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1. Introduction

Clifford algebra Cln is an associative and incommutable algebra structure. Clifford analysis

is an important branch of modern analysis, which studies the properties for the functions defined

on Rn+1 with the value in Clifford algebra space [1]. Clifford analysis possesses important

theoretical and applicable value and plays an important role in many fields, such as the Maxwell

equation, theory of Yang-Mills field, quantum mechanics and so on [2, 3]. Since 1970, some

mathematicians made great effort in real and complex Clifford analysis. In 2000, Eriksson

Leutwiler first introduced hypermonogenic function and gave some properties about it [4, 5].

Some researchers such as Huang [6, 7] and Qiao [8, 9] have done many works about boundary

value problem for monogenic functions and hypermonogenic functions in real Clifford analysis. In

this paper we will discuss a kind of boundary value problem for hypermonogenic function vectors

in Clifford analysis and prove the existence and uniqueness of the solution to the boundary value

problem for hypermonogenic function vectors in Clifford analysis.
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2. Hypermonogenic function vector and its plemelj formula

Let Cln be a real Clifford algebra over an (n + 1)-dimensional real vector space Rn+1 with

orthogonal basis e := {e0, e1, . . . , en}, where e0 is the unit element in Cln. Then Cln has its basis

e0, e1, . . . , en; e1e2, . . . , en−1en; . . . ; e1 . . . , en. Hence an arbitrary element of the basis may be

written as eA = eα1
, . . . , eαh

, here A = {α1, . . . , αh} ⊆ {1, . . . , n}, 1 ≤ α1 < α2 < · · · < αh ≤ n

and when A = Ø (empty set) eA = e0. So real Clifford algebra is composed of the elements having

the type a =
∑

A xAeA, in which xA(∈ R) are real numbers. In general, we have e0ei = eie0 = ei,

e2
i = −1 and eiej + ejei = 0, where i, j = 1, . . . , n, i 6= j.

Let Ω ⊂ Rn+1 be an open connected set. The function f which is defined in Ω with values in

Cln can be expressed as f(x) =
∑

A eAfA(x), where the functions fA are real-valued functions.

The set of Cr-functions in Ω with values in Cln is denoted by F
(r)
Ω = {f |f : Ω → Cln, f(x) =∑

A fA(x)eA}, here fA(x) have continuous r-times differentials.

A function f(y) : ∂Ω → Cln is said to be Hölder continuous on ∂Ω, if f(y) satisfies

|f(y1) − f(y1)| ≤ M1|y1 − y2|
β , y1, y2 ∈ ∂Ω, 0 < β < 1.

We denote the set of the Hölder continuous functions on ∂K with the index β by H(∂Ω, β).

For any ϕ ∈ H(∂Ω, β), we define the module of ϕ as follows: ‖ϕ‖β = C(ϕ, ∂Ω) + H(ϕ, ∂Ω, β),

where C(ϕ, ∂Ω) = supt∈∂Ω |ϕ(t)| and H(ϕ, ∂Ω, β) = supt1 6=t2,t1,t2∈∂Ω
|ϕ(t1)−ϕ(t2)|

|t1−t2|β
. It is obvious

that H(∂Ω, β) is a Banach space and we have ‖ϕ̄‖β = ‖ϕ‖β. For any f, g ∈ H(∂Ω, β), it is easy

to prove ‖f + g‖β ≤ ‖f‖β + ‖g‖β, ‖fg‖β ≤ J0‖f‖β‖g‖β.

