Existence of Positive Solutions for Systems of Nonlinear Second-Order Differential Equations on the Half Line in a Banach Space

Xing Qiu ZHANG ${ }^{1,2}$
1. School of Mathematics and Statistics, Huazhong University of Science and Technology, Hubei 430074, P. R. China;
2. School of Mathematics, Liaocheng University, Shandong 252059, P. R. China

Abstract

In this paper, the cone theory and Mönch fixed point theorem combined with the monotone iterative technique are used to investigate the positive solutions for a class of systems of nonlinear singular differential equations with multi-point boundary value conditions on the half line in a Banach space. The conditions for the existence of positive solutions are formulated. In addition, an explicit iterative approximation of the solution is also derived.

Keywords systems of singular differential equations; cone and ordering; positive solutions; Mönch fixed point theorem; measure of non-compactness.

Document code A
MR(2010) Subject Classification 34B15; 34B16; 34B40
Chinese Library Classification O175.8

1. Introduction

In recent years, the theory of ordinary differential equations in Banach space has become a new important branch of investigation (see, for example, [1-4] and references therein). In a recent paper, Liu [14] investigated the existence of solutions of the following second-order two-point boundary value problems (BVP for short) on infinite intervals in a Banach space E :

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right), \quad t \in J \\
x(0)=x_{0}, \quad x^{\prime}(\infty)=y_{\infty}
\end{array}\right.
$$

where $f \in C[J \times E \times E, E], J=[0,+\infty), x^{\prime}(\infty)=\lim _{t \rightarrow \infty} x^{\prime}(t)$. The main tool used is the Sadovskii's fixed point theorem. On the other hand, the multi-point boundary value problems arising from applied mathematics and physics have been studied extensively in the literature. There are many excellent results about the existence of positive solutions for multi-point boundary value problems in scalar case (see, for instance, [5-11] and references therein). However, such

[^0]results are fewer in Banach spaces [12, 13, 16]. In [16], we investigated the positive solutions for the following multi-point boundary value problems in a Banach space E
\[

\left\{$$
\begin{array}{l}
x^{\prime \prime}(t)+f\left(t, x(t), x^{\prime}(t)\right)=0, \quad t \in J_{+} \\
x(0)=\sum_{i=1}^{m-2} \alpha_{i} x\left(\xi_{i}\right), \quad x^{\prime}(\infty)=y_{\infty}
\end{array}
$$\right.
\]

where $J=[0, \infty), J_{+}=(0, \infty), \alpha_{i} \in[0,+\infty), \xi_{i} \in(0,+\infty)$ with $0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<$ $+\infty, 0<\sum_{i=1}^{m-2} \alpha_{i}<1, \sum_{i=1}^{m-2} \alpha_{i} \xi_{i} /\left(1-\sum_{i=1}^{m-2} \alpha_{i}\right)>1$.

It seems that there are few results available for systems of second-order differential equations with multi-point in Banach spaces. In this paper, we consider the following singular m-point boundary value problem on the half line in a Banach space E :

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+f\left(t, x(t), x^{\prime}(t), y(t), y^{\prime}(t)\right)=0 \tag{1}\\
y^{\prime \prime}(t)+g\left(t, x(t), x^{\prime}(t), y(t), y^{\prime}(t)\right)=0, \quad t \in J_{+} \\
x(0)=\sum_{i=1}^{m-2} \alpha_{i} x\left(\xi_{i}\right), \quad x^{\prime}(\infty)=x_{\infty} \\
y(0)=\sum_{i=1}^{m-2} \beta_{i} y\left(\xi_{i}\right), \quad y^{\prime}(\infty)=y_{\infty}
\end{array}\right.
$$

where $J=[0, \infty), J_{+}=(0, \infty), \alpha_{i}, \beta_{i} \in[0,+\infty), \xi_{i} \in(0,+\infty)$ with $0<\xi_{1}<\xi_{2}<\cdots<$ $\xi_{m-2}<+\infty, 0<\sum_{i=1}^{m-2} \alpha_{i}<1,0<\sum_{i=1}^{m-2} \beta_{i}<1$. Nonlinear terms $f\left(t, x_{0}, x_{1}, y_{0}, y_{1}\right)$ and $g\left(t, x_{0}, x_{1}, y_{0}, y_{1}\right)$ permit singularities at $t=0, x_{i}, y_{i}=\theta(i=0,1)$ where θ denotes the zero element of Banach space E. By singularity, we mean that $\left\|f\left(t, x_{0}, x_{1}, y_{0}, y_{1}\right)\right\| \rightarrow \infty$ as $t \rightarrow 0^{+}$ or $x_{i}, y_{i} \rightarrow \theta(i=0,1)$.

Recently, using Shauder fixed point theorem, Guo [15] obtained the existence of positive solutions for a class of n th-order nonlinear impulsive singular integro-differential equations in a Banach space. Motivated by Guo's work, in this paper, we shall use the cone theory and the Mönch fixed point theorem combined with a monotone iterative technique to investigate the positive solutions BVP (1). The main features are as follows: Firstly, compared with [14], the problem we discussed here is systems of multi-point boundary value problem and nonlinear terms permit singularity not only at $t=0$ but also at $x_{i}, y_{i}=\theta(i=0,1)$. Secondly, the construction of nonempty convex closed set is completely different from that in [15] and [16] since the problems considered here are multi-point boundary value problems for systems. It is worth pointing out that by employing the new constructed nonempty convex closed set, we relax the restriction on the coefficients a_{i} and ξ_{i}, i.e., we delete the condition that $\sum_{i=1}^{m-2} \alpha_{i} \xi_{i} /\left(1-\sum_{i=1}^{m-2} \alpha_{i}\right)>1$. Furthermore, the relative compact conditions we used are weaker. Finally, an iterative sequence for the solution under some normal type conditions is established which makes it convenient in applications.

