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Abstract Let G be a finite group and K a field of characteristic zero. It is well-known that

if K is a splitting field for G, then G is abelian if and only if any irreducible representation of

G has degree 1. In this paper, we generalize this result to the case that K is an arbitrary field

of characteristic zero (that is, K need not be a splitting field for G), and we also obtain the

orthogonality relations of irreducible K-characters of G in this case. Our results generalize some

well-known theorems.
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1. Introduction

Let G be a finite group and K an arbitrary field of characteristic zero. Let e be the exponent

of G, i.e., the least common multiple of the orders of the elements of G, and L be the field

generated over K by the eth roots of unity. It is clear that the extension L/K is Galois and that

the Galois group Gal(L/K), which is the group of all K-automorphisms of L, is isomorphic to

a subgroup ΓK of the multiplicative group (Z/eZ)∗ of invertible elements of Z/eZ (see [1]). Let

ω be an eth root of unity. For σ ∈ Gal(L/K), there exists a unique element t ∈ ΓK such that

σ(ω) = ωt, so we write σ = σt.

For any t ∈ ΓK , an action on G, denoted by t also, is defined as follows t : G −→ G, x 7−→ xt.

This is well defined as (t, |G|) = 1. By sending t ∈ ΓK to the permutation x 7−→ xt, we map ΓK

to a permutation group on the underlying set of G. It is easy to see that ΓK is independent of

the choice of ω, but dependent on e (see [2]).

Definition 1.1 ([3]) Two elements s, s′ ∈ G are said to be ΓK-conjugate if there exists a

t ∈ ΓK such that s′ and st are conjugate in G. ΓK-conjugate is an equivalence relationship, and

its classes are called the ΓK-classes of G.
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It is an obvious but important fact that the ΓK-action on G commutes with the G-conjugate

action on G, i.e., ΓK ×G acts on G with x(t,y) = (xt)y = (xy)t for any (t, y) ∈ ΓK ×G.

We shall use the following notations:

For x ∈ G, set NG(x) = {y ∈ G|(xt)y = x for some t ∈ ΓK};

NΓK
(x) = {t ∈ ΓK |(xt)y = x for some y ∈ G};

CΓK×G(x) = {(t, y) ∈ ΓK ×G|x(t,y) = x};

CΓK
(x) = {t ∈ ΓK |xt = x}.

Then CΓK×G(x) and NG(x) are the subgroups of ΓK × G and G, respectively. And we

obviously have the following two lemmas:

Lemma 1.2 CΓk×G(x) −→ NG(x)((t, y) 7−→ y) is a surjective homomorphism of groups. In

particular, CΓK×G(x)/CΓK
(x) ∼= NG(x).

Lemma 1.3 CΓK×G(x) −→ NΓK
(x)((t, y) 7−→ t) is a surjective homomorphism of groups. In

particular, CΓK×G(x)/CG(x) ∼= NΓK
(x).

By Lemmas 1.2 and 1.3, we obtain the following result:

Proposition 1.4 The ΓK-conjugate class clΓK×G(x) containing x has length:

|clΓK×G(x)| =
|ΓK |

|CΓK
(x)|

|G|

|NG(x)|
=

|ΓK |

|NΓK
(x)|

|G|

|CG(x)|
.

Let χ1, χ2, . . . , χk be the full set of irreducible K-characters of G. Let RK(G) be the ring

of generalized K-characters of G, that is, RK(G) = {
∑k

i=1 aiχi|ai ∈ Z (i = 1, . . . , k)}, which is

a subring of the ring R(G) = RL(G). As usual, we define an inner product (ϕ, ψ) by (ϕ, ψ) =
1
|G|

∑
x∈g ϕ(x−1)ψ(x). We say ϕ and ψ are orthogonal if (ϕ, ψ) = 0.

It is well-known that G is an abelian group if and only if any irreducible L-character of G

is linear. However, if K is not a splitting field for G, the above conclusion may be false (see

Example 2.5 below). In Section 2, we generalize this result to arbitrary field K of characteristic

zero. In Section 3, we investigate the orthogonality relations of irreducible K-characters with K

being an arbitrary field of charactaristic zero.

Throughout this paper, we assume that all K[G]-modules considered are representation mod-

ules. For a G-module V , we denote by InvGV the set of G-invariant elements of V . Other

notations are standard [3, 4].

2. The degrees of irreducible representations of an abelian group G

Since charK = 0, K[G] is a direct product of simple algebras Ai, corresponding to distinct

irreducible K[G]-modules Vi. Set Di = EndK[G](Vi), then Di is a division ring. Ai can be

identified with the algebra EndDi
(Vi), i.e., the endomorphisms of the Di-vector space Vi. If

[Vi : Di] = ni, then Ai
∼= Mni

(Di). The dimension of Di over its center Ki = Z(Di) is m2
i with

mi the schur index of K[G]-module Vi.

