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Abstract A new second-order nonlinear neutral delay differential equation

(

r(t)
(

x(t) + P (t)x(t − τ )
)

′

+ cr(t)
(

x(t) − x(t − τ )
)

)

′

+

F
(

t, x(t − σ1), x(t − σ2), . . . , x(t − σn)
)

= G(t), t ≥ t0,

where τ > 0, σ1, σ2, . . . , σn ≥ 0, P, r ∈ C([t0, +∞),R), F ∈ C([t0, +∞)×R
n, R), G ∈ C([t0, +∞),R)

and c is a constant, is studied in this paper, and some sufficient conditions for existence of

nonoscillatory solutions for this equation are established and expatiated through five theorems

according to the range of value of function P (t). Two examples are presented to illustrate that

our works are proper generalizations of the other corresponding results. Furthermore, our results

omit the restriction of Q1(t) dominating Q2(t) (See condition C in the text).

Keywords nonoscillatory solution; second-order neutral delay differential equation; contraction

mapping.
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1. Introduction and preliminaries

It is well known that the oscillatory and asymptotic behaviour of solutions for second-order

neutral and nonneutral delay differential equations has been studied widely by many authors

[1, 3–5, 9–11, 13]. But the nonoscillatory of solutions for second-order neutral delay differential

equations received much less attention, which is mainly due to the technical difficulties arising

in its analysis [3, 8, 10–12,14]. For further knowledge of existence and uniqueness of solutions of

neutral delay differential equations, one can refer to [2, 6, 7].

In 1998, Kulenovic and Hadziomerspahic [8] studied the following second-order linear neutral

delay differential equation with positive and negative coefficients:

d2

dt2

(

x(t) + px(t − τ)
)

+ Q1(t)x(t − σ1) − Q2(t)x(t − σ2) = 0, t ≥ t0, (E1.1)

where τ > 0, σ1, σ2 ≥ 0, p ∈ R = (−∞, +∞), Q1, Q2 ∈ C([t0, +∞), R+) and R
+ = [0, +∞),

and gave some sufficient conditions which guarantee the existence of nonoscillatory solutions

for (E1.1). In 2004, Cheng and Annie [3] established the existence of solutions for (E1.1) under
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weaker conditions and improved the works of Kulenovic and Hadziomerspahic [8]. In 2005,

Yu and Wang [14] extended the results of Kulenovic and Hadziomerspahic [8] and investigated

the existence of nonoscillatory solutions for the following second-order nonlinear neutral delay

differential equation with positive and negative coefficients:
(

r(t)
(

x(t) + P (t)x(t − τ)
)′)′

+ Q1(t)f
(

x(t − σ1)
)

− Q2(t)g
(

x(t − σ2)
)

= 0, t ≥ t0, (E1.2)

where τ > 0, σ1, σ2 ≥ 0, P, r ∈ C([t0, +∞), R), Q1, Q2 ∈ C([t0, +∞), R+), f, g ∈ C(R, R). But

the results in [8] and [14] need the condition

aQ1(t) − Q2(t) is eventually nonnegative for each a > 0. (C)

The purpose of this paper is to investigate the following second-order nonlinear neutral delay

differential equation
(

r(t)
(

x(t) + P (t)x(t − τ)
)′

+ cr(t)
(

x(t) − x(t − τ)
)

)′
+

F
(

t, x(t − σ1), x(t − σ2), . . . , x(t − σn)
)

= G(t), t ≥ t0,

(E1.3)

where τ > 0, σ1, σ2, . . . , σn ≥ 0, P, r ∈ C([t0,∞), R), F ∈ C([t0, +∞)×R
n, R), G ∈ C([t0, +∞), R)

and c is a constant. The existence of nonoscillatory solutions for (E1.3) is established un-

der some new conditions without the condition (C) in Section 2. Clearly, (E1.1) and (E1.2)

are special cases of (E1.3). In Section 3, two examples are provided to illustrate that our

results extend, improve and generalize properly the corresponding results in [3, 8, 14]. A so-

lution of (E1.3) is said to be oscillatory if it has arbitrarily large zeros, and otherwise it is

called nonoscillatory. Let u ∈ C([t0 − ρ, +∞), R), where ρ = max{τ, σi : i = 1, 2, . . . , n}, be a