2. Preliminaries and several lemmas

Let

$$
F C[J, E]=\left\{x \in C[J, E]: \sup _{t \in J} \frac{\|x(t)\|}{t+1}<\infty\right\}
$$

and

$$
D C^{1}[J, E]=\left\{x \in C^{1}[J, E]: \sup _{t \in J} \frac{\|x(t)\|}{t+1}<\infty \text { and } \sup _{t \in J}\left\|x^{\prime}(t)\right\|<\infty\right\} .
$$

Evidently, $C^{1}[J, E] \subset C[J, E], D C^{1}[J, E] \subset F C[J, E]$. It is easy to see that $F C[J, E]$ is a Banach space with norm

$$
\|x\|_{F}=\sup _{t \in J} \frac{\|x(t)\|}{t+1}
$$

and $D C^{1}[J, E]$ is also a Banach space with norm

$$
\|x\|_{D}=\max \left\{\|x\|_{F},\left\|x^{\prime}\right\|_{C}\right\}
$$

where

$$
\left\|x^{\prime}\right\|_{C}=\sup _{t \in J}\left\|x^{\prime}(t)\right\| .
$$

Let $X=D C^{1}[J, E] \times D C^{1}[J, E]$ with norm $\|(x, y)\|_{X}=\max \left\{\|x\|_{D},\|y\|_{D}\right\}, \forall(x, y) \in X$. Then $\left(X,\|\cdot, \cdot\|_{X}\right)$ is also a Banach space. The basic space in this paper is $\left(X,\|\cdot, \cdot\|_{X}\right)$.

Let P be a normal cone in E with normal constant N which defines a partial ordering in E by $x \leq y$. If $x \leq y$ and $x \neq y$, we write $x<y$. Let $P_{+}=P \backslash\{\theta\}$. So, $x \in P_{+}$if and only if $x>\theta$. For details on cone theory, see [4].

In what follows, we always assume that $x_{\infty} \geq x_{0}^{*}, y_{\infty} \geq y_{0}^{*}, x_{0}^{*}, y_{0}^{*} \in P_{+}$. Let $P_{0 \lambda}=\{x \in$ $\left.P: x \geq \lambda x_{0}^{*}\right\}, P_{1 \lambda}=\left\{y \in P: y \geq \lambda y_{0}^{*}\right\}(\lambda>0)$. Obviously, $P_{0 \lambda}, P_{1 \lambda} \subset P_{+}$for any $\lambda>0$. When $\lambda=1$, we write $P_{0}=P_{01}, P_{1}=P_{11}$, i.e., $P_{0}=\left\{x \in P: x \geq x_{0}^{*}\right\}, P_{1}=\left\{y \in P: y \geq y_{0}^{*}\right\}$. Let $P(F)=\{x \in F C[J, E]: x(t) \geq \theta, \forall t \in J\}$, and $P(D)=\left\{x \in D C^{1}[J, E]: x(t) \geq \theta, x^{\prime}(t) \geq\right.$ $\theta, \forall t \in J\}$. Clearly, $P(F), P(D)$ are cones in $F C[J, E]$ and $D C^{1}[J, E]$, respectively. A map $(x, y) \in D C^{1}[J, E] \cap C^{2}\left[J_{+}^{\prime}, E\right]$ is called a positive solution of BVP (1) if $(x, y) \in P(D) \times P(D)$ and $(x(t), y(t))$ satisfies BVP (1).

Let $\alpha, \alpha_{F}, \alpha_{D}, \alpha_{X}$ denote Kuratowski measure of non-compactness in $E, F C[J, E], D C^{1}[J, E]$ and X, respectively. For details on the definition and properties of the measure of non-compactness, the reader is referred to references [1-4]. For notational simplicity, denote

$$
\begin{gather*}
D_{0}=\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \sum_{i=1}^{m-2} \alpha_{i} \xi_{i}, \quad D_{1}=\frac{1}{1-\sum_{i=1}^{m-2} \beta_{i}} \sum_{i=1}^{m-2} \beta_{i} \xi_{i}, \\
\lambda_{0}^{*}=\min \left\{D_{0}, 1\right\}, \quad \lambda_{1}^{*}=\min \left\{D_{1}, 1\right\} . \tag{2}
\end{gather*}
$$

Throughout this paper, we make the following assumptions.
$\left(\mathrm{H}_{1}\right) f, g \in C\left[J_{+} \times P_{0 \lambda} \times P_{0 \lambda} \times P_{1 \lambda} \times P_{1 \lambda}, P\right]$ for any $\lambda>0$ and there exist $a_{i}, b_{i}, c_{i} \in L\left[J_{+}, J\right]$ and $h_{i} \in C\left[J_{+} \times J_{+} \times J_{+} \times J_{+}, J\right](i=0,1)$ such that

$$
\begin{gathered}
\left\|f\left(t, x_{0}, x_{1}, y_{0}, y_{1}\right)\right\| \leq a_{0}(t)+b_{0}(t) h_{0}\left(\left\|x_{0}\right\|,\left\|x_{1}\right\|,\left\|y_{0}\right\|,\left\|y_{1}\right\|\right), \\
\forall t \in J_{+}, x_{i} \in P_{0 \lambda_{0}^{*}}, y_{i} \in P_{1 \lambda_{1}^{*}}, \quad i=0,1, \\
\left\|g\left(t, x_{0}, x_{1}, y_{0}, y_{1}\right)\right\| \leq a_{1}(t)+b_{1}(t) h_{1}\left(\left\|x_{0}\right\|,\left\|x_{1}\right\|,\left\|y_{0}\right\|,\left\|y_{1}\right\|\right), \\
\forall t \in J_{+}, x_{i} \in P_{0 \lambda_{0}^{*}}, y_{i} \in P_{1 \lambda_{1}^{*}}, \quad i=0,1,
\end{gathered}
$$

