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1. Introduction and main results

We use the standard notations and results of the Nevanlinna theory of meromorphic or
algebraic function, see, e.g, [1]. In this paper we denote: M (z,w) = max;|<,{|w(z)[};

V(zw) = an(2)ok + apy ()b~ + -4 ao(2). (1)

Some authors [2-6] have investigated the problems of the existence of algebraic solutions of

equation, and obtained some results. Especially many investigations have been done on the form

P(z,w)
QG w) )

and some important results were obtained as follows

(w/)n —

Theorem A ([1]) Let w(z) be the transcendental meromorphic solution of algebraic differential
equation (2). If V(z,w), which is defined in (1), is the prime factor of Q(z,w), then V(z) =

V(z,w) has infinite many zeros.

Theorem B ([1]) Let w(z) be the transcendental meromorphic solution of algebraic differential
equation (2). If V(z,w), which is defined in (1), is the prime factor of P(z,w), then V(z) =

V(z,w) has infinite many zeros.
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In this paper, we mainly consider the form as follows:

P(z,w)
w// n — ) , 3
= QG @)
where P(z,w) = >0 a;(2)w® # 0 and Q(z,w) = Y7 b;j(2)w! # 0 are the polynomials co-

prime of w, of which coefficients are rational functions. We will prove

Theorem 1 Let w(z) be the transcendental meromorphic solution of algebraic differential equa-
tion (3). If V(z,w), which is defined in (1), is the prime factor of Q(z,w), then V(z) = V(z,w)

has infinite many zeros.

Theorem 2 Let w(z)be the transcendental meromorphic solution of algebraic differential equa-
tion (3). If V(z,w), which is defined in (1), is the prime factor of P(z,w), then V(z) =V (z,w)

has infinite many zeros.

2. Some lemmas
We wil use the following Lemmas in our proofs of the above Theorems.

Lemma 1 ([1]) Let w(z) be a transcendental meromorphic function and V (z,w) be defined by
(1). If V(z) = V(z,w) only has a finite number of zeros. Then for all z, in M(r, %) = ﬁ,
there is a 3 > 0, such that |w(z,)| < r° when r > ry.

Lemma 2 ([1]) Let w(z) be a transcendental meromorphic function which has only a finite

number of poles. Then for arbitrary o > 0 and K there is [:% — 00 (r — 00).

Lemma 3 ([1]) Let w(z) be a transcendental meromorphic function which has only a finite
number of poles. Then for any o > 0, outside a possible exception set of finite linear measure,
M (r,w') < 2= [M(r,w)] .

Lemma 4 ([1]) Let w(z) be a transcendental meromorphic function which has only a finite

number of poles, and w(z) and w'(z) be holomorphic in the plane. Then for any € > 0, there is

M (r,w) < [M(r,w)]*e.

3. Proof of Theorem 1

Suppose V(z) has finite number of zeros, then y(z) = % is transcendental meromorphic

v

function which has only a finite number of poles. By Lemma 1, for all z, in M (r, %) = ler)l’
there is a 3 > 0, such that |w(z,)| < r® when r > ry. By Lemma 2, for arbitrary a > 0 and K
there holds

lim —————— = lim —————= =0. 4
M T e @

V(z,w) is the prime factor of Q(z,w), P(z,w) and Q(z,w) are co-prime, so V,(z,w) and

V(z,w) are co-prime, and V(z,w) and P(z,w) are co-prime. Then there exist rational func-
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tions P;(z,w), Q;j(z, w) and R; # 0 (j = 1,2) such that

Pi(z,w)V(z,w) + Q1(z,w)Vy(z,w) = Ry, Po(z,w)V(z,w) + Q2(z,w)P(z,w) = Ry. (5)
Through multiplied by the appropriate polynomial of z, R; # 0 (j = 1,2) can be assumed to

be the non-zero polynomials. Therefore, when r is large enough, there exists ae > 0, such that
|R;j| >a>0>0(j=1,2). Let y(2) = V( 5- We have

Y (2) = y*{2V2 (W' )? 4+ 4V, Vo' + V2 = VViw(w')? = 2V V0’ — VVw” — V'V, }.
Then

M(r,y") = |y (20l = [y () P{IV (20, w(20)) Vs (20, w(20)) 0P (2)] = 12V2 (20, w(20) [0 (20)]2]
|4V (2 w(20) Ve (20 w(20))| = |V (2, 0(20)) Vi (20 0 (20)) Vo (2, w(20)) | -
V2 (2, w(z0))] = [2V (20, w(20)) Vasz (2 w200 (20)] = [V (20, w(20)) Ve (20, w(20) |}
= [M(r, )P (V5 (20) Vi (2, w(20) Jw® (20) |-
12V % (2) V2 (2, w(z0)) [ (20| = |4V % (20) Vi (20 w(20) ) V2 (2, w(20) ) | —
V5 (@) V (20, 0(20)) Vo (2, w(20) Vo (2, w(20)) | = [V (20) V2 (2, w0(20)) | —
2V (20)V (20, 0(20)) Vi (20 w200 (20)] = |V (2, w(20) ) Ves (2, w(2)) [} (6)

Let S be the set that contains the ten types of polynomials of w:
S ={Pi(z,0), Pa(z,w), Q1(z,w), Q2(2, w), ga
Then VX (z,w) = >_p_, ax(z)w® € I, when r is large enough, there exists [ such that |ay(z)| < I.
By Lemma 1, we have |w(z,.)] < 7%. Then there exists ¢ > B3, such that |X(z,,w(z,))| =
IS0 ar(2)wk(z)] < 17, namely, § = (X (2, w)[[X (2, w(z)| < 7).

