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1. Introduction

Let E be a real Banach space with norm ‖ · ‖, let E∗ denote the dual of E and let 〈x, f∗〉

denote the value of f ∈ E∗ at x ∈ E. Let J : E → 2E∗

be the normalized duality mapping which

is defined as follows:

Jx := {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2}, ∀x ∈ E.

Assume that C is a nonempty closed convex subset of E and U : C → C is a self-mapping.

We use F (U) = {x ∈ D(U) : Ux = x} to denote the set of fixed points of U . And, we use “→”

and “⇀” to denote strong and weak convergences either in E or in E∗, respectively.

Recall that the functional ϕ : E × E → R+ (see [1]) is called Lyapunov functional if it is

defined as follows:

ϕ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, for ∀x, y ∈ E.
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A point p ∈ C is said to be an asymptotic fixed point of S : C → C (see [2]) if C contains

a sequence {xn} which converges weakly to p such that limn→∞(xn − Sxn) = 0. The set of

asymptotic fixed points of S will be denoted by F̂ (S). A mapping S from C into itself is said

to be relatively nonexpansive [2–6] if F̂ (S) = F (S) and ϕ(p, Sx) ≤ ϕ(p, x), for ∀x ∈ C and

p ∈ F (S).

Finding iterative schemes to approximate fixed points of relatively nonexpansive mappings

is a hot topic during recent years since it is widely used in many practical problems. In 2005,

Matsushita and Takahashi proposed the following hybrid iterative scheme [2] to approximate the

fixed point of a relatively nonexpansive mapping S in a uniformly smooth and uniformly convex

Banach space E:





x1 ∈ C chosen arbitrarily,

Jyn = αnJxn + (1 − αn)JSxn,

Hn = {v ∈ C : ϕ(v, yn) ≤ ϕ(v, xn)},

Wn = {v ∈ C : 〈xn − v, Jx1 − Jxn〉 ≥ 0},

xn+1 = ΠHn

⋂
Wn

x1, n = 1, 2, . . . ,

(1.1)

where ΠK is the generalized projection operator from E onto a closed convex subset K of E.

They proved that under some conditions, {xn} generated by (1.1) converges strongly to ΠF (S)x1.

Much work has then been done under the frame of (1.1), see [3–6].

An operator A of C into E∗ is said to be monotone if

〈x − y, Ax − Ay〉 ≥ 0,

for ∀x, y ∈ C. For a monotone operator A, we use A−10 to denote the set of zero points of A.

An operator A of C into E∗ is said to be α-inversely strongly monotone [7] if α is a positive real

number such that

〈x − y, Ax − Ay〉 ≥ α‖Ax − Ay‖2,

for all x, y ∈ C. If A is α-inversely strongly monotone, then it is obvious that A is 1
α

Lipschitz

continuous. An operator A is said to be a strongly monotone operator if for each x, y ∈ C, there

exists k ∈ (0, 1) such that

〈x − y, Ax − Ay〉 ≥ k‖Ax − Ay‖2.

A monotone operator A is said to be maximal monotone if its graph, G(A) = {(x, y) : x ∈

D(A), y ∈ Ax}, is not properly contained in the graph of any other monotone operators. The

classical variational inequality problem for a monotone operator A : C → E∗ is to find a point

u ∈ C such that

〈y − u, Au〉 ≥ 0, (1.2)

for all y ∈ C. The set of solutions of the variational inequality (1.2) is denoted by VI(C, A).

Finding solutions of variational inequalities is also a hot topic. In 2008, Iiduka and Takahashi

designed the following projection iterative scheme in [7] for finding a zero point of an α-inversely
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strongly monotone operator A in a uniformly smooth and 2-uniformly convex Banach space E :
{

x1 ∈ C, chosen arbitrarily,

xn+1 = ΠCJ−1(Jxn − λnAxn), n = 1, 2, . . . .
(1.3)

Moreover, the additional assumption that ‖Ax‖ ≤ ‖Ax − Ap‖, for all x ∈ C and p ∈

VI(C, A) 6= ∅ is needed. It is proved that {xn} converges weakly to an element z in VI(C, A),

where z = limn→∞ ΠVI(C,A)(xn).