given function and y0 a given constant. From the method of steps, it follows that (E1.3) has

a unique solution x ∈ C([t0 − ρ, +∞), R) if x(t) + P (t)x(t − τ), r(t)
(

x(t) + P (t)x(t − τ)
)′

and

r(t)
(

x(t) + P (t)x(t − τ)
)′

+ cr(t)
(

x(t) − x(t − τ)
)

are continuously differentiable for t ≥ t0, x(t)

satisfies the (E1.3) and

x(s) = u(s) for s ∈ [t0 − ρ, t0],
(

x(t) + P (t)x(t − τ)
)′

t=t0
= y0.

Throughout this paper, we assume that X denotes the set of all continuous and bounded functions

on [t0, +∞) with the sup norm and S =
{

x ∈ X : M ≤ x(t) ≤ N, t ≥ t0
}

for N > M > 0.

Obviously, S is a nonempty closed convex subset of the Banach space X . For P ∈ C([t0, +∞), R),

put P = lim sup
t→+∞ P (t) and P = lim inft→+∞ P (t).

2. Existence of nonoscillatory solutions

In this section, a few sufficient conditions of the existence of nonoscillatory solutions for (E1.3)

will be given.

Theorem 2.1 Assume that there exist constants P0, c with |c| < 1

τ
, M and N with N >

1−|c|τ
1−2P0−|c|τ M > 0 and functions h, q, r ∈ C([t0, +∞), R+) and P ∈ C([t0, +∞), R) such that

|P (t)| ≤ P0 <
1 − |c|τ

2
, eventually, (2.1)



Existence of nonoscillatory solutions 505

∣

∣F (t, u1, u2, . . . , un) − F (t, v1, v2, . . . , vn)
∣

∣ ≤ h(t)max
{

|ui − vi| : 1 ≤ i ≤ n
}

,

t ∈ [t0,∞), ui, vi ∈ [M, N ], 1 ≤ i ≤ n, (2.2)

∣

∣F (t, u1, u2, · · · , un)
∣

∣ ≤ q(t), t ∈ [t0,∞), ui ∈ [M, N ], 1 ≤ i ≤ n, (2.3)

r(t) > 0, R(t) =

∫

t

t0

1

r(s)
ds, ∀t ∈ [t0, +∞) and

∫ +∞

t0

R(t)max
{

|G(t)|, h(t), q(t)
}

dt < +∞.

(2.4)

Then (E1.3) has a nonoscillatory solution.

Proof By (2.1) and (2.4), a sufficiently large l > t0 + ρ can be chosen such that

|P (t)| ≤ P0 <
1 − |c|τ

2
, ∀t ≥ l, (2.5)

∫ +∞

l

R(s)
(

q(s) +
∣

∣G(s)
∣

∣

)

ds ≤ (1 − 2P0 − |c|τ)N − (1 − |c|τ)M

2
(2.6)

and
∫ +∞

l

R(s)h(s)ds < 1 − P0 − |c|τ. (2.7)

Define a mapping T : S → X by

(Tx)(t) =











































(1 + cτ)(M + N)

2
− P (t)x(t − τ) − c

∫ t

t−τ

x(s)ds+

R(t)

∫ +∞

t

[

F
(

s, x(s − σ1), x(s − σ2), . . . , x(s − σn)
)

− G(s)
]

ds+

∫

t

l

R(s)
[

F
(

s, x(s − σ1), x(s − σ2), . . . , x(s − σn)
)

− G(s)
]

ds, t ≥ l

(Tx)(l), t0 ≤ t < l

for all x ∈ S. Clearly, Tx is continuous for each x ∈ S. Two cases have to be considered with

respect to c.

