Remarks on Representations of Finite Groups over an Arbitrary Field of Characteristic Zero

Jin Ke HAI* ${ }^{*}$ Zheng Xing LI
College of Mathematics, Qingdao University, Shandong 266071, P. R. China

Abstract

Let G be a finite group and K a field of characteristic zero. It is well-known that if K is a splitting field for G, then G is abelian if and only if any irreducible representation of G has degree 1. In this paper, we generalize this result to the case that K is an arbitrary field of characteristic zero (that is, K need not be a splitting field for G), and we also obtain the orthogonality relations of irreducible K-characters of G in this case. Our results generalize some well-known theorems.

Keywords $\quad \Gamma_{K}$-action; Γ_{K}-classes; orthogonality relations.
Document code A
MR(2010) Subject Classification 20C15; 20C20
Chinese Library Classification O152.6

1. Introduction

Let G be a finite group and K an arbitrary field of characteristic zero. Let e be the exponent of G, i.e., the least common multiple of the orders of the elements of G, and L be the field generated over K by the e th roots of unity. It is clear that the extension L / K is Galois and that the Galois group $\operatorname{Gal}(L / K)$, which is the group of all K-automorphisms of L, is isomorphic to a subgroup Γ_{K} of the multiplicative group $(\mathbb{Z} / e \mathbb{Z})^{*}$ of invertible elements of $\mathbb{Z} / e \mathbb{Z}$ (see [1]). Let ω be an eth root of unity. For $\sigma \in \operatorname{Gal}(L / K)$, there exists a unique element $t \in \Gamma_{K}$ such that $\sigma(\omega)=\omega^{t}$, so we write $\sigma=\sigma_{t}$.

For any $t \in \Gamma_{K}$, an action on G, denoted by t also, is defined as follows $t: G \longrightarrow G, x \longmapsto x^{t}$. This is well defined as $(t,|G|)=1$. By sending $t \in \Gamma_{K}$ to the permutation $x \longmapsto x^{t}$, we map Γ_{K} to a permutation group on the underlying set of G. It is easy to see that Γ_{K} is independent of the choice of ω, but dependent on e (see [2]).

Definition 1.1 ([3]) Two elements $s, s^{\prime} \in G$ are said to be Γ_{K}-conjugate if there exists a $t \in \Gamma_{K}$ such that s^{\prime} and s^{t} are conjugate in G. Γ_{K}-conjugate is an equivalence relationship, and its classes are called the Γ_{K}-classes of G.

[^0]It is an obvious but important fact that the Γ_{K}-action on G commutes with the G-conjugate action on G, i.e., $\Gamma_{K} \times G$ acts on G with $x^{(t, y)}=\left(x^{t}\right)^{y}=\left(x^{y}\right)^{t}$ for any $(t, y) \in \Gamma_{K} \times G$.

We shall use the following notations:
For $x \in G$, set $N_{G}(x)=\left\{y \in G \mid\left(x^{t}\right)^{y}=x\right.$ for some $\left.t \in \Gamma_{K}\right\}$;
$N_{\Gamma_{K}}(x)=\left\{t \in \Gamma_{K} \mid\left(x^{t}\right)^{y}=x\right.$ for some $\left.y \in G\right\}$;
$C_{\Gamma_{K} \times G}(x)=\left\{(t, y) \in \Gamma_{K} \times G \mid x^{(t, y)}=x\right\} ;$
$C_{\Gamma_{K}}(x)=\left\{t \in \Gamma_{K} \mid x^{t}=x\right\}$.
Then $C_{\Gamma_{K} \times G}(x)$ and $N_{G}(x)$ are the subgroups of $\Gamma_{K} \times G$ and G, respectively. And we obviously have the following two lemmas:

Lemma $1.2 C_{\Gamma_{k} \times G}(x) \longrightarrow N_{G}(x)((t, y) \longmapsto y)$ is a surjective homomorphism of groups. In particular, $C_{\Gamma_{K} \times G}(x) / C_{\Gamma_{K}}(x) \cong N_{G}(x)$.