Let f be a bifunction of C × C into R, where R is the set of real numbers. The equilibrium

problem for f is to find x ∈ C such that

f(x, y) ≥ 0, for all y ∈ C. (1.4)

The set of solutions of (1.4) is denoted by EP(f). Given a mapping T : C → E∗, let

f(x, y) = 〈y − x, Tx〉 for all x, y ∈ C. Then z ∈ EP(f) if and only if 〈y − z, T z〉 ≥ 0, for all

y ∈ C, i.e., z is a solution of the variational inequality. Many problems in physics, optimization

and economics can be ultimately converted to find a solution of (1.4). To solve equilibrium

problems (1.4), much work has been done in Hilbert spaces, for instance, Blum-Oettli [8] and

Combettes-Hirstoaga [9], etc.

Recently, in [10], Takahashi and Zembayashi extended the work of equilibrium problem in

Hilbert space to the following one in the uniformly smooth and uniformly convex Banach space:





x0 ∈ C, chosen arbitrarily,

un ∈ C, such that f(un, y) + 1
rn
〈y − un, Jun − Jxn〉 ≥ 0, ∀y ∈ C,

xn+1 = J−1(αnJun + (1 − αn)JSun), n = 0, 1, 2, . . . .

(1.5)

They showed that {xn} converges weakly to z ∈ EP(f)
⋂

F (S), where

z = lim
n→∞

ΠF (S)
⋂

EP(f)(xn)

under some conditions. Although only the result of weak convergence is obtained in [10], they

provided a new idea of dealing with such problems compared with the already existing work of

hybrid iterative method, such as (1.1).

Motivated and inspired by the ideas of (1.3) and (1.5), we shall present the following iterative

scheme in a uniformly smooth and 2-uniformly convex Banach space E:





x0 ∈ C, chosen arbitrarily,

un ∈ C, such that f(un, y) + 1
rn
〈y − un, Jun − Jxn〉 ≥ 0, ∀y ∈ C,

yn = ΠCJ−1(Jun − λnAun),

xn+1 = J−1(αnJyn + (1 − αn)JSun), n = 0, 1, 2, . . . ,

(1.6)

where A : C → E∗ is an α-inversely strongly monotone operator, and S : C → C is a relatively

nonexpansive mapping. And, we shall show that under some conditions, {xn} converges weakly

to z ∈ F (S)
⋂

VI(C, A)
⋂

EP(f), where z = limn→∞ ΠF (S)
⋂

VI(C,A)
⋂

EP(f)(xn), which extends,

complements or improves some work done in [7, 10] and some others.
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2. Preliminaries

Let E be a Banach space. The modulus of smoothness of E is the function ρE : [0, +∞) →

[0, +∞) defined by

ρE(τ) := sup{
‖x + y‖ + ‖x − y‖

2
− 1 : ‖x‖ = 1, ‖y‖ ≤ τ}.

The space E is said to be smooth if ρE(τ) > 0, for ∀τ > 0. And E is said to be uniformly smooth

if and only if limτ→0+
ρE(τ)

τ
= 0.

The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ǫ) := inf{1 −
‖x + y‖

2
: x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ǫ}.

The space E is said to be uniformly convex if and only if δE(ǫ) > 0, for ∀ǫ ∈ (0, 2]. Let p be a

fixed real number with p ≥ 2. Then E is said to be p-uniformly convex if there exists a constant

c > 0 such that δE(ǫ) ≥ cǫp, for ∀ǫ ∈ (0, 2]. Every p-uniformly convex space is a uniformly convex

space.

Lemma 2.1 ([7]) Let E be a 2-uniformly convex Banach space. Then for all x, y ∈ E, we have

‖x − y‖ ≤
2

c2
‖Jx − Jy‖, (2.1)

where J is the normalized duality mapping from E into E∗ and 0 < c ≤ 1.

Lemma 2.2 ([5]) The normalized duality mapping J from E into E∗ has the following properties:

(i) If E is a real reflexive and smooth Banach space, then J : E → E∗ is single-valued; (ii) For

∀x ∈ E and ∀λ ∈ R, J(λx) = λJx; (iii) If E is a real uniformly convex and uniformly smooth

Banach space, then J−1 : E∗ → E is also a duality mapping. Moreover, both J and J−1 are

uniformly continuous on each bounded subset of E or E∗, respectively.