Let F (x) = (f1(x), f2(x), . . . , fp(x)) and G(x) = (g1(x), g2(x), . . . , gp(x)) be function vectors,

where fi(x), gi(x) ∈ H(∂Ω, β), i = 1, . . . , p. We define

F + G = (f1(x) + g1(x), . . . , fp(x) + gp(x)), F ⊗ G = (f1(x)g1(x), . . . , fp(x)gp(x))

and the absolute value of Φ = (ϕ1, . . . , ϕp) as follows: |Φ| = (
∑p

i=1 |ϕi|
2)

1

2 . If |Φ(x) − Φ(x0)| =

{
∑p

i=1 |ϕi(x) − ϕi(x0)|
2}

1

2 ≤ B|x − x0|
β (B is a positive constant), the function vector Φ(x) =

(ϕ1(x), ϕ2(x), . . . , ϕp(x)) is called Hölder continuous function vector, where x ∈ ∂Ω. By [5] we

have |F + G| ≤ |F | + |G|, |F ⊗ G| ≤ J0|F ||G|. Suppose H ′(∂Ω, β) is the set of all bounded

Hölder function vectors and its Hölder index is β (0 < β < 1). In the paper we define that the

continuous function vector means all its components are continuous. For any Φ ∈ H ′(∂Ω, β),

we define ‖Φ‖β = C(Φ, ∂Ω) + H ′(Φ, ∂Ω, β), where C(Φ, ∂Ω) = supt∈∂Ω |Φ(t)|, H ′(Φ, ∂Ω, β) =

supt1,t2∈∂Ω

t1 6=t2

|Φ(t1)−Φ(t2)|
|t1−t2|β

. It is easy to prove that H ′(∂Ω, β) is a Banach space and ‖Φ‖β = ‖Φ‖β.

And for any F , G ∈ H ′(∂Ω, β), we have

‖F + G‖β ≤ ‖F‖β + ‖G‖β, ‖F ⊗ G‖β ≤ J0‖F‖β‖G‖β. (1)

It is easy to prove that the following conclusions are true. If Φ = (ϕ1, ϕ2, . . . , ϕp) ∈ H ′(∂Ω, β),

we have ϕi ∈ H(∂Ω, β) (i = 1, 2, . . . , p). And if ϕi ∈ H(∂Ω, β) (i = 1, 2, . . . , p), we have

Φ = (ϕ1, ϕ2, . . . , ϕp) ∈ H ′(∂Ω, β).

We introduce the Dirac operator: Dlf =
∑n

i=0 ei
∂f
∂xi

, Drf =
∑n

i=0
∂f
∂xi

ei. Then we introduce

the modified Dirac operators M l, M r: M l
kf(x) = Dlf(x) + k Q′f

xn
, M r

kf(x) = Drf(x) + k Q′f
xn

,
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k = 0, 1, . . . , n − 1, where f ∈ F
(r)
Ω (r > 1).

Definition 1 Let Ω ⊂ Rn+1
+ = {x = (x0, x1, . . . , xn) |xn > 0} be a connected open set. A

mapping f : Ω → Cln is called the left hypermonogenic (hypermonogenic in short) function, if

f ∈ C1(Ω) and M l
n−1f(x) = 0 for any x ∈ Ω. The right hypermonogenic functions are defined

similarly.

Definition 2 Let F (x) = (f1(x), f2(x), . . . , fp(x)). If all fi (i = 1, 2, . . . , p) are left hypermono-

genic functions, we call F (x) a left hypermonogenic function vector. The right hypermonogenic

function vectors are defined similarly.

In this paper we suppose Ω ⊂ Rn+1
+ = {x = (x0, x1, . . . , xn) |xn > 0} is a domain and

K is an (n + 1)-chain satisfying K ⊂ Ω. Then we define the n-forms: dx̂i = dx0 ∧ dx1 ∧

· · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn, i = 0, 1, . . . , n. A Cln-valued n-form is introduced by putting

dσk = 1
xk

n

∑n
i=0(−1)i−1eidx̂i, k = 0, 1, . . . , n− 1. If dS stands for the “classical” surface element

and −→m =
∑n

i=0 eini, then the Cln-value surface element dσ0 can be written as dσ0 = −→mdS, where

ni is the i-th component of the unit outward normal vector. Furthermore the volume-element

dmk = 1
xk

n
dx0 ∧ dx1 ∧ · · · ∧ dxn is used.

