Transcendental Meromorphic Solutions of Second-Order Algebraic Differential Equations

Hai Chou LI*, Ling Yun GAO

Department of Mathematics, Ji'nan University, Guangdong 510632, P. R. China

Abstract Using Nevanlinna theory of the value distribution of meromorphic functions, we discuss some properties of the transcendental meromorphic solutions of second-order algebraic differential equations, and generalize some results of some authors.

Keywords meromorphic functions; transcendental meromorphic solutions; second-order algebraic differential equations.

Document code A MR(2010) Subject Classification 34M10; 30D05; 30D35 Chinese Library Classification O174.52

1. Introduction and main results

We use the standard notations and results of the Nevanlinna theory of meromorphic or algebraic function, see, e.g, [1]. In this paper we denote: $M(z, w) = \max_{|z| < r} \{|w(z)|\};$

$$V(z, w) = a_k(z)w^k + a_{k-1}(z)w^{k-1} + \dots + a_0(z).$$
(1)

Some authors [2–6] have investigated the problems of the existence of algebraic solutions of equation, and obtained some results. Especially many investigations have been done on the form

$$(w')^n = \frac{P(z,w)}{Q(z,w)},\tag{2}$$

and some important results were obtained as follows

Theorem A ([1]) Let w(z) be the transcendental meromorphic solution of algebraic differential equation (2). If V(z, w), which is defined in (1), is the prime factor of Q(z, w), then V(z) = V(z, w) has infinite many zeros.

Theorem B ([1]) Let w(z) be the transcendental meromorphic solution of algebraic differential equation (2). If V(z, w), which is defined in (1), is the prime factor of P(z, w), then V(z) = V(z, w) has infinite many zeros.

Received July 21, 2009; Accepted October 14, 2009

Supported by the National Natural Science Foundation of China (Grant No. 10471065) and the Natural Science Foundation of Guangdong Province (Grant No. 04010474).

E-mail address: lihaichou@126.com (H. C. LI); ylgaojinan@126.com (L. Y. GAO)

^{*} Corresponding author

In this paper, we mainly consider the form as follows:

$$(w'')^n = \frac{P(z,w)}{Q(z,w)},\tag{3}$$

where $P(z, w) = \sum_{i=0}^{p} a_i(z) w^i \neq 0$ and $Q(z, w) = \sum_{i=0}^{q} b_i(z) w^j \neq 0$ are the polynomials coprime of w, of which coefficients are rational functions. We will prove

Theorem 1 Let w(z) be the transcendental meromorphic solution of algebraic differential equation (3). If V(z, w), which is defined in (1), is the prime factor of Q(z, w), then V(z) = V(z, w) has infinite many zeros.

Theorem 2 Let w(z) be the transcendental meromorphic solution of algebraic differential equation (3). If V(z, w), which is defined in (1), is the prime factor of P(z, w), then V(z) = V(z, w) has infinite many zeros.

2. Some lemmas

We wil use the following Lemmas in our proofs of the above Theorems.

Lemma 1 ([1]) Let w(z) be a transcendental meromorphic function and V(z, w) be defined by (1). If V(z) = V(z, w) only has a finite number of zeros. Then for all z_r in $M(r, \frac{1}{V}) = \frac{1}{|V(z_r)|}$, there is a $\beta > 0$, such that $|w(z_r)| \le r^{\beta}$ when $r \ge r_0$.

Lemma 2 ([1]) Let w(z) be a transcendental meromorphic function which has only a finite number of poles. Then for arbitrary $\alpha > 0$ and K there is $\frac{[c]^{\alpha}}{r^{K}} \to \infty$ $(r \to \infty)$.

Lemma 3 ([1]) Let w(z) be a transcendental meromorphic function which has only a finite number of poles. Then for any $\alpha > 0$, outside a possible exception set of finite linear measure, $M(r, w') < 2^{\frac{1}{\alpha}} [M(r, w)]^{1+\alpha}$.