Lemma 2.3 ([1]) Let E be a real reflexive, strictly convex and smooth Banach space, let C

be a nonempty closed and convex subset of E and x ∈ E . Then there exists a unique element

x0 ∈ C such that ϕ(x0, x) = min{ϕ(z, x) : z ∈ C}.

In this case, the mapping ΠC of E onto C defined by ΠCx = x0, for all x ∈ E, is called the

generalized projection operator.

Lemma 2.4 ([1]) Let E be a real reflexive, strictly convex and smooth Banach space, let C be a

nonempty closed and convex subset of E and x ∈ E . Then, for ∀y ∈ C, ϕ(y, ΠCx)+ϕ(ΠCx, x) ≤

ϕ(y, x).

Lemma 2.5 ([4]) Let E be a real smooth and uniformly convex Banach space, let {xn} and

{yn} be two sequences of E. If either {xn} or {yn} is bounded and ϕ(xn, yn) → 0, as n → ∞,

then xn − yn → 0, as n → ∞.

Lemma 2.6 ([1]) Let E be a real smooth Banach space, let C be a convex subset of E, let

x ∈ E and x0 ∈ C. Then ϕ(x0, x) = inf{ϕ(z, x) : z ∈ C} if and only if 〈z − x0, Jx0 − Jx〉 ≥ 0,

∀z ∈ C.
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Lemma 2.7 ([2]) Let E be a real smooth and uniformly convex Banach space, let C be a

nonempty closed and convex subset of E and let S : C → C be a relatively nonexpansive

mapping. Then F (S) is a closed and convex subset of C.

Lemma 2.8 ([7]) Let E be a Banach space, let C be a nonempty closed and convex subset of

E and let A : C → E∗ be a monotone and hemicontinuous operator. Let B : E → 2E∗

be defined

as follows:

Bv :=

{
Av + NC(v), v ∈ C

∅, v∈C,
(2.2)

where NC(v) is the normal cone for C at a point v ∈ C, that is, NC(v) := {x∗ ∈ E∗ : 〈v−y, x∗〉 ≥

0, ∀y ∈ C}. Then B is maximal monotone and B−10 = VI(C, A), which ensures in our later

discussion that VI(C, A) is a closed convex subset of C.

We shall introduce the following function V : E × E∗ → R which is defined by:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2, ∀x ∈ E, x∗ ∈ E∗.

In the context of Section 1, we have V (x, x∗) = ϕ(x, J−1x∗), for ∀x ∈ E and x∗ ∈ E∗. And, we

also have the following Lemma:

Lemma 2.9 ([1]) Let E be a real reflexive, strictly convex and smooth Banach space with E∗

as its dual. Then

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗), ∀x ∈ E, x∗, y∗ ∈ E∗.

For solving the equilibrium problem for a bifunction f : C × C → R, let us assume that f

satisfies the following conditions:

(A1) f(x, x) = 0, for all x ∈ C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C;

(A3) lim supt↓0 f(tz + (1 − t)x, y) ≤ f(x, y), for all x, y, z ∈ C;

(A4) For each x ∈ C, y → f(x, y) is convex and lower semicontinuous.

Lemma 2.10 ([10]) Let C be a nonempty closed convex subset of a smooth, strictly convex

and reflexive Banach space E and let f be a bifunction of C ×C to R satisfying (A1)-(A4). Let

r > 0 and x ∈ E. Then, there exists z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, for ∀y ∈ C.

Lemma 2.11 ([10]) Let C be a nonempty closed convex subset of a uniformly smooth, strictly

convex and reflexive Banach space E and let f be a bifunction of C×C to R satisfying (A1)–(A4).

For r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Tr(x) = {z ∈ C : f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.

Then, the following conclusions hold:

(1) Tr is single-valued;
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(2) Tr is firmly nonexpansive-type mapping , i.e., for any x, y ∈ E,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉;

(3) F (Tr) = EP(f);

(4) EP(f) is a closed and convex subset of C.

Lemma 2.12 ([10]) Let C be a nonempty closed convex subset of a real smooth, strictly convex

and reflexive Banach space E and let f be a bifunction of C ×C to R satisfying (A1)–(A4). Let

r > 0. Then, for x ∈ E and q ∈ F (Tr), we have:

ϕ(q, Trx) + ϕ(Trx, x) ≤ ϕ(q, x).