Lemma 1 ([4, 5]) Let Ω be as stated above, K ⊆ Ω be an arbitrary (n + 1)-chain, K ⊂ Ω and

f, g ∈ F
(r)
K (r ≥ 1). Then

∫

∂K

gdσ0f =

∫

K

[(M r
−kg)f + gM l

kf +
k

xn

Q(gf ′)]dm0,

∫

∂K

gdσkf =

∫

K

[(M r
kg)f + gM l

kf −
k

xn

P (gf ′)en]dmk,

∫

∂K

P (gdσkf) =

∫

K

P [(M r
kg)f + gM l

kf ]dmk,

∫

∂K

Q(gdσ0f) =

∫

K

Q[(M r
−kg)f + gM l

kf ]dm0.

Definition 3 Let Ω, K be the sets as stated in Lemma 1. The integral

ϕ(y) =
(2yn)n

ωn+1

∫

∂K

P (p(x, y)dσn−1(x)f(x)) +
(2nyn−1

n )

ωn+1

∫

∂K

Q (q(x, y)dσ0(x)f(x)) en

is called the quasi-Cauchy-form integral, where

p(x, y) =
xn−1

n

2yn

(
(x − y)−1 − (x − ŷ)−1

|x − y|n−1|x − ŷ|n−1

)
= xn−1

n

(x − y)−1

|x − y|n−1
en

(x − ŷ)−1

|x − ŷ|n−1
,

q(x, y) =
(x − y)−1 − (x − ŷ)−1

2|x − y|n−1|x − ŷ|n−1
=

(x − y)−1

|x − y|n−1
(x − Py)

(x − ŷ)−1

|x − ŷ|n−1
.

By [5] the quasi-Cauchy’s integral has another form:

ϕ(y) =
2n−1yn−1

n

ωn+1

(∫

∂K

E(x, y)dσ0(x)f(x) −

∫

∂K

M(x, y)d̂σ0(x)f̂(x)

)
, (2)

where

E(x, y) =
(x − y)−1

|x − y|n−1|x − ŷ|n−1
, M(x, y) =

(x̂ − y)−1

|x − y|n−1|x − ŷ|n−1
. (3)
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And ωn+1 is the surface measure of the unit ball in Rn+1. P ( ) and Q( ) mean the P -part and

Q-part of ( ), respectively. When y /∈ ∂K, the integral is well defined. When y ∈ ∂K, it is a

singular integral and we will give the following definition.

Definition 4 Let Ω, K be the sets as Lemma 1 and y ∈ ∂K. Then we construct a sphere E

with the center at y and radius δ > 0. Then ∂K is divided into two parts by E, and the part

of ∂K lying in the interior of E is denoted by λδ. If limδ→0 ϕδ(y) = I(y) exists, we say that

the integral is convergent and I(y) is called the Cauchy principal value of the singular integral,

where

ϕδ(y) =
2n−1yn−1

n

ωn+1

(∫

∂K−λδ

E(x, y)dσ0(x)f(x) −

∫

∂K−λδ

M(x, y)d̂σ0(x)f̂(x)
)

and we define ϕ(y) = I(y).

Lemma 2 ([5]) Let Ω, K be the sets as Lemma 1 and f : K → Cln be a hypermonogenic

function. Then when y ∈ K, ϕ(y) = f(y).

Lemma 3 ([8]) Let Ω, K be the sets as Lemma 1 and f : Ω → Cln be a hypermonogenic

function. Then when y ∈ Rn+1 − K, ϕ(y) = 0.

Lemma 4 ([5]) Let Ω, K be the sets as Lemma 1 and f ∈ C1(K). Then ϕ(y) is a hypermonogenic

function in Rn+1/∂K.

By Lemma 4 and Definition 2 we can prove the following theorem.

Theorem 1 Let Ω, K be as stated above, F (x) = (f1(x), f2(x), . . . , fp(x)) be a function vector

and fi(x) ∈ C1(K), i = 1, 2, . . . , p. Then we can conclude that

Φ(y) =
2n−1yn−1

n

ωn+1

(∫

∂K

E(x, y)dσ0(x)F (x) −

∫

∂K

M(x, y)d̂σ0(x)F̂ (x)
)

is a hypermonogenic function vector in Rn+1/∂K, where

E(x, y) =
(x − y)−1

|x − y|n−1|x − ŷ|n−1
, M(x, y) =

(x̂ − y)−1

|x − y|n−1|x − ŷ|n−1
.