and

$$
\begin{aligned}
& \frac{\left\|f\left(t, x_{0}, x_{1}, y_{0}, y_{1}\right)\right\|}{c_{0}(t)\left(\left\|x_{0}\right\|+\left\|x_{1}\right\|+\left\|y_{0}\right\|+\left\|y_{1}\right\|\right)} \rightarrow 0, \frac{\left\|g\left(t, x_{0}, x_{1}, y_{0}, y_{1}\right)\right\|}{c_{1}(t)\left(\left\|x_{0}\right\|+\left\|x_{1}\right\|+\left\|y_{0}\right\|+\left\|y_{1}\right\|\right)} \rightarrow 0 \\
& \text { as } x_{i} \in P_{0 \lambda_{0}^{*}}, y_{i} \in P_{1 \lambda_{1}^{*}}(i=0,1),\left\|x_{0}\right\|+\left\|x_{1}\right\|+\left\|y_{0}\right\|+\left\|y_{1}\right\| \rightarrow \infty,
\end{aligned}
$$

uniformly for $t \in J_{+}$, and

$$
\int_{0}^{\infty} a_{i}(t) \mathrm{d} t=a_{i}^{*}<\infty, \int_{0}^{\infty} b_{i}(t) \mathrm{d} t=b_{i}^{*}<\infty, \int_{0}^{\infty} c_{i}(t)(1+t) \mathrm{d} t=c_{i}^{*}<\infty, \quad i=0,1 .
$$

$\left(\mathrm{H}_{2}\right)$ For any $t \in J_{+}$and countable bounded set $V_{i} \subset D C^{1}\left[J, P_{0 \lambda_{0}^{*}}\right], W_{i} \subset D C^{1}\left[J, P_{1 \lambda_{1}^{*}}\right](i=$ $0,1)$, there exist $L_{i}(t), K_{i}(t) \in L[J, J](i=0,1)$ such that

$$
\begin{aligned}
& \alpha\left(f\left(t, V_{0}(t), V_{1}(t), W_{0}(t), W_{1}(t)\right)\right) \leq \sum_{i=0}^{1} L_{0 i}(t) \alpha\left(V_{i}(t)\right)+K_{0 i}(t) \alpha\left(W_{i}(t)\right), \\
& \alpha\left(g\left(t, V_{0}(t), V_{1}(t), W_{0}(t), W_{1}(t)\right)\right) \leq \sum_{i=0}^{1} L_{1 i}(t) \alpha\left(V_{i}(t)\right)+K_{1 i}(t) \alpha\left(W_{i}(t)\right)
\end{aligned}
$$

with

$$
\left(D_{i}+1\right) \int_{0}^{+\infty}\left[\left(L_{i 0}(s)+K_{i 0}(s)\right)(1+s)+L_{i 1}(s)+K_{i 1}(s)\right] \mathrm{d} s<\frac{1}{2}, \quad i=0,1 .
$$

(H_{3}) $t \in J_{+}, \lambda_{0}^{*} x_{0}^{*} \leq x_{i} \leq \bar{x}_{i}, \lambda_{1}^{*} y_{0}^{*} \leq y_{i} \leq \bar{y}_{i}(i=0,1)$ imply

$$
f\left(t, x_{0}, x_{1}, y_{0}, y_{1}\right) \leq f\left(t, \bar{x}_{0}, \bar{x}_{1}, \bar{y}_{0}, \bar{y}_{1}\right), \quad g\left(t, x_{0}, x_{1}, y_{0}, y_{1}\right) \leq g\left(t, \bar{x}_{0}, \bar{x}_{1}, \bar{y}_{0}, \bar{y}_{1}\right) .
$$

Hereafter, we write $Q_{1}=\left\{x \in D C^{1}[J, P]: x^{(i)}(t) \geq \lambda_{0}^{*} x_{0}^{*}, \forall t \in J, i=0,1\right\}, Q_{2}=\{y \in$ $\left.D C^{1}[J, P]: y^{(i)}(t) \geq \lambda_{1}^{*} y_{0}^{*}, \forall t \in J, i=0,1\right\}$, and $Q=Q_{1} \times Q_{2}$. Evidently, Q_{1}, Q_{2} and Q are closed convex set in $D C^{1}[J, E]$ and X, respectively.

We shall reduce BVP (1) to a system of integral equations in E. To this end, we first consider operator A defined by

$$
\begin{equation*}
A(x, y)(t)=\left(A_{1}(x, y)(t), A_{2}(x, y)(t)\right), \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{1}(x, y)(t) \\
& =\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left[\left(\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}\right) x_{\infty}+\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right]+ \\
& \quad \int_{0}^{t} \int_{s}^{+\infty} f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s+t x_{\infty}, \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
& A_{2}(x, y)(t) \\
& =\frac{1}{1-\sum_{i=1}^{m-2} \beta_{i}}\left[\left(\sum_{i=1}^{m-2} \beta_{i} \xi_{i}\right) y_{\infty}+\sum_{i=1}^{m-2} \beta_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} g\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right]+ \\
& \quad \int_{0}^{t} \int_{s}^{+\infty} g\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s+t y_{\infty} . \tag{5}
\end{align*}
$$

Lemma 1 If condition $\left(H_{1}\right)$ is satisfied, then operator A defined by (3) is a continuous operator from Q into Q.