Lemma 2.13 ([11]) Let E be a uniformly convex Banach space and let r > 0. Then there exists

a strictly increasing, continuous and convex function g : [0, 2r] → R such that g(0) = 0 and

‖tx + (1 − t)y‖2 ≤ t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)g(‖x − y‖),

for all t ∈ [0, 1] and x, y ∈ Br, where Br := {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.14 ([12]) Let E be a smooth and uniformly convex Banach space and let r > 0.

Then there exists a strictly increasing, continuous and convex function g : [0, 2r] → R such that

g(0) = 0 and g(‖x − y‖) ≤ ϕ(x, y), for all x, y ∈ Br, where Br is the same as that in Lemma

2.13.

3. Main results

Theorem 3.1 Let E be a real uniformly smooth and 2-uniformly convex Banach space with

dual E∗ and C be a nonempty closed and convex subset of E. Suppose the duality mapping

J : E → E∗ is weakly sequentially continuous. Let f : C × C → R be a bifunction satisfying

(A1)–(A4), let S : C → C be a relatively nonexpansive mapping, and let A : C → E∗ be an

α−inversely strongly monotone operator. Suppose that D := F (S)
⋂

VI(C, A)
⋂

EP(f) 6= ∅.

Moreover, assume that ‖Ax‖ ≤ ‖Ax−Ap‖, for ∀x ∈ C and p ∈ VI(C, A). Let the sequence {xn}

be generated by the iterative scheme (1.6).

If {αn} ⊂ [0, 1) such that lim infn→∞ αn(1 − αn) > 0, λn ∈ [a, b] for some a, b with 0 < a <

b ≤ αc2

2 , where c ∈ (0, 1] is the same constant as that in (2.1), and {rn} ⊂ [d, +∞), where d is a

positive constant, then {xn} converges weakly to z, where z = limn→∞ ΠDxn.

Proof We split the proof into four steps.

Step 1. {xn} is a bounded sequence.

To observe this, take p ∈ D. Then we have:

ϕ(p, xn+1) ≤ αnϕ(p, yn) + (1 − αn)ϕ(p, Sun) ≤ αnϕ(p, yn) + (1 − αn)ϕ(p, un). (3.1)

By using Lemmas 2.1, 2.4 and 2.9, and the assumption that ‖Ax‖ ≤ ‖Ax−Ap‖, ∀x ∈ C and

p ∈ VI(C, A), we have:

ϕ(p, yn) ≤ ϕ(p, J−1(Jun − λnAun)) = V (p, Jun − λnAun)
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≤ V (p, (Jun − λnAun) + λnAun) − 2〈J−1(Jun − λnAun) − p, λnAun〉

= ϕ(p, un) − 2λn〈un − p, Aun〉 − 2λn〈J
−1(Jun − λnAun) − J−1Jun, Aun〉

≤ ϕ(p, un) − 2λn〈un − p, Aun − Ap〉 − 2λn〈un − p, Ap〉 +
4λ2

n

c2
‖Aun − Ap‖2

≤ ϕ(p, un) − (2λnα −
4λ2

n

c2
)‖Aun − Ap‖2 ≤ ϕ(p, un). (3.2)

From Lemma 2.11, we know that un = Trn
xn. Using Lemma 2.12, we have:

ϕ(p, un) ≤ ϕ(p, xn). (3.3)

From (3.1),(3.2) and (3.3), we know that

ϕ(p, xn+1) ≤ ϕ(p, xn). (3.4)

Therefore, limn→∞ ϕ(p, xn) exists and then {xn}, {yn}, {Sun} and {ΠDxn} are all bounded.

Moreover, limn→∞ ϕ(p, xn) = limn→∞ ϕ(p, un).

Step 2. limn→∞ ΠDxn exists.

For this, let wn = ΠDxn for all n ≥ 0. Since wn ∈ D, (3.4) implies that

ϕ(wn, xn+1) ≤ ϕ(wn, xn). (3.5)

From Lemma 2.4, we know that

ϕ(wn+1, xn+1) ≤ ϕ(wn, xn+1) − ϕ(wn, wn+1) ≤ ϕ(wn, xn+1).

Combining this with (3.5), we have ϕ(wn+1, xn+1) ≤ ϕ(wn, xn). Therefore, limn→∞ ϕ(wn, xn)

exists. From (3.4) and (3.5), actually we have: for ∀k ∈ N, ϕ(wn, xn+k) ≤ ϕ(wn, xn).