Lemma 5 ([8]) Let y ∈ ∂K and f ∈ Hα
∂K . Then

ϕ(y) =
(2n−1yn−1

n )

ωn+1

[ ∫

∂K

E(x, y)dσ0(x)f(x) −

∫

∂K

M(x, y)d̂σ0(x)f̂(x)
]

=
(2n−1yn−1

n )

ωn+1

(∫

∂K

E(x, y)dσ0(x)[f(x) − f(y)]−

∫

∂K

M(x, y)d̂σ0(x)[f̂(x) − f(y)]
)

+
1

2
f(y), (4)

where E(x, y), M(x, y) are given by equation (3).

Lemma 6 ([8]) Let K, ∂K be as stated above, f(x) ∈ H(∂K, β), 0 < β < 1 and y0 ∈ ∂K. We

denote the limits of ϕ(x) by ϕ+(y0) and ϕ−(y0) when y → y0 in K and K−, respectively. Then
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we have 



ϕ+(y0) = ϕ(y0) +
1

2
f(y0),

ϕ−(y0) = ϕ(y0) −
1

2
f(y0);





ϕ+(y0) + ϕ−(y0) = 2ϕ(y0),

ϕ+(y0) − ϕ−(y0) = f(y0),

(5)

where ϕ(y) is the function in equation (4).

By Lemmas 5 and 6 we have the following theorem.

Theorem 2 Let K, ∂K be as stated above and function vector F (x) = (f1(x), f2(x), . . . , fp(x)) ∈

H ′(∂K, β), here 0 < β < 1 and y0 ∈ ∂K. We denote the limits of Φ(x) by Φ+(y0) and Φ−(y0)

when y → y0 in K and K−, respectively. Then we have




Φ+(y0) = Φ(y0) +
1

2
F (y0),

Φ−(y0) = Φ(y0) −
1

2
F (y0);





Φ+(y0) + Φ−(y0) = 2Φ(y0),

Φ+(y0) − Φ−(y0) = F (y0),

(6)

where Φ(y) = (ϕ1, . . . , ϕp) and each ϕi (i = 1, . . . , p) is the function as in equation (4).

3. The boundary value problem for hypermonogenic function vectors

Let K, ∂K be as stated above. We will find a hypermonogenic function vector in Rn+1/∂K

which satisfies the boundary condition

A(t)Φ+(t) + B(t)Φ−(t) = G(t), (7)

where Φ(t) is the unknown function vector and A(t), B(t), G(t) ∈ H ′(∂K, β) are known function

vectors on ∂K. This boundary value problem is called Problem I.

Lemma 7 ([8]) Let K, ∂K be as stated above, φ ∈ H(∂K, β) and θϕ = Tϕ − ϕ
2 , where

Tϕ(x) =
2n−1xn−1

n

ωn+1

[ ∫

∂K

E(t, x)dσ0(t)ϕ(t) − M(t, x)d̂σ0(t)ϕ̂(t)
]

and E(t, x), M(t, x) are as in equation (3). Then we can conclude that θϕ is a hypermonogemic

function and ‖θϕ‖β ≤ J1‖ϕ‖β, |Tϕ‖β ≤ J2‖ϕ‖β, ‖Tϕ + ϕ
2 ‖β ≤ J2‖ϕ‖β, where J1, J2 are

constants independent of ϕ.

Theorem 3 Let K, ∂K be as stated above, Φ ∈ H ′(∂K, β) and θΦ = TΦ− Φ
2 , where

TΦ(x) =
2n−1xn−1

n

ωn+1

[ ∫

∂K

E(t, x)dσ0(t)Φ(t) − M(t, x)d̂σ0(t)Φ̂(t)
]
.

Then we can conclude that θΦ is a hypermonogemic function vector and ‖θΦ‖β ≤ J3‖Φ‖β, where

J3 is a positive constant independent of Φ.