Proof Let

$$
\begin{equation*}
\varepsilon_{0}=\min \left\{\frac{1}{8 c_{0}^{*}\left(1+\frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{m-2}}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right)}, \frac{1}{8 c_{1}^{*}\left(1+\frac{\sum_{i=1}^{m-2} \beta_{i} \xi_{m-2}}{1-\sum_{i=1}^{m-2} \beta_{i}}\right)}\right\} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
r=\min \left\{\frac{\lambda_{0}^{*}\left\|x_{0}^{*}\right\|}{N}, \frac{\lambda_{1}^{*}\left\|y_{0}^{*}\right\|}{N}\right\}>0 \tag{7}
\end{equation*}
$$

By $\left(\mathrm{H}_{1}\right)$, there exists an $R>r$ such that

$$
\begin{gathered}
\left\|f\left(t, x_{0}, x_{1}, y_{0}, y_{1}\right)\right\| \leq \varepsilon_{0} c_{0}(t)\left(\left\|x_{0}\right\|+\left\|x_{1}\right\|+\left\|y_{0}\right\|+\left\|y_{1}\right\|\right), \forall t \in J_{+} \\
x_{i} \in P_{0 \lambda_{0}^{*}}, y_{i} \in P_{1 \lambda_{1}^{*}}, i=0,1,\left\|x_{0}\right\|+\left\|x_{1}\right\|+\left\|y_{0}\right\|+\left\|y_{1}\right\|>R
\end{gathered}
$$

and

$$
\begin{gathered}
\left\|f\left(t, x_{0}, x_{1}, y_{0}, y_{1}\right)\right\| \leq a_{0}(t)+M_{0} b_{0}(t), \forall t \in J_{+}, \\
x_{i} \in P_{0 \lambda_{0}^{*}}, y_{i} \in P_{1 \lambda_{1}^{*}}, i=0,1,\left\|x_{0}\right\|+\left\|x_{1}\right\|+\left\|y_{0}\right\|+\left\|y_{1}\right\| \leq R
\end{gathered}
$$

where

$$
M_{0}=\max \left\{h_{0}\left(u_{0}, u_{1}, v_{0}, v_{1}\right): r \leq u_{i}, v_{i} \leq R, i=0,1\right\}
$$

Hence

$$
\begin{gather*}
\left\|f\left(t, x_{0}, x_{1}, y_{0}, y_{1}\right)\right\| \leq \varepsilon_{0} c_{0}(t)\left(\left\|x_{0}\right\|+\left\|x_{1}\right\|+\left\|y_{0}\right\|+\left\|y_{1}\right\|\right)+a_{0}(t)+M_{0} b_{0}(t) \\
\forall t \in J_{+}, x_{i} \in P_{0 \lambda_{0}^{*}}, y_{i} \in P_{1 \lambda_{1}^{*}}, i=0,1 \tag{8}
\end{gather*}
$$

Let $(x, y) \in Q$. By (8) we have

$$
\begin{align*}
& \left\|f\left(t, x(t), x^{\prime}(t), y(t), y^{\prime}(t)\right)\right\| \\
& \quad \leq \varepsilon_{0} c_{0}(t)(1+t)\left(\frac{\|x(t)\|}{t+1}+\frac{\left\|x^{\prime}(t)\right\|}{t+1}+\frac{\|y(t)\|}{t+1}+\frac{\left\|y^{\prime}(t)\right\|}{t+1}\right)+a_{0}(t)+M_{0} b_{0}(t) \\
& \quad \leq \varepsilon_{0} c_{0}(t)(1+t)\left(\|x\|_{F}+\left\|x^{\prime}\right\|_{C}+\|y\|_{F}+\left\|y^{\prime}\right\|_{C}\right)+a_{0}(t)+M_{0} b_{0}(t) \\
& \quad \leq 2 \varepsilon_{0} c_{0}(t)(1+t)\left(\|x\|_{D}+\|y\|_{D}\right)+a_{0}(t)+M_{0} b_{0}(t) \\
& \quad \leq 4 \varepsilon_{0} c_{0}(t)(1+t)\|(x, y)\|_{X}+a_{0}(t)+M_{0} b_{0}(t), \forall t \in J_{+} \tag{9}
\end{align*}
$$

which together with condition $\left(\mathrm{H}_{2}\right)$ implies the convergence of the infinite integral

$$
\begin{equation*}
\int_{0}^{\infty}\left\|f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right)\right\| \mathrm{d} s \tag{10}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
& \left\|\int_{0}^{t} \int_{s}^{+\infty} f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right\| \\
& \quad \leq \int_{0}^{t} \int_{s}^{+\infty}\left\|f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right)\right\| \mathrm{d} \tau \mathrm{~d} s \\
& \quad \leq t \int_{0}^{\infty}\left\|f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right)\right\| \mathrm{d} s . \forall t \in J_{+} \tag{11}
\end{align*}
$$

This together with (4) and $\left(\mathrm{H}_{1}\right)$ means that

$$
\begin{aligned}
\|\left(A_{1}(x, y)(t) \| \leq\right. & \int_{0}^{t} \int_{s}^{+\infty}\left\|f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right)\right\| \mathrm{d} \tau \mathrm{~d} s+t\left\|x_{\infty}\right\|+\frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left\|x_{\infty}\right\|+ \\
& \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{m-2}} \int_{s}^{+\infty}\left\|f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right)\right\| \mathrm{d} \tau \mathrm{~d} s \\
\leq & t\left(\int_{0}^{+\infty}\left\|f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right)\right\| \mathrm{d} \tau+\left\|x_{\infty}\right\|\right)+\frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left\|x_{\infty}\right\|+ \\
& \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \sum_{i=1}^{m-2} \alpha_{i} \xi_{m-2}\left(\int_{0}^{+\infty}\left\|f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right)\right\| \mathrm{d} \tau\right)
\end{aligned}
$$