Lemma 4 ([1]) Let w(z) be a transcendental meromorphic function which has only a finite number of poles, and w(z) and w'(z) be holomorphic in the plane. Then for any $\varepsilon > 0$, there is

$$M(r, w) < [M(r, w')]^{1+\varepsilon}.$$

3. Proof of Theorem 1

Suppose V(z) has finite number of zeros, then $y(z) = \frac{1}{V(z)}$ is transcendental meromorphic function which has only a finite number of poles. By Lemma 1, for all z_r in $M(r, \frac{1}{V}) = \frac{1}{|V(z_r)|}$, there is a $\beta > 0$, such that $|w(z_r)| \le r^{\beta}$ when $r \ge r_0$. By Lemma 2, for arbitrary $\alpha > 0$ and K there holds

$$\lim_{r \to \infty} \frac{[M(r,y)]^{\alpha}}{r^k} = \lim_{r \to \infty} \frac{1}{|V(z)|^{\alpha} r^K} = 0.$$

$$\tag{4}$$

V(z,w) is the prime factor of Q(z,w), P(z,w) and Q(z,w) are co-prime, so $V_w(z,w)$ and V(z,w) are co-prime, and V(z,w) and P(z,w) are co-prime. Then there exist rational func-

tions $P_i(z, w), Q_i(z, w)$ and $R_i \neq 0$ (j = 1, 2) such that

$$P_1(z, w)V(z, w) + Q_1(z, w)V_w(z, w) = R_1, P_2(z, w)V(z, w) + Q_2(z, w)P(z, w) = R_2.$$
 (5)

Through multiplied by the appropriate polynomial of z, $R_j \neq 0$ (j = 1, 2) can be assumed to be the non-zero polynomials. Therefore, when r is large enough, there exists $\alpha > 0$, such that $|R_j| > \alpha > 0 > 0$ (j = 1, 2). Let $y(z) = \frac{1}{V(z)}$. We have

$$y''(z) = y^{3} \{ 2V_{w}^{2}(w')^{2} + 4V_{w}V_{z}w' + V_{z}^{2} - VV_{ww}(w')^{2} - 2VV_{wz}w' - VV_{w}w'' - VV_{zz} \}.$$

Then

$$\begin{split} M(r,y'') &\geq |y''(z_r)| \geq |y(z_r)|^3 \{ |V(z_r,w(z_r))V_w(z_r,w(z_r))w^{(2)}(z_r)| - |2V_w^2(z_r,w(z_r))[w'(z_r)]^2 | - \\ & |4V_w(z_r,w(z_r))V_z(z_r,w(z_r))| - |V(z_r,w(z_r))V_{ww}(z_r,w(z_r))V_w(z_r,w(z_r))| - \\ & |V_z^2(z_r,w(z_r))| - |2V(z_r,w(z_r))V_{wz}(z_r,w(z_r))w'(z_r)| - |V(z_r,w(z_r))V_{zz}(z_r,w(z_r))| \} \\ &= [M(r,y)]^{3+\frac{1}{n}} \{ |V^{1+\frac{1}{n}}(z_r)V_w(z_r,w(z_r))w^{(2)}(z_r)| - \\ & |2V^{\frac{1}{n}}(z_r)V_w^2(z_r,w(z_r))[w'(z_r)]^2 | - |4V^{\frac{1}{n}}(z_r)V_w(z_r,w(z_r))V_z(z_r,w(z_r))| - \\ & |V^{1+\frac{1}{n}}(z_r)V(z_r,w(z_r))V_{ww}(z_r,w(z_r))V_w(z_r,w(z_r))| - |V^{1+\frac{1}{n}}(z_r)V_z^2(z_r,w(z_r))| - \\ & |2V^{1+\frac{1}{n}}(z_r)V(z_r,w(z_r))V_{wz}(z_r,w(z_r))w'(z_r)| - |V(z_r,w(z_r))V_{zz}(z_r,w(z_r))| \}. \end{split}$$

Let \Im be the set that contains the ten types of polynomials of w:

$$\mathfrak{F} = \{ P_1(z,w), P_2(z,w), Q_1(z,w), Q_2(z,w), \frac{Q}{V}, V_z(z,w), V_w(z,w), V_{zz}(z,w), V_{zw}(z,w), V_{ww}(z,w) \}.$$

Then $\forall X(z,w) = \sum_{k=1}^n a_k(z) w^k \in \Im$, when r is large enough, there exists l such that $|a_k(z_r)| < l$. By Lemma 1, we have $|w(z_r)| \le r^{\beta}$. Then there exists $\sigma > \beta$, such that $|X(z_r,w(z_r))| = |\sum_{k=1}^n a_k(z) w^k(z_r)| < r^{\sigma}$, namely, $\Im = \{X(z,w) | |X(z_r,w(z_r))| < r^{\sigma}\}$.