Lemma $1.3 C_{\Gamma_{K} \times G}(x) \longrightarrow N_{\Gamma_{K}}(x)((t, y) \longmapsto t)$ is a surjective homomorphism of groups. In particular, $C_{\Gamma_{K} \times G}(x) / C_{G}(x) \cong N_{\Gamma_{K}}(x)$.

By Lemmas 1.2 and 1.3, we obtain the following result:
Proposition 1.4 The Γ_{K}-conjugate class $\mathrm{cl}_{\Gamma_{K} \times G}(x)$ containing x has length:

$$
\left|\mathrm{cl}_{\Gamma_{K} \times G}(x)\right|=\frac{\left|\Gamma_{K}\right|}{\left|C_{\Gamma_{K}}(x)\right|} \frac{|G|}{\left|N_{G}(x)\right|}=\frac{\left|\Gamma_{K}\right|}{\left|N_{\Gamma_{K}}(x)\right|} \frac{|G|}{\left|C_{G}(x)\right|}
$$

Let $\chi_{1}, \chi_{2}, \ldots, \chi_{k}$ be the full set of irreducible K-characters of G. Let $R_{K}(G)$ be the ring of generalized K-characters of G, that is, $R_{K}(G)=\left\{\sum_{i=1}^{k} a_{i} \chi_{i} \mid a_{i} \in \mathbb{Z}(i=1, \ldots, k)\right\}$, which is a subring of the ring $R(G)=R_{L}(G)$. As usual, we define an inner product (φ, ψ) by $(\varphi, \psi)=$ $\frac{1}{|G|} \sum_{x \in g} \varphi\left(x^{-1}\right) \psi(x)$. We say φ and ψ are orthogonal if $(\varphi, \psi)=0$.

It is well-known that G is an abelian group if and only if any irreducible L-character of G is linear. However, if K is not a splitting field for G, the above conclusion may be false (see Example 2.5 below). In Section 2, we generalize this result to arbitrary field K of characteristic zero. In Section 3, we investigate the orthogonality relations of irreducible K-characters with K being an arbitrary field of charactaristic zero.

Throughout this paper, we assume that all $K[G]$-modules considered are representation modules. For a G-module V, we denote by $\operatorname{Inv}_{G} V$ the set of G-invariant elements of V. Other notations are standard $[3,4]$.

2. The degrees of irreducible representations of an abelian group G

Since char $K=0, K[G]$ is a direct product of simple algebras A_{i}, corresponding to distinct irreducible $K[G]$-modules V_{i}. Set $D_{i}=\operatorname{End}_{K[G]}\left(V_{i}\right)$, then D_{i} is a division ring. A_{i} can be identified with the algebra $\operatorname{End}_{D_{i}}\left(V_{i}\right)$, i.e., the endomorphisms of the D_{i}-vector space V_{i}. If [$\left.V_{i}: D_{i}\right]=n_{i}$, then $A_{i} \cong M_{n_{i}}\left(D_{i}\right)$. The dimension of D_{i} over its center $K_{i}=Z\left(D_{i}\right)$ is m_{i}^{2} with m_{i} the schur index of $K[G]$-module V_{i}.

Let V_{i} be an irreducible A_{i}-module, $\mathcal{G}=\operatorname{Gal}(L / K), A_{i}^{L}=L \otimes_{K} A_{i}$, \tilde{V}_{i} be an irreducible A_{i}^{L}-module, and $\chi_{i}, \tilde{\chi}_{i}$ be characters defined by V_{i}, \tilde{V}_{i}, respectively. Here we understand that $\tilde{\chi}_{i}$
is a function defined on A_{i}. Let $K\left(\tilde{\chi}_{i}\right)$ be the field generated by $\left\{\tilde{\chi}_{i}(a), a \in A_{i}\right\}$ over K. We also denote by $\mathcal{G}_{\tilde{\chi}_{i}}$ the set of all $\sigma \in \mathcal{G}$ such that $\tilde{\chi}_{i}{ }^{\sigma}=\tilde{\chi}_{i}$, i.e., $\tilde{\chi}_{i}{ }^{\sigma}(a)=\tilde{\chi}_{i}(a)$ for all $a \in A_{i}$. Thus $\mathcal{G}_{\chi_{i}}=\left\{\sigma \in \mathcal{G} \mid \mu^{\sigma}=\mu\right.$ for all $\left.\mu \in K\left(\tilde{\chi}_{i}\right)\right\}$.

