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Abstract In this paper, we extend the Kolmogorov-type inequality to the case of ψ-mixing

sequences. Moreover, we study the strong limit theorems for partial sums of ψ-mixing random

variables. As a result, we extend the Khintchine-Kolmogorov-type convergence theorem, the

three series theorem, Marcinkiewicz strong law of large number to the case of ψ-mixing sequences.
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1. Introduction

Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space

(Ω,F , P ). Sn
.
=

∑n
i=1Xi, n ≥ 1. Let n and m be positive integers. Write Fm

n = σ(Xi, n ≤ i ≤

m). Given σ-algebras B,R in F , let

ψ(B,R) = sup
A∈B,B∈R,P (A)P (B)>0

|P (AB) − P (A)P (B)|

P (A)P (B)
,

ϕ(B,R) = sup
A∈B,B∈R,P (A)>0

|P (B|A) − P (B)|.

Define the mixing coefficients by

ψ(n) = sup
k≥1

ψ(Fk
1 ,F

∞
k+n), ϕ(n) = sup

k≥1
ϕ(Fk

1 ,F
∞
k+n), n ≥ 0.

Definition 1.1 A sequence {Xn, n ≥ 1} of random variables is said to be a ψ-mixing (ϕ-mixing)

sequence if ψ(n) ↓ 0 (ϕ(n) ↓ 0) as n→ ∞.

It is easily seen that ϕ(n) ≤ ψ(n). Therefore, the family of ϕ-mixing contains ψ-mixing

as a special case. ψ-mixing random variables were introduced by Blum, et al. [1] and some

applications have been found. See for example, Blum, et al. [1] for strong law of large numbers,
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Yang [2] for almost sure convergence of weighted sums, and so forth. The main purpose of this

paper is to study the strong limit theorems for partial sums of ψ-mixing random variables and

try to get some new results.

Lemma 1.1 ([3, Lemma 1.2.11]) Let {Xn, n ≥ 1} be a sequence of ψ-mixing random variables.

Let X ∈ Fk
1 , Y ∈ F∞

k+n, E|X | < ∞, E|Y | < ∞. Then E|XY | < ∞ and |EXY − EXEY | ≤

ψ(n)E|X |E|Y |.

Lemma 1.2 ([4, Lemma 2.2]) Let {Xn, n ≥ 1} be a ϕ-mixing sequence. Put Ta(n) =
∑a+n

i=a+1Xi.

Suppose that there exists an array {Ca,n} of positive numbers such that

ET 2
a (n) ≤ Ca,n for every a ≥ 0 and n ≥ 1.

Then for every q ≥ 2, there exists a constant C depending only on q and ϕ(·) such that

E
(

max
1≤j≤n

|Ta(j)|q
)

≤ C
[

Cq/2
a,n + E( max

a+1≤i≤a+n
|Xi|

q)
]

, for every a ≥ 0 and n ≥ 1.

By Lemmas 1.1 and 1.2, we can easily get the following maximal inequality for ψ-mixing

random variables. The details are omitted.

Lemma 1.3 Let {Xn, n ≥ 1} be a sequence of ψ-mixing random variables satisfying
∑∞

n=1 ψ(n) <

∞. Assume that EXn = 0 and E|Xn|
q < ∞ for each n ≥ 1 and q ≥ 2. Then there exists a

constant C depending only on q and ψ(·) such that for every a ≥ 0 and n ≥ 1

E
(

max
1≤j≤n

|

a+j
∑

i=a+1

Xi|
q
)

≤ C
[

a+n
∑

i=a+1

E|Xi|
q + (

a+n
∑

i=a+1

EX2
i )q/2

]

.

Throughout the paper, let Xa = XI(|X | ≤ a) for some a > 0 and I(A) be the indicator

function of the set A. C denotes a positive constant which may be different.

2. Main results and their proofs

Theorem 2.1 (Khintchine-Kolmogorov-type Convergence Theorem) Let {Xn, n ≥ 1} be a

sequence of ψ-mixing random variables satisfying
∑∞

n=1 ψ(n) <∞. Assume that

∞
∑

n=1

Var(Xn) <∞. (1)

Then
∑∞

n=1(Xn − EXn) converges a.s..