10. By $P_1(z, w(z_r)) \in \Im$, $Q_1(z, w) \in \Im$, we obtain $|P_1(z_r, w(z_r))| < r^{\sigma}$, $|Q_1(z_r, w(z_r))| < r^{\sigma}$. By (4), there is $|P_1(z_r, w(z_r))| |V(z_r)| < r^{\sigma} |V(z_r)| < \frac{a}{2}$. From (5), we have

$$|V_w(z_r, w(z_r))| = \left| \frac{R_1(z_r) - P_1(z_r, w(z_r))V(z_r)}{Q_1(z_r, w(z_r))} \right| \ge \frac{|R_1(z_r)| - |P_1(z_r, w(z_r))V(z_r)|}{|Q_1(z_r, w(z_r))|} \ge \frac{a}{2r^{\sigma}}. \quad (7)$$

Similarly, we get $|P(z_r, w(z_r))| \ge \frac{|R_2(z_r)| - |P_2(z_r, w(z_r))V(z_r)|}{|Q_2(z_r, w(z_r))|} \ge \frac{a}{2r^{\sigma}}$. By $\frac{Q(z, w)}{V(z, w)} \in \mathfrak{I}$, we have $|\frac{Q(z_r, w(z_r))}{V(z_r, w(z_r))}| < r^{\sigma}$. Since w(z) is the transcendental meromorphic solution of algebraic differential equation (3), $\frac{a}{2r^{\sigma}} \le |P(z_r, w(z_r))| = |w''(z_r)|^n |Q(z_r, w(z_r))| \le |w''(z_r)|^n |V(z_r)|^r$. Then

$$|w''(z_r)||V(z_r)|^{\frac{1}{n}} \ge (\frac{a}{2})^{\frac{1}{n}} r^{\frac{-2\sigma}{n}} \ge (\frac{a}{2})^{\frac{1}{n}} r^{-2\sigma}.$$
 (8)

Combining the inequalities (7) and (8), we obtain

$$|V_w(z_r, w(z_r))||w''(z_r)||V(z_r)|^{\frac{1}{n}} \ge (\frac{a}{2})^{1+\frac{1}{n}}r^{-3\sigma}.$$
 (9)

20. By Lemma 3, when $\alpha = 1$, then $|w'(z_r)| \leq M(r, w') < 2[M(r, w)]^2 = 2|w(z_r)|^2 \leq 2r^{2\beta} \leq 2r^{2\sigma}$. By (4), when $\alpha = \frac{1}{n}$, $K = 9\sigma$, and r is large enough, then $|V(z_r)|^{\frac{1}{n}} \leq \frac{1}{64} \frac{a}{2})^{1 + \frac{1}{n}} r^{-9\sigma}$. By $V_w(z, w) \in \Im$, we have $|V_w(z_r, w(z_r))| < r^{\sigma}$, then

$$|2V^{\frac{1}{n}}(z_r)V_w^2(z_r, w(z_r))[w'(z_r)]^2| \le \frac{1}{8}(\frac{a}{2})^{1+\frac{1}{n}}r^{-3\sigma}.$$
 (10)

 3^0 . By $V_z(z,w) \in \Im$, we have $|V_z(z_r,w(z_r))| < r^{\sigma}$. It follows from the above

$$|V^{\frac{1}{n}}(z_r)V_z(z_r, w(z_r))w'(z_r)| \le \frac{1}{32}(\frac{a}{2})^{1+\frac{1}{n}}r^{-3\sigma},\tag{11}$$

$$|V^{1+\frac{1}{n}}(z_r)V_z^2(z_r, w(z_r))| \le \frac{1}{64} (\frac{a}{2})^{1+\frac{1}{n}} r^{-3\sigma}.$$
(12)

 4^0 . By $V_{ww}(z,w) \in \Im$, we have $|V_{ww}(z_r,w(z_r))| < r^{\sigma}$, and it follows from the above

$$|w'(z_r)|^2 |V^{1+\frac{1}{n}}(z_r)V_{ww}(z_r, w(z_r))| \le \frac{1}{16} (\frac{a}{2})^{1+\frac{1}{n}} r^{-3\sigma}.$$
(13)