Let G be an abelian group of finite order. Then any irreducible L-character of G is linear. Let $\widehat{G}=\operatorname{Irr}_{L}(G)=\left\{\widetilde{\chi_{1}}, \ldots, \widetilde{\chi_{l}}\right\}$. Then \widehat{G} is a group under the multiplication of characters and $G \cong \widehat{G}$ by [5, Problem 2.7]. Since Γ_{K} and \mathcal{G} act on G and \widehat{G}, respectively, and $\Gamma_{K} \cong \mathcal{G}$, it is easy to see that these two actions are equivalent under the isomorphism $G \cong \widehat{G}$. Hence the lengthes of the corresponding classes are equal to each other. If we denote by C_{i} the classes of the action of Γ_{K} on G with x_{i} as representatives, and denote by \mathcal{K}_{i} the corresponding classes of the action of \mathcal{G} on \widehat{G} with $\widetilde{\chi_{i}}$ as representatives, then $\left|\Gamma_{K}: C_{\Gamma_{K}}\left(x_{i}\right)\right|=\left|\mathcal{G}: \mathcal{G}_{\widetilde{\chi}_{i}}\right|$. Furthermore we have $\left|\mathcal{G}: \mathcal{G}_{\widetilde{\chi_{i}}}\right|=\operatorname{dim}_{K} Z\left(D_{i}\right)$ by [4, 2.6.2]. Since G is an abelian group, it follows that D_{i} is commutative and the Schur indices $m_{i}=1$ by [3, Proposition 35]. Thus $\left|\mathcal{G}: \mathcal{G}_{\widetilde{\chi}_{i}}\right|=\operatorname{dim}_{K} D_{i}$.

Lemma 2.1 Let $K[G]=\bigoplus_{i=1}^{k} n_{i} e_{i} K[G]$, where $e_{i} \in \pi(K[G])$. Then $\gamma_{G}=\sum_{i=1}^{k} \frac{1}{\operatorname{dim}_{K_{i}}} \chi_{i}(1) \chi_{i}$, where γ_{G} is the regular K-character of G.

Proof Let F_{i} be an irreducible representation defined by $e_{i} K[G]$ and χ_{i} be the irreducible character defined by F_{i}. Then by the assumption we have $\Gamma_{G} \sim \sum_{i=1}^{k} n_{i} F_{i}$ and thus $\gamma_{G}=$ $\sum_{i=1}^{k} n_{i} \chi_{i}$. Since the degree of F_{i} is equal to $\chi_{i}(1)$, we have $\chi_{i}(1)=n_{i} \operatorname{dim}_{K} D_{i}$. Hence $\gamma_{G}=$ $\sum_{i=1}^{k} \frac{1}{\operatorname{dim}_{K} D_{i}} \chi_{i}(1) \chi_{i}$.

Theorem 2.2 With notations as above, if G is an abelian group, then $n_{i}=1$ and $m_{i}=1$. Conversely, if $n_{i}=1$ and $\frac{\left|\Gamma_{K}\right|}{\left|N_{\Gamma_{K}}\left(x_{i}\right)\right|}=\operatorname{dim}_{K} D_{i}$, then G is an abelian group.
Proof By the above analysis, we have $m_{i}=1$ and $\left|\Gamma_{K}: N_{\Gamma_{K}}\left(x_{i}\right)\right|=\left|\Gamma_{K}: C_{\Gamma_{K}}\left(x_{i}\right)\right|=\mid \mathcal{G}$: $\mathcal{G}_{\chi_{i}} \mid=\operatorname{dim}_{K} D_{i}$. Then by Proposition 1.4 we have

$$
|G|=\sum_{i=1}^{k}\left|\Gamma_{K}: N_{\Gamma_{K}}\left(x_{i}\right)\right|=\sum_{i=1}^{k} \operatorname{dim}_{K} D_{i} .
$$