Proof Without loss of generality, we assume that EXn = 0 for all n ≥ 1. Let m < n be positive

integers. By Lemma 1.3 and (1), we have

E(Sn − Sm)2 = E(

n
∑

i=m+1

Xi)
2 ≤ C

n
∑

i=m+1

EX2
i → 0 as m,n→ ∞, (2)

which implies that {Sn, n ≥ 1} is a Cauchy sequence in L2. Then there exists a random variable

S ∈ L2 such that E(Sn − S)2 → 0 as n → ∞, i.e., Sn
L2−−→ S, which implies that Sn

P
−→ S. So
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there exist positive integers nk → ∞ such that

Snk
→ S, a.s. as k → ∞. (3)

By the method of subsequence, we only need to show

max
nk−1<j≤nk

|Sj − Snk−1
| → 0 a.s.. (4)

For any ε > 0, by Markov’s inequality, Lemma 1.3 and (1), we can see that (letting n0 = 0)

∞
∑

k=1

P
(

max
nk−1<j≤nk

|Sj − Snk−1
| ≥ ε

)

≤ C

∞
∑

k=1

E
(

max
nk−1<j≤nk

|Sj − Snk−1
|
)2

≤ C
∞
∑

k=1

nk
∑

j=nk−1+1

EX2
j = C

∞
∑

j=1

EX2
j <∞,

which implies (4) by Borel-Cantelli Lemma. The proof is completed. 2

Theorem 2.2 (Three Series Theorem) Let {Xn, n ≥ 1} be a sequence of ψ-mixing random

variables satisfying
∑∞

n=1 ψ(n) <∞. Assume that for some c > 0

∞
∑

n=1

P (|Xn| > c) <∞, (5)

∞
∑

n=1

E(Xc
n) converges, (6)

∞
∑

n=1

Var(Xc
n) <∞. (7)

Then
∑∞

n=1Xn converges a.s..

Proof According to (7) and Theorem 2.1, we can get that
∑∞

n=1(X
c
n − EXc

n) converges a.s..

Therefore,
∑∞

n=1X
c
n converges a.s. following from (6). By (5),

∞
∑

n=1

P (Xn 6= Xc
n) =

∞
∑

n=1

P (|Xn| > c) <∞, (8)

which implies that P (Xn 6= Xc
n, i.o.) = 0. Hence,

∑∞
n=1Xn converges a.s. 2

Theorem 2.3 Let {Xn, n ≥ 1} be a sequence of ψ-mixing random variables satisfying
∑∞

n=1 ψ(n)

< ∞ and {an, n ≥ 1} be a sequence of positive numbers. Let {gn(x), n ≥ 1} be a sequence of

even functions defined on R, positive and nondecreasing on the half-line x > 0. One or the other

of the following conditions is satisfied for every n ≥ 1,

(i) In the interval (0, 1], there exists a δ > 0 such that gn(x) ≥ δx;

(ii) In the interval (0, 1], there exist β ∈ (1, 2] and δ > 0 such that gn(x) ≥ δxβ and in the

interval (1,+∞), there exists a δ > 0 such that gn(x) ≥ δx. EXn = 0 for all n ≥ 1.

For some M > 0, we assume that

∞
∑

n=1

Egn(
Xn

Man
) <∞. (9)
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Then
∑∞

n=1Xn/an converges a.s..

Proof Let XMan
n

.
= XnI(|Xn| ≤Man). Thus

XMan
n

Man
=

Xn

Man
I(|

Xn

Man
| ≤ 1)

.
= (

Xn

Man
)1.

By the definition of ψ-mixing sequence, we can see that {Xn/Man, n ≥ 1} is also a ψ-mixing

sequence. Therefore, we only need to test (5), (6) and (7), where c = 1.