Let Vi be an irreducible Ai-module, G= Gal(L/K), AL
i = L ⊗K Ai, Ṽi be an irreducible

AL
i -module, and χi, χ̃i be characters defined by Vi,Ṽi, respectively. Here we understand that χ̃i
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is a function defined on Ai. Let K(χ̃i) be the field generated by {χ̃i(a), a ∈ Ai} over K. We also

denote by Gχ̃i
the set of all σ ∈ G such that χ̃i

σ = χ̃i, i.e., χ̃i
σ(a) = χ̃i(a) for all a ∈ Ai. Thus

Gχ̃i
= {σ ∈ G|µσ = µ for all µ ∈ K(χ̃i)}.

Let G be an abelian group of finite order. Then any irreducible L-character of G is linear.

Let Ĝ = IrrL(G) = {χ̃1, . . . , χ̃l}. Then Ĝ is a group under the multiplication of characters and

G ∼= Ĝ by [5, Problem 2.7]. Since ΓK and G act on G and Ĝ, respectively, and ΓK
∼= G, it

is easy to see that these two actions are equivalent under the isomorphism G ∼= Ĝ. Hence the

lengthes of the corresponding classes are equal to each other. If we denote by Ci the classes of

the action of ΓK on G with xi as representatives, and denote by Ki the corresponding classes of

the action of G on Ĝ with χ̃i as representatives, then |ΓK : CΓK
(xi)| = |G : Gχ̃i

|. Furthermore

we have |G : Gχ̃i
| = dimKZ(Di) by [4, 2.6.2]. Since G is an abelian group, it follows that Di is

commutative and the Schur indices mi = 1 by [3, Proposition 35]. Thus |G : Gχ̃i
| = dimKDi.

Lemma 2.1 LetK[G] =
⊕k

i=1 nieiK[G], where ei ∈ π(K[G]). Then γG =
∑k

i=1
1

dimKDi

χi(1)χi,

where γG is the regular K-character of G.

Proof Let Fi be an irreducible representation defined by eiK[G] and χi be the irreducible

character defined by Fi. Then by the assumption we have ΓG ∼
∑k

i=1 niFi and thus γG =∑k

i=1 niχi. Since the degree of Fi is equal to χi(1), we have χi(1) = nidimKDi. Hence γG =
∑k

i=1
1

dimKDi

χi(1)χi. 2

Theorem 2.2 With notations as above, if G is an abelian group, then ni = 1 and mi = 1.

Conversely, if ni = 1 and |ΓK |
|NΓK

(xi)|
= dimKDi, then G is an abelian group.

Proof By the above analysis, we have mi = 1 and |ΓK : NΓK
(xi)| = |ΓK : CΓK

(xi)| = |G :

Gχ̃i
| = dimKDi. Then by Proposition 1.4 we have

|G| =

k∑

i=1

|ΓK : NΓK
(xi)| =

k∑

i=1

dimKDi.

On the other hand, by Lemma 2.1 we have

|G| = γG(1) =

k∑

i=1

1

dimKDi

χi(1)2 =

k∑

i=1

n2
i dimKDi.

Thus the above two equalities yield ni = 1.

Conversely, since ni = 1, by Lemma 2.1 we have

|G| = γG(1) =

k∑

i=1

dimKDi.

On the other hand, by Proposition 1.4 and the hypothesis we have

|G| =

k∑

i=1

|ΓK |

|NΓK
(xi)|

|G|

|CG(xi)|
=

k∑

i=1

dimKDi

|G|

|CG(xi)|
.

Then the above two equalities imply |G| = |CG(xi)|. Hence G = CG(xi), and it follows that G

is abelian.
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As an immediate consequence of Theorem 2.2, we get:

Corollary 2.3 Let G be an abelian group. Then the degree of the irreducible representation

defined by the irreducible K[G]-module Vi is dimKDi, where Di = EndK[G](Vi).

Remark 2.4 Corollary 2.3 generalizes the well-known Schur’ lemma since if Vi is an absolutely

irreducible K[G]-module, then Di = EndK[G](Vi) = K and thus dimKDi = 1.

Example 2.5 Let G = 〈x|x3 = 1〉 be a cyclic group of order 3. Then G has a 2-dimentional rep-

resentation over R in which x acts as the rotation through 2
3π. This representation is irreducible

since there is no 1-dimentional subspace stable under the group action.

3. The orthogonality relations of K-characters

In this section, we investigate the orthogonality relations of irreducible K-characters of G,

where K is an arbitrary field of characteristic zero and thus may not be a splitting field for G.

Lemma 3.1 Let U, V be K[G]-modules. Then UΛ⊗K V ∼= HomK(U, V ), where UΛ denotes the

contragredient module of U.