On the other hand, by Lemma 2.1 we have

$$
|G|=\gamma_{G}(1)=\sum_{i=1}^{k} \frac{1}{\operatorname{dim}_{K} D_{i}} \chi_{i}(1)^{2}=\sum_{i=1}^{k} n_{i}^{2} \operatorname{dim}_{K} D_{i} .
$$

Thus the above two equalities yield $n_{i}=1$.
Conversely, since $n_{i}=1$, by Lemma 2.1 we have

$$
|G|=\gamma_{G}(1)=\sum_{i=1}^{k} \operatorname{dim}_{K} D_{i} .
$$

On the other hand, by Proposition 1.4 and the hypothesis we have

$$
|G|=\sum_{i=1}^{k} \frac{\left|\Gamma_{K}\right|}{\left|N_{\Gamma_{K}}\left(x_{i}\right)\right|} \frac{|G|}{\left|C_{G}\left(x_{i}\right)\right|}=\sum_{i=1}^{k} \operatorname{dim}_{K} D_{i} \frac{|G|}{\left|C_{G}\left(x_{i}\right)\right|} .
$$

Then the above two equalities imply $|G|=\left|C_{G}\left(x_{i}\right)\right|$. Hence $G=C_{G}\left(x_{i}\right)$, and it follows that G is abelian.

As an immediate consequence of Theorem 2.2, we get:
Corollary 2.3 Let G be an abelian group. Then the degree of the irreducible representation defined by the irreducible $K[G]$-module V_{i} is $\operatorname{dim}_{K} D_{i}$, where $D_{i}=\operatorname{End}_{K[G]}\left(V_{i}\right)$.

Remark 2.4 Corollary 2.3 generalizes the well-known Schur' lemma since if V_{i} is an absolutely irreducible $K[G]$-module, then $D_{i}=\operatorname{End}_{K[G]}\left(V_{i}\right)=K$ and thus $\operatorname{dim}_{K} D_{i}=1$.

Example 2.5 Let $G=\left\langle x \mid x^{3}=1\right\rangle$ be a cyclic group of order 3. Then G has a 2-dimentional representation over \mathbb{R} in which x acts as the rotation through $\frac{2}{3} \pi$. This representation is irreducible since there is no 1-dimentional subspace stable under the group action.

3. The orthogonality relations of K-characters

In this section, we investigate the orthogonality relations of irreducible K-characters of G, where K is an arbitrary field of characteristic zero and thus may not be a splitting field for G.

Lemma 3.1 Let U, V be $K[G]$-modules. Then $U^{\Lambda} \otimes_{K} V \cong \operatorname{Hom}_{K}(U, V)$, where U^{Λ} denotes the contragredient module of U.

Proof This is Theorem 1.14(ii) in [4].
Lemma 3.2 Let V be a $K[G]$-module. Then $\operatorname{dim}_{K} \operatorname{Inv}_{G} V=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g)$, where χ_{V} is the K-character afforded by V.

Proof Let $a=\frac{1}{|G|} \sum_{g \in G} g \in K G$. Then $g a=a$ for any $g \in G$. It follows that $a^{2}=a$ and thus $\rho(a)^{2}=\rho(a)$. Hence $\rho(a)$ is similar to a diagonal matrix and the eigenvalues of $\rho(a)$ are 1 or 0 . Let $V_{1} \subset V$ be the eigenspace corresponding to 1 . If $v \in V_{1}$, then $v g=v a g=v a=v$ for any $g \in G$ and thus $v \in \operatorname{Inv}_{G} V$. Conversely, if $u \in \operatorname{Inv}_{G} V$, then $|G| u a=u\left(\sum_{g \in G} g\right)=$ $\sum_{g \in G} u=|G| u$ and thus $u a=a$, i.e., $u \in V_{1}$. Hence we have $\operatorname{Inv}_{G} V=V_{1}$ and it follows that $\operatorname{dim}_{K} \operatorname{Inv}_{G} V=\operatorname{tr}(\rho(a))=\chi_{V}(a)=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g)$.