Firstly, if the function gn(x) satisfies condition (i), then for |Xn| > Man > 0, we have
1
δ gn( Xn

Man
) ≥ 1. Therefore,

P (|Xn| > Man) = E(I(|Xn| > Man)) ≤
1

δ
Egn(

Xn

Man
). (10)

By (9) and (10),
∞
∑

n=1

P (|Xn| > Man) ≤
1

δ

∞
∑

n=1

Egn(
Xn

Man
) <∞. (11)

If the function gn(x) satisfies condition (ii), then we also have (11).

Secondly, if the function gn(x) satisfies condition (i), we have

|EXMan
n | ≤ E(|Xn|I(|Xn| ≤Man)) = ManE(

|Xn|

Man
I(|Xn| ≤Man)) ≤

1

δ
ManEgn(

Xn

Man
).

If the function gn(x) satisfies condition (ii), we can get

|EXMan
n | ≤ E(|Xn|I(|Xn| > Man)) ≤

1

δ
ManEgn(

Xn

Man
). (12)

Therefore, whether gn(x) satisfies condition (i) or (ii), we can obtain

∞
∑

n=1

|EXMan
n |

Man
≤

1

δ

∞
∑

n=1

Egn(
Xn

Man
) <∞. (13)

Finally, if the function gn(x) satisfies condition (i), we have

∞
∑

n=1

E(XMan
n )2

a2
n

≤M2
∞
∑

n=1

E(
|Xn|

Man
I(|Xn| ≤Man)) ≤

M2

δ

∞
∑

n=1

Egn(
Xn

Man
) <∞.

If the function gn(x) satisfies condition (ii), we can get

∞
∑

n=1

E(XMan
n )2

a2
n

≤M2
∞
∑

n=1

E(|
Xn

Man
|βI(|Xn| ≤Man))

≤
M2

δ

∞
∑

n=1

Egn(
Xn

Man
I(|Xn| ≤Man)) <∞.

Therefore, whether gn(x) satisfies condition (i) or (ii), we can obtain

∞
∑

n=1

Var(XMan
n )

(Man)2
≤

∞
∑

n=1

E(XMan
n )2

(Man)2
≤

1

δ

∞
∑

n=1

Egn(
Xn

Man
) <∞. (14)

Thus,
∑∞

n=1Xn/an converges a.s. from Theorem 2.2, (11), (13) and (14). 2

Corollary 2.1 Let {Xn, n ≥ 1} be a sequence of ψ-mixing random variables satisfying
∑∞

n=1 ψ(n)
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< ∞ and {an, n ≥ 1} be a positive number sequence satisfying 0 < an ↑ ∞. For some M > 0,

one or the other of the following conditions is satisfied:

(i)
∑∞

n=1 E( |Xn|β

|Man|β+|Xn|β
) <∞, ∃β ∈ (0, 1];

(ii)
∑∞

n=1E( |Xn|β

Man|Xn|β−1+|Man|β
) <∞, ∃β ∈ (1, 2] and EXn = 0 for all n ≥ 1.

Then limn→∞

∑n
i=1Xi/an = 0 a.s..

By Corollary 2.1, we can get the following result.

Corollary 2.2 Let {Xn, n ≥ 1} be a sequence of mean zero ψ-mixing random variables satis-

fying
∑∞

n=1 ψ(n) <∞ and {an, n ≥ 1} be a positive number sequence satisfying 0 < an ↑ ∞. If

there exists some β ∈ (0, 2] such that
∑∞

n=1
E|Xn|β

aβ
n

<∞, then limn→∞

∑n
i=1Xi/an = 0 a.s..

Theorem 2.4 Let {Xn, n ≥ 1} be a sequence of ψ-mixing random variables satisfying
∑∞

n=1 ψ(n)

< ∞ and {an, n ≥ 1} be a sequence of positive numbers. Let {gn(x), n ≥ 1} be a sequence of

even functions defined on R, positive and nondecreasing on the half-line x > 0. There exist

β ∈ [2,∞) and δ > 0 such that gn(x) ≥ δxβ , x > 0 for all n ≥ 1. If

∞
∑

n=1

(Egn(
Xn

Man
))1/β <∞, (15)

then
∑∞

n=1Xn/an converges a.s..