Proof

‖θΦ‖β ≤ sup
t∈Ω

( p∑

i=1

|θϕi|
2
) 1

2

+ sup
t1 6=t2,t1,t2∈∂Ω

|θϕi(t1) − θϕi(t2)|

|t1 − t2|β

≤ sup
t∈Ω

( p∑

i=1

‖θϕi‖
2
β

) 1

2

+ sup
t1 6=t2,t1,t2∈∂Ω

(
∑p

i=1 |θϕi(t1) − θϕi(t2)|
2)

1

2

|t1 − t2|β
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≤ sup
t∈Ω

( p∑

i=1

(J1‖ϕi‖β)2
) 1

2

+

p∑

i=1

[
sup

t1 6=t2,t1,t2∈∂Ω

(|θϕi(t1) − θϕi(t2)|
2)

1

2

|t1 − t2|β

]

≤ J4‖Φ‖β +

p∑

i=1

J1‖Φ‖β ≤ J3‖Φ‖β,

where J3 is a positive constant independent of Φ. 2

Theorem 4 Under the conditions of Theorem 3, we have ‖TΦ‖β ≤ J5‖Φ‖β, |TΦ + Φ
2 ‖β ≤

J5‖Φ‖β, where Φ is given in Theorem 2.

By the Plemelj formula, we can obtain Φ+(x) = Φ(x)
2 + Φφ(x), Φ−(x) = −Φ(x)

2 + Φϕ(x).

Then we can change Problem I into an integral equation QΦ(x) = Φ(x), where QΦ = (A(x) +

B(x))[Φ(x)
2 + TΦ(x)] + (1 − B(x))Φ(x) − G(x).

Theorem 5 Let A(x), B(x) and G(x) ∈ H ′(∂K, β). Then when

J0[‖A(x) + B(x)‖βJ5 + ‖(1 − B(x))‖β ] < 1, (8)

‖G(x)‖β

1 − J0(‖A(x) + B(x)‖βJ5 + ‖1 − B(x)‖β)
< M, (9)

there exists a unique function Φ0 ∈ T ′ = {Φ|Φ ∈ H ′(∂K, β), ‖Φ‖β ≤ M} ⊂ H ′(∂K, β) such

that QΦ0 = Φ0, where M > 0 is a constant. Then Φ0 is the solution of Problem I.

Proof We denote the continuous function vectors space on ∂K by C′(∂K) and T ′ is the function

set as above. By equation (1), Theorem 4 and the condition (9), we have

‖QΦ‖β ≤ J0‖A(x) + B(x)‖β‖
Φ(x)

2
+ TΦ(x)‖β + J0‖(1 − B(x))‖β‖Φ‖β + ‖G(x)‖β

≤ [J0‖A(x) + B(x)‖βJ5 + J0‖(1 − B(x))‖β ] ‖Φ‖β + ‖G(x)‖β

≤ [J0‖A(x) + B(x)‖βJ5 + J0‖(1 − B(x))‖β ]M + ‖G(x)‖β

≤ [J0(‖A(x) + B(x)‖βJ5 + ‖(1 − B(x))‖β) − 1]M + ‖G(x)‖β + M ≤ M.

Hence Q is a mapping from T ′ onto itself. For any Φ1, Φ2 ∈ H ′(∂K, β), by equation (1),

Theorem 4 and the condition (8) we have

‖QΦ1 − QΦ2‖β ≤J0‖A(x) + B(x)‖β‖
[Φ1(x) − Φ2(x)]

2
+

T [Φ1(x) − Φ2(x)]‖β + J0‖(1 − B(x))‖β‖Φ1(x) − Φ2(x)‖β

≤J0 [‖A + B‖βJ5 + ‖(1 − B(x))‖β ] ‖Φ1 − Φ2‖β < ‖Φ1 − Φ2‖β .

Hence Q is a compressed map. By the compressed fixed point theorem we know that there exists

a unique function Φ0 ∈ H ′(∂K, β), such that Q(Φ0) = Φ0. Then Φ0 is a solution of boundary

value Problem I. 2
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