Noticing that wn+k = ΠDxn+k and using Lemma 2.4 again, we have:

ϕ(wn, wn+k) + ϕ(wn+k, xn+k) ≤ ϕ(wn, xn+k) ≤ ϕ(wn, xn),

and then

ϕ(wn, wn+k) ≤ ϕ(wn, xn) − ϕ(wn+k, xn+k).

Let r = supn∈N ‖wn‖. From Lemma 2.14, we know that there exists a continuous, strictly

increasing, and convex function g with g(0) = 0 such that g(‖wn − wn+k‖) ≤ ϕ(wn, wn+k) ≤

ϕ(wn, xn)−ϕ(wn+k, xn+k) → 0, as n → ∞. So, {wn} is a Cauchy sequence and then limn→∞ ΠDxn

exists.

Step 3. ω(xn) ⊂ D, where ω(xn) denotes the set of weak convergent points of all the weak

convergent subsequences of {xn}.

For ∀x ∈ ω(xn), there exists a subsequence of {xn}, which is still denoted by {xn}, such that

xn ⇀ x, as n → ∞.

First we shall show that x ∈ F (S).

Noticing (3.2), we have for p ∈ D,

ϕ(p, xn+1) ≤ αnϕ(p, yn) + (1 − αn)ϕ(p, un)

≤ αn[ϕ(p, xn) + 2b(
2b

c2
− α)‖Aun − Ap‖2] + (1 − αn)ϕ(p, xn). (3.6)
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Since limn→∞ ϕ(p, xn) exists, we have

−αn2b(
2b

c2
− α)‖Aun − Ap‖2 ≤ ϕ(p, xn) − ϕ(p, xn+1) → 0,

which implies that ‖Aun − Ap‖ → 0, as n → ∞.

Notice that

ϕ(un, yn) = ϕ(un, ΠCJ−1(Jun − λnAun))

≤ ϕ(un, J−1(Jun − λnAun))) = V (un, Jun − λnAun)

≤ V (un, (Jun − λnAun) + λnAun) − 2〈J−1(Jun − λnAun) − un, λnAun〉

= ϕ(un, un) − 2λn〈J
−1(Jun − λnAun) − un, Aun〉

= 2〈J−1(Jun − λnAun) − un,−λnAun〉 ≤
4λ2

n

c2
‖Aun − Ap‖2 → 0, (3.7)

which implies that un − yn → 0, as n → ∞.

Let r∗ = supn≥N{‖yn‖, ‖Sun‖}. By using Lemmas 2.12 and 2.13, we have:

ϕ(p, un+1) = ϕ(p, Trn+1
xn+1) ≤ ϕ(p, xn+1) = ϕ(p, J−1(αnJyn + (1 − αn)JSun))

= ‖p‖2 − 2αn〈p, Jyn〉 − 2(1 − αn)〈p, JSun〉 + ‖αnJyn + (1 − αn)JSun‖
2

≤ ‖p‖2 − 2αn〈p, Jyn〉 − 2(1 − αn)〈p, JSun〉 + αn‖yn‖
2 + (1 − αn)‖Sun‖

2−

αn(1 − αn)g(‖Jyn − JSun‖)

= αnϕ(p, yn) + (1 − αn)ϕ(p, Sun) − αn(1 − αn)g(‖Jyn − JSun‖)

≤ αnϕ(p, un) + (1 − αn)ϕ(p, un) − αn(1 − αn)g(‖Jyn − JSun‖)

= ϕ(p, un) − αn(1 − αn)g(‖Jyn − JSun‖). (3.8)

Since limn→∞ ϕ(p, un) exists and lim infn→∞ αn(1 − αn) > 0, we have

αn(1 − αn)g(‖Jyn − JSun‖) ≤ ϕ(p, un) − ϕ(p, un+1) → 0,

which implies that Jun − JSun → 0, as n → ∞. Using Lemma 2.2, we have un − Sun → 0, as

n → ∞.

Since un = Trn
xn, and limn→∞ ϕ(p, xn) = limn→∞ ϕ(p, un), by Lemma 2.12, we have for

p ∈ D,

ϕ(un, xn) ≤ ϕ(p, xn) − ϕ(p, un) → 0.