Case 1 c ≥ 0. For every x ∈ S and t ≥ l, it follows from (2.3), (2.5) and (2.6) that

(Tx)(t) ≥ (1 + cτ)(M + N)

2
− P0N − c

∫ t

t−τ

Nds−

R(s)

∫ +∞

t

(

∣

∣F
(

s, x(s − σ1), x(s − σ2), . . . , x(s − σn)
)
∣

∣ +
∣

∣G(s)
∣

∣

)

ds =

∫

t

l

R(s)
(

∣

∣F
(

s, x(s − σ1), x(s − σ2), . . . , x(s − σn)
)∣

∣ +
∣

∣G(s)
∣

∣

)

ds

≥ (1 + cτ)(M + N)

2
− P0N − cτN−

∫ +∞

l

R(s)
(

∣

∣F
(

s, x(s − σ1), x(s − σ2), . . . , x(s − σn)
)
∣

∣ +
∣

∣G(s)
∣

∣

)

ds

≥ (1 + cτ)(M + N)

2
− P0N − cτN −

∫ +∞

l

R(s)
(

q(s) +
∣

∣G(s)
∣

∣

)

ds
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≥M

and

(Tx)(t) ≤ (1 + cτ)(M + N)

2
+ P0N − cτM +

∫ +∞

l

R(s)
(

q(s) +
∣

∣G(s)
∣

∣

)

ds ≤ N.

Case 2 c < 0. By virtue of (2.3), (2.5) and (2.6), it is derived that

(Tx)(t) ≥ (1 + cτ)(M + N)

2
− P0N − cτM −

∫ +∞

l

R(s)
(

q(s) +
∣

∣G(s)
∣

∣

)

ds ≥ M

and

(Tx)(t) ≤ (1 + cτ)(M + N)

2
+ P0N − cτN +

∫ +∞

l

R(s)
(

q(s) +
∣

∣G(s)
∣

∣

)

ds ≤ N

for every x ∈ S and t ≥ l.

That is, TS ⊆ S, no matter c is positive or negative. It is claimed that T is a contraction

mapping on S. In fact, (2.2), (2.5) and (2.7) guarantee that for any x, y ∈ S and t ≥ l

∣

∣(Tx)(t) − (Ty)(t)
∣

∣

≤ |P (t)|
∣

∣x(t − τ) − y(t − τ)
∣

∣ + |c|
∫

t

t−τ

∣

∣x(t − τ) − y(t − τ)
∣

∣ds+

R(t)

∫ +∞

t

∣

∣

∣
F

(

s, x(s − σ1), x(s − σ2), . . . , x(s − σn)
)

−

F
(

s, y(s − σ1), y(s − σ2), . . . , y(s − σn)
)

∣

∣

∣
ds+

∫

t

l

R(s)
∣

∣

∣
F

(

s, x(s − σ1), x(s − σ2), . . . , x(s − σn)
)

−

F
(

s, y(s − σ1), y(s − σ2), . . . , y(s − σn)
)

∣

∣

∣
ds

≤ P0‖x − y‖ + |c|
∫ t

t−τ

‖x − y‖ds+

∫ +∞

l

R(s)
∣

∣

∣
F

(

s, x(s − σ1), x(s − σ2), . . . , x(s − σn)
)

−

F
(

s, y(s − σ1), y(s − σ2), . . . , y(s − σn)
)

∣

∣

∣
ds

≤ P0‖x − y‖ + |c|τ‖x − y‖+
∫ +∞

l

R(s)h(s)max
{

|x(s − σi) − y(s − σi)| : 1 ≤ i ≤ n
}

ds

≤ P0‖x − y‖ + |c|τ‖x − y‖ + ‖x − y‖
∫ +∞

l

R(s)h(s)ds

= k‖x − y‖,

where k = P0 + |c|τ +
∫ +∞

l
R(s)h(s)ds < 1. This implies that

‖Tx − Ty‖ ≤ k‖x − y‖, ∀x, y ∈ S,

that is, T is a contraction mapping on S. Consequently T has a unique fixed point x ∈ S, which

is a nonoscillatory solution of (E1.3). This completes the proof. 2

Similarly to the proof of Theorem 2.1, we have other 4 theorems:
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Theorem 2.2 Assume that there exist constants c with |c| < 1

τ
, M and N with N > M > 0

and functions h, q, r ∈ C([t0, +∞), R+) and P ∈ C([t0, +∞), R) satisfying (2.2)–(2.4) and

P (t) ≥ 0, eventually, and 0 ≤ P ≤ P < 1 − |c|τ. (2.8)

Then (E1.3) has a nonoscillatory solution in S.