19, By Pi(z,w(2)) € 3,Q1(z,w) € I, we obtain | Py (2, w(z))| < 77, |Q1(zr, w(z))] < r°.
By (4), there is | Py (2, w(2))[|V (2r)| < 77|V (2)| < §. From (5), we have

Ri(2) = Pi(zr, w(z))V (2r) |Ba ()| = [P1(2r, w(2r))V (2r)] > a

)
r)

V. (z,w), Vi (z,w), Voo (2, W), Ve (2, W), Vipr (2, w) }.

Vi (zr,w(z))| = > > —. (7
Vi (2, w(2r))| = | O w0 (o) | 01 Cors0(2))] 5o (1)
Similarly, we get [P(er,w(z))] > MEAGRERGINEN > g By $EE € 9, we have
|Q(Tw(zT| < r?. Since w(z) is the transcendental meromorphic solution of algebraic differential

equation (3), g7 < |P(zr, w(z))| = [0 (2,)["|Q(zr, w(zr))] < |w”(z,)["|V (2,)|r?. Then

1,01 =20 G\ 1 oo
W VI 2 G = ()R, ®

Combining the inequalities (7) and (8), we obtain
Ve w( )l o) [V () F 2 () 437, ©)

20, By Lemma 3, when a = 1, then |w/(z,)| < M(r,w') < 2[M (r,w)]? = 2|w(z,)|*> < 2r?’ <
2r??. By (4), when o = 1, K = 90, and r is large enough, then [V (z)|n < & &)= By
Vw(z,w) € S, we have |V (2, w(z))| < 77, then

1
[2V % (2 ) V2 wle)) ! ()] < 5(5) 7™, (10)
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3%, By V.(z,w) € §, we have |V, (2., w(z,))| < r?. It follows from the above

1 1 a 1 _34
|V”(ZT)VZ(ZT=w(zr))w/(zrﬂ < 5(5)“—”7‘ s ) (11)
1 1 a1 3,
[V (2) V2 (20, w(2r))| < a(g)H"T‘ . (12)
. By Vyw(z,w) € &, we have |V (2r, w(zr))| < 79, and 1t follows from the above
49 By V, & h. V. e d it foll 1 he ab
1 1 a1 3,
W' (2 ) PV (20) Vi (27, w(2r))| < E(g)H"T 5. (13)
50, By V. (2,w) € S, we have |Vi. (2, w(2,))| < r?, and it follows from the above
1 1 a1 3,
2|w/(zr)||vl+"(ZT)VwZ(erw(ZT)” < E(i)pr"r 5, (14)
6°. By V..(z,w) € 3, we have |V, (2., w(2,.))| < r?, and it follows from the above
1 1 a1 3,
VI () Vas (20, w(20))| < @(i)Hw 30, (15)

Combining the inequalities (9)—(15) and (6) gives

1,041 _a3, Lloaqi1 5, 1 aqyr 5,
M(r,y") Z[M(T‘,y)]s-i_" (5)1+nr 3 _g(i)l-i-w, 3 _g(i)l-’_nr 30 __
Loavpa 30 Loayga 3 1oayia 3, 1 a1 3
o1l T TS 63 " sy
9 a 1
> 341 9 G4l —30
2 [(M(r, )P o (5) (16)

By Lemma 3, when o = 1, outside a possible exception set of finite linear measure, we have
M(r,y") < 2[M(r,y"))* < 8[M(r,y)]*.

1_
Combining the inequality (16), we have M(rg)ln ! < %8(9)*(1+%) < o0. Cleary, this and (4)

r—30 2

result in a contradiction. So V(z) = V(z,w) has infinite many zeros. This completes the proof
of Theorem 1. O

4. Proof of Theorem 2

If V(2) has finite number of zeros, then y(z) = ﬁ is a transcendental meromorphic function

which has only a finite number of poles. If value z, satisfies M (r,y) = |y(z,)| = m, then for
any a > 0 and K, by Lemma 2,
(M)t 1 , o, K
AT T e 07 B VET =0 an