Therefore,

un − xn → 0, (3.9)

as n → ∞. So un ⇀ x and from un − Sun → 0, we know that x ∈ F (S).

Secondly, we shall show that x ∈ EP(f).

Notice again that un = Trn
xn, we have:

f(un, y) +
1

rn

〈y − un, Jun − Jxn〉 ≥ 0, ∀y ∈ C.

From (A2), we know that

1

rn

〈y − un, Jun − Jxn〉 ≥ −f(un, y) ≥ f(y, un), ∀y ∈ C. (3.10)
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Let n → ∞ in (3.10). Then from (A4) and (3.9) we have:

f(y, x) ≤ 0, ∀y ∈ C.

For t : 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)x. Since y ∈ C and x ∈ C, we have yt ∈ C and

hence f(yt, x) ≤ 0. So, from (A1) and (A4), we have

0 = f(yt, yt) ≤ tf(yt, y) + (1 − t)f(yt, x) ≤ tf(yt, y).

Therefore, f(yt, y) ≥ 0, ∀y ∈ C. Letting t ↓ 0, from (A3), we have f(x, y) ≥ 0, ∀y ∈ C. Thus,

x ∈ EP(f).

Finally, we shall show that x ∈ VI(C, A).

Let B : E → 2E∗

be defined as that in (2.2). Then in view of Lemma 2.8, B is maximal

monotone and B−10 = VI(C, A). So, to show that x ∈ VI(C, A) is equivalent to showing that

x ∈ B−10.

Let (v, w) ∈ G(B). Since w ∈ Bv = Av + NC(v), we have w−Av ∈ NC(v). Since yn ∈ C, we

get

〈v − yn, w − Av〉 ≥ 0. (3.11)

On the other hand, from yn = ΠCJ−1(Jun − λnAun) and Lemma 2.6, we obtain:

〈v − yn, Jyn − (Jun − λnAun)〉 ≥ 0,

and then

〈v − yn,
Jun − Jyn

λn

− Aun〉 ≤ 0. (3.12)

It follows from (3.11) and (3.12):

〈v − yn, w〉 ≥ 〈v − yn, Av〉 ≥ 〈v − yn, Av〉 + 〈v − yn,
Jun − Jyn

λn

− Aun〉

= 〈v − yn,
Jun − Jyn

λn

+ Av − Aun〉

= 〈v − yn, Av − Ayn〉 + 〈v − yn, Ayn − Aun〉 + 〈v − yn,
Jun − Jyn

λn

〉

≥ −‖v − yn‖‖Ayn − Aun‖ − ‖v − yn‖‖
Jun − Jyn

λn

‖

≥ −‖v − yn‖
‖yn − un‖

α
− ‖v − yn‖‖

Jun − Jyn

λn

‖. (3.13)

Hence we have 〈v − x, w〉 ≥ 0 by letting n → ∞ in (3.13). Since B is maximal monotone,

x ∈ B−10. Therefore, x ∈ D.

Step 4. xn ⇀ z = limn→∞ ΠDxn.

From Step 2, we know that there exists z ∈ D such that z = limn→∞ ΠDxn. Since E is

reflexive and {xn} is bounded, there exists a subsequence {xnj
} of {xn} such that xnj

⇀ ẑ, as

j → ∞. From Step 3, we have ẑ ∈ D. Then from Lemma 2.6, we have:

〈ΠDxnj
− ẑ, Jxnj

− JΠDxnj
〉 ≥ 0. (3.14)
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Since J is weakly sequentially continuous, letting j → ∞ in (3.14), we have 〈z− ẑ, Jẑ−Jz〉 ≥

0. Therefore, 〈z − ẑ, Jẑ − Jz〉 = 0. Since E is strictly convex, we have z = ẑ.

Suppose there exists another subsequence {xnl
} of {xn} such that xnl

⇀ z, as l → ∞. Then

z ∈ D and Jxnl
⇀ Jz, as l → ∞. Repeating the above proof, we can also know that z = z.

Therefore, all of the weak convergent subsequences of {xn} converges weakly to the same element

z, which ensures that xn ⇀ z, as n → ∞.