Proof This is Theorem 1.14(ii) in [4].

Lemma 3.2 Let V be a K[G]-module. Then dimKInvGV = 1
|G|

∑
g∈G χV (g), where χV is the

K-character afforded by V .

Proof Let a = 1
|G|

∑
g∈G g ∈ KG. Then ga = a for any g ∈ G. It follows that a2 = a and

thus ρ(a)2 = ρ(a). Hence ρ(a) is similar to a diagonal matrix and the eigenvalues of ρ(a) are

1 or 0. Let V1 ⊂ V be the eigenspace corresponding to 1. If v ∈ V1, then vg = vag = va = v

for any g ∈ G and thus v ∈ InvGV . Conversely, if u ∈ InvGV , then |G|ua = u(
∑

g∈G g) =∑
g∈G u = |G|u and thus ua = a, i.e., u ∈ V1. Hence we have InvGV = V1 and it follows that

dimKInvGV = tr(ρ(a)) = χV (a) = 1
|G|

∑
g∈G χV (g). 2

Theorem 3.3 Let U , V be K[G]-modules and χU , χV the K-characters afforded by U , V ,

respectively. Then (χU , χV ) = dimKInvGHomK(U, V ) = dimKHomK[G](U, V ).

Proof By Lemmas 3.1 and 3.2, we have

dimKInvGHomK(U, V ) =
1

|G|

∑

g∈G

χHomK(U,V )(g)

=
1

|G|

∑

g∈G

χUΛ⊗KV (g) =
1

|G|

∑

g∈G

χUΛ(g)χV (g)

=
1

|G|

∑

g∈G

χU (g−1)χV (g) = (χU , χV ).

Another equality is clear. 2
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Corollary 3.4 (The first orthogonality relation of K-characters) Let U , V be irreducible K[G]-

modules and χU , χV the K-characters defined by U , V , respectively.

(1) If U is not isomorphic to V , then (χU , χV ) = 0;

(2) If U is isomorphic to V , then (χV , χV ) = dimKEndK[G](V ).

Proof By Schur’lemma and Theorem 3.3, the conclusions are obvious. 2

Remark 3.5 If U is isomorphic to V , then EndK[G](V ) is a division ring. Let D = EndK[G](V ).

If K is not a splitting field for G, then dimKD > 1 (In this case, dimKD = 1 if and only if V

is an absolutely irreducible K[G]-module). If K is a splitting field for G, then dimKD = 1 by

Schur’s lemma. Thus Corollary 3.4 generalizes the first orthogonality relation of K-characters.

Lemma 3.6 Let χ1, χ2, . . . , χk be all the distinct irreducible K-characters of G. Then

(1) The χi are mutually orthogonal and form a basis of RK(G);

(2) The χi form a basis of the space of functions on G which are constant on ΓK-classes,

and the number of χi is equal to the number of ΓK-classes.

Proof (1) is Proposition 32 in [3]; (2) is Corollary 2 of Theorem 25 in [3]. 2

Let C1, C2, . . . , Ck be all the ΓK-classes of G and c1, c2, . . . , ck be the representatives of

C1, C2, . . . , Ck, respectively. Then we have the following result:

Theorem 3.7 (The second orthogonality relation of K-characters) With notations as above,

then we have

k∑

t=1

1

dimKDt

χt(c
−1
i )χt(cj) = δij

|NG(ci)||CΓK
(ci)|

|ΓK |
= δij

|NΓK
(ci)||CG(ci)|

|ΓK |
.

Proof We define functions fi as follows: fi(x) = 1, if x ∈ Ci; fi(x) = 0 otherwise. By Lemma

3.6, we may set fi =
∑k

t=1 λtχt. Then we have (fi, χj) = λj(χj , χj) = λjdimKDj . On the other

hand, by Proposition 1.4 we get

(fi, χj) =
1

|G|

∑

x∈G

fi(x)χj(x
−1) =

|ΓK |

|CΓK
(ci)||NG(ci)|

χj(c
−1
i ) =

|ΓK |

|NΓK
(ci)||CG(ci)|

χj(c
−1
i ).

Thus

λj =
|ΓK |

dimKDj |CΓK
(ci)||NG(ci)|

χj(c
−1
i ) =

|ΓK |

dimKDj |NΓK
(ci)||CG(ci)|

χj(c
−1
i ),

where j = 1, 2, . . . , k. Hence the conclusion holds since δij = fi(cj) =
∑k

t=1 λtχt(cj). 2

Remark 3.8 If K is a splitting field for G, then dimKDt = 1, |ΓK | = 1, |CΓK
(ci)| = 1 and

NG(ci) = CG(ci). Hence Theorem 3.7 generalizes the ordinary second orthogonality relation of

K-characters.
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