From y(z,) = V(lzr) and (6), we have

M(r,y") > y" ()]
> Jy(zr) PV (20 w(20)) Vi (20 w(20) )0 ® (2)] = 12V (20 w(20)) [0 (2,)) ] =
|4V (2, w(zr))Va (20, ()| = [V (20, w(20)) Viow (2, w(21) ) Vi (2, w(27) ) | —
V2 (2 w0(zr))| = 12V (20 w(20)) Vi (20, w(ze)0' (20)] = [V (20, w(20) ) Vaz (2, w ()|
> [M(r, )PP {IVZ (2, w(2)] = [V (20) Vao (20 w(ze) 0" (20)| = 12V (20, w(20)) [0 (20)]%|—



Transcendental meromorphic solutions of second-order algebraic differential equations 501

14V (2, w(zr))%(zrvw(zr))w/(zrﬂ - |V(ZT)wa(Zhw(zr))[w/(zr)]2|_
|2V(zr)sz(zr,w(zr))w'(zrﬂ =V (2r)Vez (2, w(zr)) |} (18)

Since V (z,w) is the prime factor of P(z,w), V(z,w) and V,(z,w) are co-prime. Then there exist

two polynomials Pj(z,w) and Q1(z,w) in w and rational function R(z) # 0 such that
Pi(z,w)V(z,w) + Q1(z,w)V,(z,w) = R(z). (19)

When r is large enough, there exists b > 0, such that |R(z)| > b > 0.

By Lemma 1, there exists 7 > 0, such that |w(z,)| < r7. Similarly to the proof of Theorem
1, let R be the set that contains the eight types of polynomials of w
P(z,w

= {Pl(sz)le(va)7 m

7‘/;(2711})7 Vw(Z,U}), ‘/zz(zaw)a ‘/zw(zaw)a wa(Z,’LU)}.

Then VX (z,w) = Y p_, ax(z)w" € R, when r is large enough, there exists [ such that |a(z,)| <
r!. By Lemma 1, we have |w(z,)| < 7. Then there exists v > 7, such that | X (z,.,w(z,))| =
| > oh_, ap(2)w”(2,)| < r7, namely, ® = {X(z,w)||X (2, w(z))| < r"}. Then by Pi(z,w) €

R, Q1(z,w) € R, we get |Py(z,,w(z))| <", |Q1(2r, w(z))| < r7. By (17), we obtain

[P (zr, w(ze)) |V (20)] < 77|V (2)] < g-

From (19), we have |V (2, w(z,))| = Ll AVl > b Then

Vel () = (5% (20)

Because Q(z) is rational function, when r is large enough, |Q(z)| < r¥. By % € R, then

P(z,w
|V(z,w

equation (3), we have |w'”(z)[" = WWW(%H < r?Y|V(z)|. By (17) and a =

L K = 4v + 22, when r is large enough, there is [V (z)] < %(%)Qr*(‘l“*%). So we obtain

[w”(z)| < 22r=4v < 1(2)2r73v. By Vi(2,w) € R, then |V (2, w(z))| < 77, also [V (z)| <
[5(5)%r~ (02 <1, we get

| < r7. Since w(z) is the transcendental meromorphic solution of algebraic differential

1 by o,
[V (2) | Vi (2, w(zr)) [0 (2)] < §(§)27‘ 2. (21)
By Lemma 4, when & = 1, then |w'(z,)| < M(r,w’) < M?(r,w”) = |w"(z)[* < [§5r~4]? <
L(0)2p=4v By V,(z,w) € R, then |V, (2., w(z))| < r™, and it follows
64\2
V2 (e w(z )l (z)? < 5 (2)2r > (22)
322
Similarly, we obtain
/ 1.0 2 —2v
[4Vao (2, w(z0) )V (2, w(ze) )0 (20) < 5(5)7r 7, (23)
2 / 2 L by o
12V (2 w(ze)) [w' (20) ]| < 25 (5)7r 77, (24)
322
/ 1.0 2, —2v
12V (20) Vs (2, wize) Jw'(20)| < 2 (5)7r 7" (25)
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By |V(2) Ve (zr, w(z))| < [%%r’(‘“’*%)]"r“, when n = 2, then

1

64°2
Combining the inequalities (20)—(26) and (18), we have

by o, 1.0

M(r,y") 2[M(r,y)P{(5)*r 7" = 2(5

2 82

1b2—2'u 1b2—2'u 2,.—2v

AL ISV IS UL

31

S[M ()5 () (27)

By Lemma 3, when a = 1, outside a possible exception set of finite linear measure, we have

M(r,y") < 4[M(r,y)]? < 4(4[M(r,y)]?)

[V (20)Vez (2, w(z))| < )27721)' (26)

l(b
32°2
1.b

)QT—QU _ )2T—2U _ )2,,,,—2U_

(

N =
| o

wlw
wleo
wlo

= 32[M(r,y)]=.

Combining the inequality (27) gives

W

MG P g < a2t - BRI

Clearly, this and (17) lead to a contradiction. So V(z) = V(z,w) has infinite many zeros. The

b
< 256(5)2 — 00.

proof of Theorem 2 is completed. O
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