This completes the proof. 2

Corollary 3.2 Let E, C, J, f, S satisfy the same conditions as those in Theorem 3.1. Let

A : C → E∗ be a strongly monotone operator with coefficient k and also be a Lipschitz continuous

mapping with Lipschitz constant L > 0. Suppose that F (S)
⋂

VI(C, A)
⋂

EP(f) 6= ∅. Moreover,

assume that ‖Ax‖ ≤ ‖Ax−Ap‖, ∀x ∈ C and p ∈ VI(C, A). Let the sequence {xn} be generated

by the iterative scheme (1.6).

If {αn} ⊂ [0, 1) such that lim infn→∞ αn(1 − αn) > 0, λn ∈ [a, b] for some a, b with 0 < a <

b ≤ kc2

2L2 , where c ∈ (0, 1] is the same constant as that in (2.1), and {rn} ⊂ [d, +∞), where d is a

positive constant, then {xn} converges weakly to z = limn→∞ ΠF (S)
⋂

VI(C,A)
⋂

EP(f)xn.

Proof In this case, we can easily know that A is k
L2−inversely strongly monotone. Therefore,

the conclusion follows from Theorem 3.1. 2

Corollary 3.3 Let E be a real uniformly smooth and 2-uniformly convex Banach space with

dual E∗ and C be a nonempty closed and convex subset of E. Let S : C → C be a relatively

nonexpansive mapping, and let A : C → E∗ be an α-inversely strongly monotone operator.

Suppose that F (S)
⋂

VI(C, A) 6= ∅. Moreover, assume that ‖Ax‖ ≤ ‖Ax − Ap‖, ∀x ∈ C and

p ∈ VI(C, A). Let the sequence {xn} be generated by the following iterative scheme:





x0 ∈ C, chosen arbitrarily,

yn = ΠC(J−1(Jxn − λnAxn)),

xn+1 = J−1(αnJyn + (1 − αn)JSΠCxn), n = 0, 1, 2, . . . .

(3.15)

If {αn} ⊂ [0, 1) such that lim infn→∞ αn(1 − αn) > 0, λn ∈ [a, b] for some a, b with

0 < a < b ≤ αc2

2 , where c ∈ (0, 1] is the same constant as that in (2.1), then {xn} converges

weakly to z = limn→∞ ΠF (S)
⋂

VI(C,A)xn.

Proof Let f(x, y) ≡ 0, for ∀x, y ∈ C, and rn ≡ 1, for ∀n ≥ 0 in Theorem 3.1. Then we know

that un = ΠCxn, for n ≥ 0. Then the result follows from Theorem 3.1. 2

Remark 3.4 Our main results of Theorem 3.1 and Corollary 3.2 can be considered as the

combination of the discussion of variational inequalities, fixed point problems for relatively non-

expansive mappings and equilibrium problems.

Corollary 3.5 Let H be a real Hilbert space and C be a nonempty closed and convex subset

of H. Let f : C × C → R be a bifunction satisfying (A1)–(A4), S : C → C be a nonexpan-

sive mapping, and A : C → H be an α−inversely strongly monotone operator. Suppose that
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D := F (S)
⋂

VI(C, A)
⋂

EP(f) 6= ∅. Moreover, assume that ‖Ax‖ ≤ ‖Ax − Ap‖, ∀x ∈ C and

p ∈ VI(C, A). Let the sequence {xn} be generated by the following iterative scheme:





x0 ∈ C, chosen arbitrarily,

un ∈ C, such that f(un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

xn+1 = αnyn + (1 − αn)Sun, n = 0, 1, 2, . . . .

(3.16)

If {αn} ⊂ [0, 1) such that lim infn→∞ αn(1 − αn) > 0, λn ∈ [a, b] for some a, b with 0 < a <

b ≤ αc2

2 , where c ∈ (0, 1] is the same constant as that in (2.1), and {rn} ⊂ [d, +∞), where d is a

positive constant, then {xn} converges weakly to limn→∞ PDxn.

Remark 3.6 If in Corollary 3.5, f(x, y) ≡ 0, for ∀x, y ∈ C and rn ≡ 1, for ∀n ≥ 0, then (3.16)

reduces to the following one:





x0 ∈ C, chosen arbitrarily,

yn = PC(xn − λnAxn),

xn+1 = αnyn + (1 − αn)SPCxn, n = 0, 1, 2, . . . .

(3.17)
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