 5^0 . By $V_{wz}(z,w) \in \Im$, we have $|V_{wz}(z_r,w(z_r))| < r^{\sigma}$, and it follows from the above

$$2|w'(z_r)||V^{1+\frac{1}{n}}(z_r)V_{wz}(z_r,w(z_r))| \le \frac{1}{16}(\frac{a}{2})^{1+\frac{1}{n}}r^{-3\sigma}.$$
 (14)

 6^0 . By $V_{zz}(z,w) \in \Im$, we have $|V_{zz}(z_r,w(z_r))| < r^{\sigma}$, and it follows from the above

$$|V^{1+\frac{1}{n}}(z_r)V_{zz}(z_r, w(z_r))| \le \frac{1}{64} (\frac{a}{2})^{1+\frac{1}{n}} r^{-3\sigma}.$$
(15)

Combining the inequalities (9)–(15) and (6) gives

$$M(r,y'') \ge [M(r,y)]^{3+\frac{1}{n}} \{ (\frac{a}{2})^{1+\frac{1}{n}} r^{-3\sigma} - \frac{1}{8} (\frac{a}{2})^{1+\frac{1}{n}} r^{-3\sigma} - \frac{1}{8} (\frac{a}{2})^{1+\frac{1}{n}} r^{-3\sigma} - \frac{1}{64} (\frac{a}{2})^{1+\frac{1}{n}} r^{-3\sigma} - \frac{1}{16} (\frac{a}{2})^{1+\frac{1}{n}} r^{-3\sigma} - \frac{1}{16} (\frac{a}{2})^{1+\frac{1}{n}} r^{-3\sigma} - \frac{1}{64} (\frac{a}{2})^{1+\frac{1}{n}} r^{-3\sigma} \}$$

$$\ge [M(r,y)]^{3+\frac{1}{n}} \frac{9}{16} (\frac{a}{2})^{1+\frac{1}{n}} r^{-3\sigma}. \tag{16}$$

By Lemma 3, when $\alpha = 1$, outside a possible exception set of finite linear measure, we have

$$M(r, y'') < 2[M(r, y')]^2 < 8[M(r, y)]^4$$

Combining the inequality (16), we have $\frac{[M(r,y)]^{\frac{1}{n}-1}}{r^{-3\sigma}} \leq \frac{128}{9} (\frac{a}{2})^{-(1+\frac{1}{n})} < \infty$. Cleary, this and (4) result in a contradiction. So V(z) = V(z,w) has infinite many zeros. This completes the proof of Theorem 1. \square

4. Proof of Theorem 2

If V(z) has finite number of zeros, then $y(z) = \frac{1}{V(z)}$ is a transcendental meromorphic function which has only a finite number of poles. If value z_r satisfies $M(r,y) = |y(z_r)| = \frac{1}{|V(z_r)|}$, then for any $\alpha > 0$ and K, by Lemma 2,

$$\lim_{r \to \infty} \frac{[M(r,y)]^{\alpha}}{r^K} = \lim_{r \to \infty} \frac{1}{|V(z_r)|^{\alpha} r^K} = \infty \Rightarrow \lim_{r \to \infty} |V(z_r)|^{\alpha} r^K = 0.$$
 (17)

From $y(z_r) = \frac{1}{V(z_r)}$ and (6), we have

$$\begin{split} &M(r,y'') \geq |y''(z_r)| \\ &\geq |y(z_r)|^3 \{|V(z_r,w(z_r))V_w(z_r,w(z_r))w^{(2)}(z_r)| - |2V_w^2(z_r,w(z_r))[w'(z_r)]^2| - \\ &|4V_w(z_r,w(z_r))V_z(z_r,w(z_r))| - |V(z_r,w(z_r))V_{ww}(z_r,w(z_r))V_w(z_r,w(z_r))| - \\ &|V_z^2(z_r,w(z_r))| - |2V(z_r,w(z_r))V_{wz}(z_r,w(z_r))w'(z_r)| - |V(z_r,w(z_r))V_{zz}(z_r,w(z_r))| \\ &\geq [M(r,y)]^3 \{|V_z^2(z_r,w(z_r))| - |V(z_r)V_w(z_r,w(z_r))w''(z_r)| - |2V_w^2(z_r,w(z_r))[w'(z_r)]^2| - |V(z_r)V_w(z_r,w(z_r))w''(z_r)| - |V(z_r)V_w(z_r)| -$$