Theorem 2.3 Assume that there exist constants c with |c| < 1

τ
, M and N with N > M > 0

and functions h, q, r ∈ C([t0, +∞), R+) and P ∈ C([t0, +∞), R) satisfying (2.2)–(2.4) and

P (t) ≤ 0, eventually, and − 1 + |c|τ < P ≤ P ≤ 0. (2.9)

Then (E1.3) has a nonoscillatory solution in S.

Theorem 2.4 Assume that there exist constants c with |c| <
P−1

τ
, M and N with N > M > 0

and functions h, q, r ∈ C([t0, +∞), R+) and P ∈ C([t0, +∞), R) satisfying (2.2)–(2.4) and

P (t) > 1, eventually, 1 < P and P <
P 2

1 + |c|τ < +∞. (2.10)

Then (E1.3) has a nonoscillatory solution in S.

Theorem 2.5 Assume that there exist constants c with |c| < −P
2
+P

Pτ
, M and N with N > M >

0 and functions h, q, r ∈ C([t0, +∞), R+) and P ∈ C([t0, +∞), R) satisfying (2.2)–(2.4) and

P (t) < −1, eventually, −∞ < P and P < −1. (2.11)

Then (E1.3) has a nonoscillatory solution in S.

3. Examples

In this section, two examples are presented to illustrate the advantage of the above results.

Example 3.1 Consider the following second-order nonlinear neutral delay differential equation:

( 1

t2

(

x(t) +
(t cos t)x(t − τ)

2 + 3t2

)′
+

1

2τt2

(

x(t) − x(t − τ)
)

)′
+

x(t − σ1)x(t − σ2)x(t − σ3)

t5
=

ln t

t6
, t ≥ t0 = 1,

(E3.1)

where τ > 0, σ1, σ2, σ3 ≥ 0. Choose positive constants M and N with N > 1√
6−2

M . Put

r(t) =
1

t2
, R(t) =

∫ t

1

1

r(s)
ds =

t3 − 1

3
, P (t) =

t cos t

2 + 3t2
,

P0 =
1

2
√

6
, F (t, u, v, w) =

uvw

t5
, G(t) =

ln t

t6
, h(t) =

N2

t5
and

q(t) =
N3

t5
, ∀t ≥ 1, u, v, w ∈ R.

It is easy to verify that the conditions of Theorem 2.1 are satisfied. Therefore Theorem 2.1 ensures

that (E3.1) has a nonoscillatory solution. However, the results in [3, 8, 14] are not applicable for

(E3.1).



508 Z. Y. GUO

Example 3.2 Consider the following second-order nonlinear neutral delay differential equation:
(

(1 + t2)(1 + 4t2)
(

x(t) +
t2 + cos2 t

4t2 − sin2 t
x(t − τ)

)′ − 1

2τ
(1 + t2)(1 + 4t2)

(

x(t) − x(t − τ)
)

)′
+

(sin2 t)x(t − σ1)

t2 + 1
− (cos2 t)x2(t − σ2)

t2 + 1
= 0, t ≥ t0 = 2,

(E3.2)

where τ > 0, σ1, σ2 ≥ 0. Select positive constants M and N with N > M . Put

r(t) = (1 + t2)(1 + 4t2),

R(t) =

∫

t

2

1

r(s)
ds =

1

3

(

2 arctan2t − arctan t
)

− 1

3

(

2 arctan4 − arctan2
)

,

P (t) =
t2 + cos2 t

4t2 − sin2 t
, F (t, u, v) =

(sin2 t)u

t2 + 1
− (cos2 t)v2

t2 + 1
, G(t) = 0,

h(t) =
sin2 t

t2 + 1
+

2N cos2 t

t2 + 1
and q(t) =

N sin2 t

t2 + 1
+

N2 cos2 t

t2 + 1
, ∀t ≥ 2, u, v ∈ R.

Clearly, the assumptions of Theorem 2.2 are fulfilled. It follows from Theorem 2.2 that (E3.2)

has a nonoscillatory solution. Set

Q1(t) =
sin2 t

t2 + 1
and Q2(t) =

cos2 t

t2 + 1
, ∀t ≥ 2.

Obviously, the condition (C) does not hold. Hence the results in [3, 8, 14] are inapplicable for

(E3.2).
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