Therefore, by (6) and (9), we get

$$
\begin{align*}
\frac{\left\|A_{1}(x, y)(t)\right\|}{1+t} \leq & \int_{0}^{+\infty}\left\|f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right)\right\| \mathrm{d} \tau+\left\|x_{\infty}\right\|+\frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left\|x_{\infty}\right\|+ \\
& \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \sum_{i=1}^{m-2} \alpha_{i} \xi_{m-2}\left(\int_{0}^{+\infty}\left\|f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right)\right\| \mathrm{d} \tau\right) \\
\leq & \left(1+\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \sum_{i=1}^{m-2} \alpha_{i} \xi_{m-2}\right)\left[4 \varepsilon_{0} c_{0}^{*}\|(x, y)\|_{X}+a_{0}^{*}+M_{0} b_{0}^{*}\right]+ \\
& \left(1+\frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right)\left\|x_{\infty}\right\| \\
\leq & \frac{1}{2}\|(x, y)\|_{X}+\left(1+\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \sum_{i=1}^{m-2} \alpha_{i} \xi_{m-2}\right)\left(a_{0}^{*}+M_{0} b_{0}^{*}\right)+ \\
& \left(1+\frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right)\left\|x_{\infty}\right\| . \tag{12}
\end{align*}
$$

Differentiating (4), we find

$$
\begin{equation*}
A_{1}^{\prime}(x, y)(t)=\int_{t}^{+\infty} f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right) \mathrm{d} s+x_{\infty} \tag{13}
\end{equation*}
$$

Hence,

$$
\begin{align*}
\left\|A_{1}^{\prime}(x, y)(t)\right\| & \leq \int_{0}^{+\infty}\left\|f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right)\right\| \mathrm{d} s+\left\|x_{\infty}\right\| \\
& \leq 4 \varepsilon_{0} c_{0}^{*}\|(x, y)\|_{X}+a_{0}^{*}+M_{0} b_{0}^{*}+\left\|x_{\infty}\right\| \\
& \leq \frac{1}{2}\|(x, y)\|_{X}+a_{0}^{*}+M_{0} b_{0}^{*}+\left\|x_{\infty}\right\|, \quad \forall t \in J \tag{14}
\end{align*}
$$

By (12) and (14), we have

$$
\begin{equation*}
\left\|A_{1}(x, y)\right\|_{D} \leq \frac{1}{2}\|(x, y)\|_{X}+\left(1+\frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{m-2}}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right)\left(a_{0}^{*}+M_{0} b_{0}^{*}\right)+\left(1+\frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right)\left\|x_{\infty}\right\| \tag{15}
\end{equation*}
$$

So, $A_{1}(x, y) \in D C^{1}[J, E]$. On the other hand, it can be easily seen that

$$
A_{1}(x, y)(t) \geq \frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}} x_{\infty} \geq \lambda_{0}^{*} x_{\infty} \geq \lambda_{0}^{*} x_{0}^{*}, \quad A_{1}^{\prime}(x, y)(t) \geq x_{\infty} \geq x_{0}^{*} \geq \lambda_{0}^{*} x_{0}^{*}, \forall t \in J
$$

That is, $A_{1}(x, y) \in Q_{1}$. In the same way, one has

$$
\begin{equation*}
\left\|A_{2}(x, y)\right\|_{D} \leq \frac{1}{2}\|(x, y)\|_{X}+\left(1+\frac{\sum_{i=1}^{m-2} \beta_{i} \xi_{m-2}}{1-\sum_{i=1}^{m-2} \beta_{i}}\right)\left(a_{1}^{*}+M_{1} b_{1}^{*}\right)+\left(1+\frac{\sum_{i=1}^{m-2} \beta_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \beta_{i}}\right)\left\|y_{\infty}\right\| \tag{16}
\end{equation*}
$$

and

$$
A_{2}(x, y)(t) \geq \frac{\sum_{i=1}^{m-2} \beta_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \beta_{i}} y_{\infty} \geq \lambda_{1}^{*} y_{\infty} \geq \lambda_{1}^{*} y_{0}^{*}, \quad A_{2}^{\prime}(x, y)(t) \geq y_{\infty} \geq y_{0}^{*} \geq \lambda_{1}^{*} y_{0}^{*}, \forall t \in J
$$

where $M_{1}=\max \left\{h_{1}\left(u_{0}, u_{1}, v_{0}, v_{1}\right): r \leq u_{i}, v_{i} \leq R(i=0,1)\right\}$. Thus, we have proved that A maps Q into Q and we have

$$
\begin{equation*}
\|A(x, y)\|_{X} \leq \frac{1}{2}\|(x, y)\|_{X}+\gamma \tag{17}
\end{equation*}
$$

where

$$
\begin{align*}
\gamma= & \max \left\{\left(1+\frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{m-2}}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right)\left(a_{0}^{*}+M_{0} b_{0}^{*}\right)+\left(1+\frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right)\left\|x_{\infty}\right\|\right. \\
& \left.\left(1+\frac{\sum_{i=1}^{m-2} \beta_{i} \xi_{m-2}}{1-\sum_{i=1}^{m-2} \beta_{i}}\right)\left(a_{1}^{*}+M_{1} b_{1}^{*}\right)+\left(1+\frac{\sum_{i=1}^{m-2} \beta_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \beta_{i}}\right)\left\|y_{\infty}\right\|\right\} \tag{18}
\end{align*}
$$