Proof Since β ≥ 2, by (15), we have

∞
∑

n=1

(Egn(
Xn

Man
))2/β <∞;

∞
∑

n=1

Egn(
Xn

Man
) <∞. (16)

By (16) and similarly to the proof of (11), we can get

∞
∑

n=1

P (|Xn| > Man) =

∞
∑

n=1

E(I(|Xn| > Man)) ≤
1

δ

∞
∑

n=1

Egn(
Xn

Man
) <∞. (17)

By Hölder’s inequality and the assumption of the function gn(x),

∞
∑

n=1

|EXMan
n |

Man
≤

∞
∑

n=1

(E(
|Xn|

Man
)βI(|Xn| ≤Man))1/β

≤ (
1

δ
)1/β

∞
∑

n=1

(Egn(
Xn

Man
))1/β <∞. (18)

Since (E(|X |r))1/r is increasing for r > 0, by β ≥ 2 and (16),

∞
∑

n=1

Var(XMan
n )

(Man)2
≤

∞
∑

n=1

E(XMan
n )2

(Man)2
≤

∞
∑

n=1

(E(
|Xn|

Man
)βI(|Xn| ≤Man))2/β

≤ (
1

δ
)2/β

∞
∑

n=1

(Egn(
Xn

Man
))2/β <∞. (19)

Thus,
∑∞

n=1Xn/an converges a.s. by (17), (18), (19) and Theorem 2.2. 2

Theorem 2.5 (Marcinkiewicz Strong Law of Large Numbers) Let {Xn, n ≥ 1} be a sequence
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of identically distributed ψ-mixing random variables with E|X1|
p < ∞ for 0 < p < 2 and

∑∞
n=1 ψ(n) <∞. Assume that EX1 = 0 if 1 ≤ p < 2. Then limn→∞

1
n1/p

∑n
k=1Xk → 0 a.s..

Proof Denote Yn = XnI(|Xn| < n1/p). Then

∞
∑

n=1

P (Xn 6= Yn) =

∞
∑

n=1

P (|Xn| ≥ n1/p) ≤ CE|X1|
p <∞, (20)

which implies that P (Xn 6= Yn, i.o.) = 0 by Borel-Cantelli Lemma. Thus 1
n1/p

∑n
k=1Xk → 0

a.s. if and only if 1
n1/p

∑n
k=1 Yk → 0 a.s.. So we only need to show that

1

n1/p

n
∑

k=1

(Yk − EYk) → 0 a.s., n→ ∞, (21)

1

n1/p

n
∑

k=1

EYk → 0, n→ ∞. (22)

By Theorem 2.1 and Kronecker’s Lemma, to prove (21), it suffices to show that

∞
∑

n=1

Var(
Yn

n1/p
) <∞. (23)

In fact,

∞
∑

n=1

Var(
Yn

n1/p
) ≤

∞
∑

n=1

1

n2/p

n
∑

k=1

EX2
1I(k − 1 ≤ |X1|

p < k)

≤ C

∞
∑

k=1

k1−2/pE|X1|
pk(2−p)/pI(k − 1 ≤ |X1|

p < k) <∞.

Hence (21) holds. Next, we will prove (22). It will be divided into two cases:

(i) If p = 1, by Lebesgue Dominated Convergence Theorem, we have

lim
n→∞

EYn = lim
n→∞

∫

Ω

X1(ω)I(|X1(ω)| < n1/p)P (dω) = EX1 = 0.

Thus, limn→∞
1
n

∑n
k=1EYk = 0.

(ii) If p 6= 1, by the Kronecker’s Lemma, to prove (22), it suffices to show that

∞
∑

n=1

|EYn|

n1/p
<∞. (24)

For 0 < p < 1,

∞
∑

n=1

|EYn|

n1/p
≤

∞
∑

n=1

n
∑

j=1

n−1/pE|X1|I(j − 1 ≤ |X1|
p < j)

≤ C

∞
∑

j=1

j1−1/pE|X1|
pj(1−p)/pI(j − 1 ≤ |X1|

p < j) <∞.