Theorem 3.3 Let U, V be $K[G]$-modules and χ_{U}, χ_{V} the K-characters afforded by U, V, respectively. Then $\left(\chi_{U}, \chi_{V}\right)=\operatorname{dim}_{K} \operatorname{Inv}_{G} \operatorname{Hom}_{K}(U, V)=\operatorname{dim}_{K} \operatorname{Hom}_{K[G]}(U, V)$.

Proof By Lemmas 3.1 and 3.2, we have

$$
\begin{aligned}
& \operatorname{dim}_{K} \operatorname{Inv}_{G} \operatorname{Hom}_{K}(U, V)=\frac{1}{|G|} \sum_{g \in G} \chi_{\operatorname{Hom}_{K}(U, V)}(g) \\
& \quad=\frac{1}{|G|} \sum_{g \in G} \chi_{U^{\Lambda} \otimes_{K} V}(g)=\frac{1}{|G|} \sum_{g \in G} \chi_{U^{\Lambda}}(g) \chi_{V}(g) \\
& \quad=\frac{1}{|G|} \sum_{g \in G} \chi_{U}\left(g^{-1}\right) \chi_{V}(g)=\left(\chi_{U}, \chi_{V}\right)
\end{aligned}
$$

Another equality is clear.

Corollary 3.4 (The first orthogonality relation of K-characters) Let U, V be irreducible $K[G]$ modules and χ_{U}, χ_{V} the K-characters defined by U, V, respectively.
(1) If U is not isomorphic to V, then $\left(\chi_{U}, \chi_{V}\right)=0$;
(2) If U is isomorphic to V, then $\left(\chi_{V}, \chi_{V}\right)=\operatorname{dim}_{K} \operatorname{End}_{K[G]}(V)$.

Proof By Schur'lemma and Theorem 3.3, the conclusions are obvious.
Remark 3.5 If U is isomorphic to V, then $\operatorname{End}_{K[G]}(V)$ is a division ring. Let $D=\operatorname{End}_{K[G]}(V)$. If K is not a splitting field for G, then $\operatorname{dim}_{K} D \geqslant 1$ (In this case, $\operatorname{dim}_{K} D=1$ if and only if V is an absolutely irreducible $K[G]$-module). If K is a splitting field for G, then $\operatorname{dim}_{K} D=1$ by Schur's lemma. Thus Corollary 3.4 generalizes the first orthogonality relation of K-characters.

Lemma 3.6 Let $\chi_{1}, \chi_{2}, \ldots, \chi_{k}$ be all the distinct irreducible K-characters of G. Then
(1) The χ_{i} are mutually orthogonal and form a basis of $R_{K}(G)$;
(2) The χ_{i} form a basis of the space of functions on G which are constant on Γ_{K}-classes, and the number of χ_{i} is equal to the number of Γ_{K}-classes.

Proof (1) is Proposition 32 in [3]; (2) is Corollary 2 of Theorem 25 in [3].
Let $C_{1}, C_{2}, \ldots, C_{k}$ be all the Γ_{K}-classes of G and $c_{1}, c_{2}, \ldots, c_{k}$ be the representatives of $C_{1}, C_{2}, \ldots, C_{k}$, respectively. Then we have the following result:

Theorem 3.7 (The second orthogonality relation of K-characters) With notations as above, then we have

$$
\sum_{t=1}^{k} \frac{1}{\operatorname{dim}_{K} D_{t}} \chi_{t}\left(c_{i}^{-1}\right) \chi_{t}\left(c_{j}\right)=\delta_{i j} \frac{\left|N_{G}\left(c_{i}\right)\right|\left|C_{\Gamma_{K}}\left(c_{i}\right)\right|}{\left|\Gamma_{K}\right|}=\delta_{i j} \frac{\left|N_{\Gamma_{K}}\left(c_{i}\right)\right|\left|C_{G}\left(c_{i}\right)\right|}{\left|\Gamma_{K}\right|}
$$