Finally, we show that A is continuous. Let $\left(x_{m}, y_{m}\right),(\bar{x}, \bar{y}) \in Q,\left\|\left(x_{m}, y_{m}\right)-(\bar{x}, \bar{y})\right\|_{X} \rightarrow$ $0(m \rightarrow \infty)$. Then $\left\{\left(x_{m}, y_{m}\right)\right\}$ is a bounded subset of Q. Thus, there exists $r>0$ such that $\sup _{m}\left\|\left(x_{m}, y_{m}\right)\right\|_{X}<r$ for $m \geq 1$ and $\|(\bar{x}, \bar{y})\|_{X} \leq r+1$. Similarly to (12) and (14), it is easy to see that

$$
\begin{align*}
& \left\|A_{1}\left(x_{m}, y_{m}\right)-A_{1}(\bar{x}, \bar{y})\right\|_{X} \\
& \leq \int_{0}^{+\infty}\left\|f\left(s, x_{m}(s), x_{m}^{\prime}(s), y_{m}(s), y_{m}^{\prime}(s)\right)-f\left(s, \bar{x}(s), \overline{x^{\prime}}(s), \bar{y}(s), \overline{y^{\prime}}(s)\right)\right\| \mathrm{d} s+ \\
& \quad \frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{m-2}}{1-\sum_{i=1}^{m-2} \alpha_{i}} \int_{0}^{+\infty} \| f\left(s, x_{m}(s), x_{m}^{\prime}(s), y_{m}(s), y_{m}^{\prime}(s)\right)- \\
& \quad f\left(s, \bar{x}(s), \bar{x}^{\prime}(s), \bar{y}(s), \bar{y}^{\prime}(s)\right) \| \mathrm{d} s \tag{19}
\end{align*}
$$

Clearly,

$$
\begin{equation*}
f\left(t, x_{m}(t), x_{m}^{\prime}(t), y_{m}(t), y_{m}^{\prime}(t)\right) \rightarrow f\left(t, \bar{x}(t), \bar{x}^{\prime}(t), \bar{y}(t), \bar{y}^{\prime}(t)\right) \text { as } m \rightarrow \infty, \forall t \in J_{+} \tag{20}
\end{equation*}
$$

By (9), we get

$$
\begin{align*}
& \left\|f\left(t, x_{m}(t), x_{m}^{\prime}(t), y_{m}(t), y_{m}^{\prime}(t)\right)-f\left(t, \bar{x}(t), \bar{x}^{\prime}(t), \bar{y}(t), \bar{y}^{\prime}(t)\right)\right\| \\
& \quad \leq 8 \varepsilon_{0} c_{0}(t)(1+t) r+2 a_{0}(t)+2 M_{0} b_{0}(t) \\
& \quad=\sigma_{0}(t) \in L[J, J], \quad m=1,2,3, \ldots, \forall t \in J_{+} \tag{21}
\end{align*}
$$

Lebesgue dominated convergence theorem together with (20) and (21) guarantees that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{0}^{\infty}\left\|f\left(s, x_{m}(s), x_{m}^{\prime}(s), y_{m}(s), y_{m}^{\prime}(s)\right)-f\left(s, \bar{x}(s), \bar{x}^{\prime}(s), \bar{y}(s), \bar{y}^{\prime}(s)\right)\right\| \mathrm{d} s=0 \tag{22}
\end{equation*}
$$

It follows from (19) and (22) that $\left\|A_{1}\left(x_{m}, y_{m}\right)-A_{1}(\bar{x}, \bar{y})\right\|_{D} \rightarrow 0$ as $m \rightarrow \infty$. By the same method, we have $\left\|A_{2}\left(x_{m}, y_{m}\right)-A_{2}(\bar{x}, \bar{y})\right\|_{D} \rightarrow 0$ as $m \rightarrow \infty$. Therefore, the continuity of A is proved.

Lemma 2 If condition $\left(H_{1}\right)$ is satisfied, then $(x, y) \in Q \cap\left(C^{2}\left[J_{+}, E\right] \times C^{2}\left[J_{+}, E\right]\right)$ is a solution of $B V P(1)$ if and only if $(x, y) \in Q$ is a fixed point of operator A.

Proof Suppose that $(x, y) \in Q \cap\left(C^{2}\left[J_{+}, E\right] \times C^{2}\left[J_{+}, E\right]\right)$ is a solution of BVP (1). For $t \in J$, integrating (1) from t to $+\infty$, we have

$$
\begin{align*}
& x^{\prime}(t)=x_{\infty}+\int_{t}^{+\infty} f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right) \mathrm{d} s \tag{23}\\
& y^{\prime}(t)=y_{\infty}+\int_{t}^{+\infty} g\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right) \mathrm{d} s \tag{24}
\end{align*}
$$

Integrating (23) and (24) from 0 to t, we get

$$
\begin{align*}
& x(t)=x(0)+t x_{\infty}+\int_{0}^{t} \int_{s}^{+\infty} f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s \tag{25}\\
& y(t)=y(0)+t y_{\infty}+\int_{0}^{t} \int_{s}^{+\infty} g\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s \tag{26}
\end{align*}
$$

