d(α)))
≤ d2(β)

vol(B(x0, d(β)))
≤ 2 d2(α)

vol(B(x0, d(α)))
,
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vol(B(x0, d(β)))

vol(B(x0, d(α)))
≤ d2(β)

d2(α)
≤ 2 vol(B(x0, d(β)))

vol(B(x0, d(α)))

which together with (2.14) implies

C−1d(α) ≤ d(β) ≤ Cd(α), α ≤ β ≤ 2α.

Since dβ = ∂G
∂~r

dr, from (2.14) and (2.17), we have

dσdβ =
∂G

∂~r
dσdr =| ∂G(x0, x)

∂~r
| dσ | dr |≤| ∇G(x0, x) | dv

≤ C d(β)

vol(B(x0, d(β)))
dv ≤ C d(α)

vol(B(x0, d(α)))
dv.

Thus from (2.18), (2.19) and (2.22), we have
∫ 2α

α

∫

∂Ωβ

log u | ∇G(x0, x) | dσ dβ ≥ C
( d(α)

vol(B(x0, d(α)))

)2
∫

Ωα\Ω2α

log udv

≥ C
α

vol(B(x0, d(α)))

∫

Ωα

log u(x, t)dv

≥ C
α

vol(B(x0, Cd(α)))

∫

B(x0,Cd(α))

log u(x, t)dv. (2.23)

By integrating (2.20) from α to 2α, and combining (2.21) and (2.23), we have

log u(x0, t) ≥ C
[ 1

vol(B(x0, Cd(α)))

∫

B(x0, Cd(α))

log u(x, t)dv −
∫ Cd(α)

0

sk(x0, s)ds
]
.

Let r = Cd(α). We get the desired estimate (2.12). 2

3. Proof of Theorem

From Lemmas 2.1 and 2.2, we get the lower bound estimate for the solution of (2.2):

(log u)min (t) ≥ lim
r→+∞

−C
[ ∫ r

0

sk(x0, s)ds − 1

vol(B(x0, r))

∫

B(x0, r)

log udv
]

≥ lim
r→+∞

−C
[ ∫ r

0

sk(x0, s)ds + t(r−2)(1 − (log u)min(t))
]
.

From Proposition 2.1, we know the solution u(x, t) of (2.2) exists for all times and satisfies

(log u)min(t) ≥ lim
r→+∞

−C
[
o(log r) + t(r−2)(1 − (log u)min(t))

]

for all t > 0, where C is positive constant depending only on n.

Now let t = r. According to condition (∗), we have

lim
t→+∞

− (log u)min(t)

log t
= 0. (3.1)

By (2.1) and gij(x, t) = (u(x, t))
4

n−2 gij(x), we have

∂gij(x, t)

∂t
=

4

n − 2
(u(x, t))

4
n−2−1 ∂u

∂t
gij(x),

−R(x, t)gij(x, t) =
4

n − 2
(u(x, t))

4
n−2−1 ∂u

∂t
gij(x),
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−R(x, t)gij(x, t) =
4

n − 2
(u(x, t))

4
n−2 gij(x)

∂ log u

∂t
,

∂

∂t
log u(x, t) = −n − 2

4
R(x, t),

∫ t

0

R(x, τ)dτ = − 4

n − 2
log u(x, t) ≤ − 4

n − 2
(log u)min(t).

Since R(x, t)t is nondecreasing in time, we have

R(x, τ) > R(x,
√

t)
√

t
1

τ
, for τ ≥

√
t.

Thus ∫ t

0

R(x, τ)dτ ≥
∫ t

√
t

R(x, τ)dτ ≥ 1

2
R(x,

√
t)
√

t log t.

So we have
1

2
R(x,

√
t)
√

t log t ≤ − 4

n− 2
(log u)min(t)

which together with (3.1) implies limt→+∞ R(x,
√

t)
√

t = 0. Thus R(x,
√

t)
√

t ≡ 0, namely,

R(x, t) ≡ 0, for ∀x ∈ M , t ≥ 0. Therefore the manifold M with the initial metric must be flat.
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