$$|4V_{w}(z_{r}, w(z_{r}))V_{z}(z_{r}, w(z_{r}))w'(z_{r})| - |V(z_{r})V_{ww}(z_{r}, w(z_{r}))[w'(z_{r})]^{2}| - |2V(z_{r})V_{wz}(z_{r}, w(z_{r}))w'(z_{r})| - |V(z_{r})V_{zz}(z_{r}, w(z_{r}))| \}.$$

$$(18)$$

Since V(z, w) is the prime factor of P(z, w), V(z, w) and $V_z(z, w)$ are co-prime. Then there exist two polynomials $P_1(z, w)$ and $Q_1(z, w)$ in w and rational function $R(z) \neq 0$ such that

$$P_1(z, w)V(z, w) + Q_1(z, w)V_z(z, w) = R(z).$$
(19)

When r is large enough, there exists b > 0, such that |R(z)| > b > 0.

By Lemma 1, there exists $\tau > 0$, such that $|w(z_r)| \leq r^{\tau}$. Similarly to the proof of Theorem 1, let \Re be the set that contains the eight types of polynomials of w

$$\Re = \{ P_1(z, w), Q_1(z, w), \frac{P(z, w)}{V(z, w)}, V_z(z, w), V_w(z, w), V_{zz}(z, w), V_{zw}(z, w), V_{ww}(z, w) \}.$$

Then $\forall X(z,w) = \sum_{k=1}^n a_k(z) w^k \in \Re$, when r is large enough, there exists l such that $|a_k(z_r)| < r^l$. By Lemma 1, we have $|w(z_r)| \le r^\tau$. Then there exists $v > \tau$, such that $|X(z_r,w(z_r))| = |\sum_{k=1}^n a_k(z) w^k(z_r)| < r^\tau$, namely, $\Re = \{X(z,w) | |X(z_r,w(z_r))| < r^\tau\}$. Then by $P_1(z,w) \in \Re$, $Q_1(z,w) \in \Re$, we get $|P_1(z_r,w(z_r))| < r^\tau$, $|Q_1(z_r,w(z_r))| < r^\tau$. By (17), we obtain

$$|P_1(z_r, w(z_r))||V(z_r)| < r^{\tau}|V(z_r)| < \frac{b}{2}.$$

From (19), we have $|V_z(z_r, w(z_r))| = \frac{|R(z_r)| - |P_1(z_r, w(z_r))| |V(z_r)|}{|Q_1(z_r, w(z_r))|} \ge \frac{b}{2r^v}$. Then

$$|V_z(z_r, w(z_r))|^2 \ge (\frac{b}{2})^2 r^{-2v}.$$
 (20)

Because Q(z) is rational function, when r is large enough, $|Q(z)| < r^v$. By $\frac{P(z,w)}{V(z,w)} \in \Re$, then $|\frac{P(z,w)}{V(z,w)}| < r^\tau$. Since w(z) is the transcendental meromorphic solution of algebraic differential equation (3), we have $|w''(z_r)|^n = \frac{1}{|Q(z)|} \frac{|P(z_r,w(z_r))|}{|V(z_r)|} |V(z_r)| < r^{2v} |V(z_r)|$. By (17) and $\alpha = \frac{1}{n}, K = 4v + \frac{2v}{n}$, when r is large enough, there is $|V^{\frac{1}{n}}(z_r)| \le \frac{1}{8}(\frac{b}{2})^2 r^{-(4v + \frac{2v}{n})}$. So we obtain $|w''(z_r)| < \frac{1}{8} \frac{b}{2} r^{-4v} < \frac{1}{8} (\frac{b}{2})^2 r^{-3v}$. By $V_w(z,w) \in \Re$, then $|V_w(z_r,w(z_r))| < r^\tau$, also $|V(z_r)| \le \frac{1}{8} (\frac{b}{2})^2 r^{-(4v + \frac{2v}{n})}]^2 \le 1$, we get

$$|V(z_r)||V_w(z_r, w(z_r))||w''(z_r)| < \frac{1}{8}(\frac{b}{2})^2 r^{-2v}.$$
(21)