Thus, we obtain

$$
x\left(\xi_{i}\right)=x(0)+\xi_{i} x_{\infty}+\int_{0}^{\xi_{i}} \int_{s}^{+\infty} f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s
$$

and

$$
y\left(\xi_{i}\right)=y(0)+\xi_{i} y_{\infty}+\int_{0}^{\xi_{i}} \int_{s}^{+\infty} g\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s
$$

which together with the boundary value condition implies that

$$
\begin{equation*}
x(0)=\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left[\left(\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}\right) x_{\infty}+\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi} \int_{s}^{+\infty} f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right], \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
y(0)=\frac{1}{1-\sum_{i=1}^{m-2} \beta_{i}}\left[\left(\sum_{i=1}^{m-2} \beta_{i} \xi_{i}\right) y_{\infty}+\sum_{i=1}^{m-2} \beta_{i} \int_{0}^{\xi} \int_{s}^{+\infty} g\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right] . \tag{28}
\end{equation*}
$$

Substituting (27), (28) into (25) and (26), respectively, we have

$$
\begin{aligned}
x(t)= & \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left[\left(\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}\right) x_{\infty}+\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right]+ \\
& \int_{0}^{t} \int_{s}^{+\infty} f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s+t x_{\infty}
\end{aligned}
$$

and

$$
\begin{aligned}
y(t)= & \frac{1}{1-\sum_{i=1}^{m-2} \beta_{i}}\left[\left(\sum_{i=1}^{m-2} \beta_{i} \xi_{i}\right) y_{\infty}+\sum_{i=1}^{m-2} \beta_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} g\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right]+ \\
& \int_{0}^{t} \int_{s}^{+\infty} g\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s+t y_{\infty}
\end{aligned}
$$

Integrals $\int_{0}^{t} \int_{s}^{+\infty} f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{d} s$ and $\int_{0}^{t} \int_{s}^{+\infty} g\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{d} s$ are obviously convergent. Therefore, (x, y) is a fixed point of operator A.

Conversely, if (x, y) is fixed point of operator A, then direct differentiation gives the proof.
Lemma 3 Let $\left(H_{1}\right)$ be satisfied, $V \subset Q$ be a bounded set. Then $\frac{\left(A_{i} V\right)(t)}{1+t}$ and $\left(A_{i}^{\prime} V\right)(t)$ are equicontinuous on any finite subinterval of J and for any $\varepsilon>0$, there exists $N_{i}>0$ such that

$$
\left\|\frac{A_{i}(x, y)\left(t_{1}\right)}{1+t_{1}}-\frac{A_{i}(x, y)\left(t_{2}\right)}{1+t_{2}}\right\|<\varepsilon, \quad\left\|A_{i}^{\prime}(x, y)\left(t_{1}\right)-A_{i}^{\prime}(x, y)\left(t_{2}\right)\right\|<\varepsilon
$$

uniformly with respect to $(x, y) \in V$ as $t_{1}, t_{2} \geq N_{i}(i=1,2)$.
Proof We only give the proof for operator A_{1}, and the proof for operator A_{2} can be given in a similar way. From (4), we find

$$
\begin{align*}
& A_{1}(x, y)(t) \\
&= \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left[\left(\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}\right) x_{\infty}+\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right]+ \\
& \int_{0}^{t} \int_{s}^{+\infty} f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s+t x_{\infty} \\
&= \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left[\left(\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}\right) x_{\infty}+\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right]+ \\
& t x_{\infty}+t \int_{t}^{+\infty} f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right) \mathrm{d} s+\int_{0}^{t} s f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right) \mathrm{d} s . \tag{29}
\end{align*}
$$

For $(x, y) \in V, t_{2}>t_{1}$, we have by (29)

$$
\begin{align*}
& \| \frac{A_{1}(x, y)\left(t_{1}\right)}{1+t_{1}}-\frac{A_{1}(x, y)\left(t_{2}\right)}{1+t_{2}} \| \\
& \quad \leq\left|\frac{1}{1+t_{1}}-\frac{1}{1+t_{2}}\right| \cdot \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left[\left(\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}\right)\left\|x_{\infty}\right\|+\right. \\
&\left.\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} f\left(\tau, x(\tau), x^{\prime}(\tau), y(\tau), y^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right]+\left|\frac{t_{1}}{1+t_{1}}-\frac{t_{2}}{1+t_{2}}\right| \cdot\left\|x_{\infty}\right\|+ \\
&\left|\frac{t_{1}}{1+t_{1}}-\frac{t_{2}}{1+t_{2}}\right| \cdot\left\|\int_{0}^{+\infty} f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right) \mathrm{d} s\right\|+ \\
&\left|\frac{t_{1}}{1+t_{1}}-\frac{t_{2}}{1+t_{2}}\right| \cdot\left\|\int_{0}^{t_{1}} f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right) \mathrm{d} s\right\|+ \\
& \quad \frac{t_{2}}{1+t_{2}}\left\|\int_{t_{1}}^{t_{2}} f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right) \mathrm{d} s\right\|+ \\
&\left|\frac{1}{1+t_{1}}-\frac{1}{1+t_{2}}\right| \cdot\left\|\int_{0}^{t_{1}} s f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right) \mathrm{d} s\right\|+ \\
&\left\|\int_{t_{1}}^{t_{2}} s f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right) \mathrm{d} s\right\| . \tag{30}
\end{align*}
$$

Then, it is easy to see by (30) and $\left(\mathrm{H}_{1}\right)$ that $\left\{\frac{A_{1} V(t)}{1+t}\right\}$ is equicontinuous on any finite subinterval of J.