Proof We define functions f_{i} as follows: $f_{i}(x)=1$, if $x \in C_{i} ; f_{i}(x)=0$ otherwise. By Lemma 3.6 , we may set $f_{i}=\sum_{t=1}^{k} \lambda_{t} \chi_{t}$. Then we have $\left(f_{i}, \chi_{j}\right)=\lambda_{j}\left(\chi_{j}, \chi_{j}\right)=\lambda_{j} \operatorname{dim}_{K} D_{j}$. On the other hand, by Proposition 1.4 we get

$$
\left(f_{i}, \chi_{j}\right)=\frac{1}{|G|} \sum_{x \in G} f_{i}(x) \chi_{j}\left(x^{-1}\right)=\frac{\left|\Gamma_{K}\right|}{\left|C_{\Gamma_{K}}\left(c_{i}\right)\right|\left|N_{G}\left(c_{i}\right)\right|} \chi_{j}\left(c_{i}^{-1}\right)=\frac{\left|\Gamma_{K}\right|}{\left|N_{\Gamma_{K}}\left(c_{i}\right)\right|\left|C_{G}\left(c_{i}\right)\right|} \chi_{j}\left(c_{i}^{-1}\right)
$$

Thus

$$
\lambda_{j}=\frac{\left|\Gamma_{K}\right|}{\operatorname{dim}_{K} D_{j}\left|C_{\Gamma_{K}}\left(c_{i}\right)\right|\left|N_{G}\left(c_{i}\right)\right|} \chi_{j}\left(c_{i}^{-1}\right)=\frac{\left|\Gamma_{K}\right|}{\operatorname{dim}_{K} D_{j}\left|N_{\Gamma_{K}}\left(c_{i}\right)\right|\left|C_{G}\left(c_{i}\right)\right|} \chi_{j}\left(c_{i}^{-1}\right),
$$

where $j=1,2, \ldots, k$. Hence the conclusion holds since $\delta_{i j}=f_{i}\left(c_{j}\right)=\sum_{t=1}^{k} \lambda_{t} \chi_{t}\left(c_{j}\right)$.
Remark 3.8 If K is a splitting field for G, then $\operatorname{dim}_{K} D_{t}=1,\left|\Gamma_{K}\right|=1,\left|C_{\Gamma_{K}}\left(c_{i}\right)\right|=1$ and $N_{G}\left(c_{i}\right)=C_{G}\left(c_{i}\right)$. Hence Theorem 3.7 generalizes the ordinary second orthogonality relation of K-characters.

Acknowledgements We thank Prof. Yun FAN for his help and valuable suggestions.

References

[1] HUGERFORD T W. Algebra [M]. Springer-Verlag, New York-Heidelberg, 1980.
[2] FAN Yun. On Scott coefficients and block invariants: an approach for nonsplitting case [J]. Comm. Algebra, 1990, 18(7): 2199-2242.
[3] SERRE J P. Linear Representations of Finite Groups [M]. Springer-Verlag, New York-Heidelberg, 1977.
[4] NAGAO H, TSUSHIMA Y. Representations of Finite Groups [M]. Academic Press, New York, 1992.
[5] ISAACS I M. Character Theory of Finite Groups [M]. Academic Press, New York, 1976.
[6] KURZWEIL H, STELLMACHER B. The Theory of Finite Groups: An Introduction [M]. Springer-Verlag, New York-Heidelberg, 2004.
[7] HAI Jinke. On the isomorphisms of the character rings [J]. Sci. China Ser. A, 2005, 48(1): 88-96.
[8] HAI Jinke. A note on the character ring $\bar{R}_{K}(G)$ [J]. Southeast Asian Bull. Math., 2005, 29(6): 1057-1062.

[^0]: Received April 17, 2009; Accepted September 15, 2009
 Supported by the National Natural Science Foundation of China (Grant No. 10771132) and the Natural Science Foundation of Shandong Province (Grant No. Y2008A03).

 * Corresponding author

 E-mail address: haijinke2002@yahoo.com.cn (J. K. HAI)