For 1 ≤ p < 2, by EXn = 0, we can see that

∞
∑

n=1

|EYn|

n1/p
≤

∞
∑

n=1

∞
∑

j=n

n−1/pE|X1|I(j ≤ |X1|
p < j + 1)
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≤ C

∞
∑

j=1

j1−1/pE|X1|
pj(1−p)/pI(j ≤ |X1|

p < j + 1) <∞.

Thus (24) holds. We get the desired result. 2

Theorem 2.6 Let {Xn, n ≥ 1} be a sequence of ψ-mixing identically distributed random

variables satisfying
∑∞

n=1 ψ(n) <∞ and {bn, n ≥ 1} be a sequence of positive numbers satisfying

0 < bn ↑ ∞. Assume that

b2n

∞
∑

j=n

b−2
j ≪ n, (25)

∞
∑

n=1

P (|X1| > bn) <∞. (26)

Then
∞
∑

n=1

Xn − EX1I(|X1| ≤ bn)

bn
converges a.s.. (27)

Furthermore, if EXn = 0 for each n and

bn

n
∑

j=1

b−1
j ≪ n, (28)

then
∑∞

n=1
Xn

bn
converges a.s. and b−1

n

∑n
k=1Xk → 0 a.s..

Proof Let b0 = 0 and Yn = XnI(|Xn| ≤ bn) for each n ≥ 1. By (26),

∞
∑

n=1

nP (bn−1 < |X1| ≤ bn) =
∞
∑

n=1

n−1
∑

j=0

P (bn−1 < |X1| ≤ bn) =
∞
∑

j=0

P (|X1| > bj) <∞. (29)

Together with (29) and (25), it follows that

∞
∑

j=1

Var(
Yj

bj
) ≤

∞
∑

j=1

b−2
j

j
∑

n=1

EX2
1I(bn−1 < |X1| ≤ bn)

≪
∞
∑

n=1

nb−2
n EX2

1I(bn−1 < |X1| ≤ bn) ≤
∞
∑

n=1

nP (bn−1 < |X1| ≤ bn) <∞.

Thus,
∑∞

n=1 b
−1
n (Yn − EYn) converges a.s. following from the above inequality and Theorem

2.1. (26) implies that
∑∞

n=1 P (Xn 6= Yn) =
∑∞

n=1 P (|Xn| > bn) =
∑∞

n=1 P (|X1| > bn) < ∞.

Therefore,
∑∞

n=1 b
−1
n (Xn − EYn) converges a.s., which implies (27).

Furthermore, if EX1 = 0, then by (28)

∞
∑

n=1

b−1
n |EYn| ≤

∞
∑

n=1

b−1
n E|X1|I(|X1| > bn) =

∞
∑

n=1

b−1
n

∞
∑

j=n

E|X1|I(bj < |X1| ≤ bj+1)

≪

∞
∑

j=1

(j + 1)b−1
j+1E|X1|I(bj < |X1| ≤ bj+1)

≤
∞
∑

j=1

(j + 1)P (bj < |X1| ≤ bj+1) <∞.
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Thus,
∑∞

n=1
Xn

bn
converges a.s. from the above inequality and (27). The proof is completed. 2

Remark 2.1 Khintchine-Kolmogorov-type convergence theorem, three series theorem and

Marcinkiewicz strong law of large numbers for ψ-mixing sequence in the paper reach to the

results of independent sequence under the condition
∑∞

n=1 ψ(n) <∞.

Remark 2.2 Strong law of large numbers for ψ-mixing sequence has been studied by some

authors, for example, Blum, et al. [1]. They obtained the following result: Let {Xn, n ≥ 1} be

a ψ-mixing process such that EXn = 0, EX2
n <∞ for every n. Suppose

(i) The random variables of the process are uniformly integrable and

(ii)
∑∞

n=1EX
2
n/n

2 <∞.

Then P{limn→∞ Sn/n = 0} = 1.

Corollary 2.2 in the paper generalizes the result above for β = 2 to the case of β ∈ (0, 2]

and an = n to the case of arbitrary positive sequence {an, n ≥ 1}. In addition, the condition

(i) above is not needed in Corollary 2.2. Therefore, our Theorem 2.3, Corollaries 2.1 and 2.2

generalize and improve the result of Blum, et al. [1].
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