By Lemma 4, when $\varepsilon = 1$, then $|w'(z_r)| \leq M(r, w') < M^2(r, w'') = |w''(z_r)|^2 < [\frac{1}{8} \frac{b}{2} r^{-4v}]^2 < \frac{1}{64} (\frac{b}{2})^2 r^{-4v}$. By $V_w(z, w) \in \Re$, then $|V_w(z_r, w(z_r))| < r^{\tau}$, and it follows

$$2|V_w^2(z_r, w(z_r))||w'(z_r)|^2 < \frac{1}{32}(\frac{b}{2})^2 r^{-2v}.$$
 (22)

Similarly, we obtain

$$|4V_w(z_r, w(z_r))V_z(z_r, w(z_r))w'(z_r)| < \frac{1}{2}(\frac{b}{2})^2 r^{-2v},$$
(23)

$$|2V_w^2(z_r, w(z_r))[w'(z_r)]^2| < \frac{1}{32}(\frac{b}{2})^2 r^{-2v},$$
 (24)

$$|2V(z_r)V_{wz}(z_r, w(z_r))w'(z_r)| < \frac{1}{4}(\frac{b}{2})^2r^{-2v}.$$
(25)

By $|V(z_r)V_{zz}(z_r, w(z_r))| < [\frac{1}{8}\frac{b}{2}r^{-(4v+\frac{2v}{n})}]^n r^v$, when n=2, then

$$|V(z_r)V_{zz}(z_r, w(z_r))| < \frac{1}{64} (\frac{b}{2})^2 r^{-2v}.$$
(26)

Combining the inequalities (20)–(26) and (18), we have

$$M(r,y'') \ge [M(r,y)]^3 \{ (\frac{b}{2})^2 r^{-2v} - \frac{1}{8} (\frac{b}{2})^2 r^{-2v} - \frac{1}{32} (\frac{b}{2})^2 r^{-2v} - \frac{1}{2} (\frac{b}{2})^2 r^{-2v} - \frac{1}{4} (\frac{b}{2})^2 r^{-2v} - \frac{1}{64} (\frac{b}{2})^2 r^{-2v} \}$$

$$\ge [M(r,y)]^3 \frac{1}{8} (\frac{b}{2})^2 r^{-2v}. \tag{27}$$

By Lemma 3, when $\alpha = \frac{1}{2}$, outside a possible exception set of finite linear measure, we have

$$M(r, y'') < 4[M(r, y')]^{\frac{3}{2}} < 4(4[M(r, y)]^{\frac{3}{2}})^{\frac{3}{2}} = 32[M(r, y)]^{\frac{9}{4}}.$$

Combining the inequality (27) gives

$$[M(r,y)]^3 \frac{1}{8} (\frac{b}{2})^2 r^{-2v} < 32 [M(r,y)]^{\frac{9}{4}} \Rightarrow \frac{[M(r,y)]^{\frac{3}{4}}}{r^{2v}} < 256 (\frac{b}{2})^2 \to \infty.$$

Clearly, this and (17) lead to a contradiction. So V(z) = V(z, w) has infinite many zeros. The proof of Theorem 2 is completed. \Box

References

- HE Yuzan, XIAO Xiuzhi. Algebroid Function and Ordinary Differential Equations [M]. Science Press, Beijing, 1998.
- [2] GAO Lingyun. Algebroidal solutions of a second-order algebraic differential equation [J]. J. Math. Res. Exposition, 2005, 25(2): 358–362. (in Chinese)
- [3] GAO Lingyun. Admissible meromorphic solutions of a type of higher-order algebraic differential equation [J].
 J. Math. Res. Exposition, 2003, 23(3): 443-448.
- [4] TODA N. On algebroid solution of some binomial different equation in the complex plane [J]. Proc. Japan Acad. Math. Sci. Ser.A, 1988, **64**(3): 61–64.
- [5] HE Yuzan, XIAO Xiuzhi. Admissible Solutions of Ordinary Differential Equations [M]. Contemp. Math., 25, Amer. Math. Soc., Providence, RI, 1983.
- [6] GAO Lingyun. Some results on admissible algebroid solutions of complex differential equations [J]. J. Systems Sci. Math. Sci., 2001, 21(2): 213–222. (in Chinese)