Since $V \subset Q$ is bounded, there exists $r>0$ such that for any $(x, y) \in V,\|(x, y)\|_{X} \leq r$. By
(13), we get

$$
\begin{align*}
\left\|A_{1}^{\prime}(x, y)\left(t_{1}\right)-A_{1}^{\prime}(x, y)\left(t_{2}\right)\right\| & =\left\|\int_{t_{1}}^{t_{2}} f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right) \mathrm{d} s\right\| \\
& \leq \int_{t_{1}}^{t_{2}}\left[4 \varepsilon_{0} r c_{0}(s)(1+s)+a_{0}(s)+M_{0} b_{0}(s)\right] \mathrm{d} s \tag{31}
\end{align*}
$$

It follows from (31), (H_{1}) and the absolute continuity of Lebesgue integral that $\left\{A_{1}^{\prime} V(t)\right\}$ is equicontinuous on any finite subinterval of J.

In the following, we are in position to show that for any $\varepsilon>0$, there exists $N_{1}>0$ such that

$$
\left\|\frac{A_{1}(x, y)\left(t_{1}\right)}{1+t_{1}}-\frac{A_{1}(x, y)\left(t_{2}\right)}{1+t_{2}}\right\|<\varepsilon, \quad\left\|A_{1}^{\prime}(x, y)\left(t_{1}\right)-A_{1}^{\prime}(x, y)\left(t_{2}\right)\right\|<\varepsilon
$$

uniformly with respect to $x \in V$ as $t_{1}, t_{2} \geq N$.
Combining with (30), we need only to show that for any $\varepsilon>0$, there exists sufficiently large $N>0$ such that

$$
\left\|\int_{0}^{t_{1}} \frac{s}{1+t_{1}} f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right) \mathrm{d} s-\int_{0}^{t_{2}} \frac{s}{1+t_{2}} f\left(s, x(s), x^{\prime}(s), y(s), y^{\prime}(s)\right) \mathrm{d} s\right\|<\varepsilon
$$

for all $x \in V$ as $t_{1}, t_{2} \geq N$. The rest part of the proof is very similar to Lemma 2.3 in [14], and we omit the details.

Lemma 4 Let $\left(H_{1}\right)$ be satisfied, V be a bounded set in $D C^{1}[J, E] \times D C^{1}[J, E]$. Then

$$
\alpha_{D}\left(A_{i} V\right)=\max \left\{\sup _{t \in J} \alpha\left(\frac{\left(A_{i} V\right)(t)}{1+t}\right), \quad \sup _{t \in J} \alpha\left(\left(A_{i} V\right)^{\prime}(t)\right)\right\}, \quad i=0,1
$$

Proof The proof is similar to that of Lemma 2.4 in [14], we omit it.
Lemma 5 ([1, 2], Mönch Fixed-Point Theorem) Let Q be a closed convex set of E and $u \in Q$. Assume that the continuous operator $F: Q \rightarrow Q$ has the following property: $V \subset Q$ countable, $V \subset \overline{\mathrm{co}}(\{u\} \cup F(V)) \Longrightarrow V$ is relatively compact. Then F has a fixed point in Q.

Lemma 6 If $\left(H_{3}\right)$ is satisfied, then for $x, y \in Q, x^{(i)} \leq y^{(i)}, t \in J(i=0,1)$ imply that $(A x)^{(i)} \leq(A y)^{(i)}, t \in J(i=0,1)$.

Proof It is easy to see that this lemma follows from (4), (5), (13) and condition $\left(\mathrm{H}_{3}\right)$. The proof is obvious.

Lemma 7 ([16]) Let D and F be bounded sets in E. Then

$$
\widetilde{\alpha}(D \times F)=\max \{\alpha(D), \alpha(F)\}
$$

where $\widetilde{\alpha}$ and α denote the Kuratowski measure of non-compactness in $E \times E$ and E, respectively.
Lemma 8 ([16]) Let P be normal (fully regular) in E, $\widetilde{P}=P \times P$. Then \widetilde{P} is normal (fully regular) in $E \times E$.

3. Main results

Theorem 1 If conditions $\left(H_{1}\right)$ and $\left(H_{2}\right)$ are satisfied, then $B V P(1)$ has a positive solution $(\bar{x}, \bar{y}) \in\left(D C^{1}[J, E] \cap C^{2}\left[J_{+}^{\prime}, E\right]\right) \times\left(D C^{1}[J, E] \cap C^{2}\left[J_{+}^{\prime}, E\right]\right)$ satisfying $(\bar{x})^{(i)}(t) \geq \lambda_{0}^{*} x_{0}^{*},(\bar{y})^{(i)}(t) \geq$ $\lambda_{1}^{*} y_{0}^{*}$ for $t \in J(i=0,1)$.

Proof By Lemma 1, operator A defined by (3) is a continuous operator from Q into Q, and, by Lemma 2, we need only to show that A has a fixed point (\bar{x}, \bar{y}) in Q. Choose $R>2 \gamma$ and let $Q^{*}=\left\{(x, y) \in Q:\|(x, y)\|_{X} \leq R\right\}$. Obviously, Q^{*} is a bounded closed convex set in space $D C^{1}[J, E] \times D C^{1}[J, E]$. It is easy to see that Q^{*} is not empty since $\left((1+t) x_{\infty},(1+t) y_{\infty}\right) \in Q^{*}$. It follows from (17), (18) that $(x, y) \in Q^{*}$ implies that $A(x, y) \in Q^{*}$, i.e., A maps Q^{*} into Q^{*}. Let $V=\left\{\left(x_{m}, y_{m}\right): m=1,2, \ldots\right\} \subset Q^{*}$ satisfying $V \subset \overline{\operatorname{co}}\left\{\left\{\left(u_{0}, v_{0}\right)\right\} \cup A V\right\}$ for some $\left(u_{0}, v_{0}\right) \in Q^{*}$. Then $\left\|\left(x_{m}, y_{m}\right)\right\|_{X} \leq R$. We have, by (4) and (13),

$$
\begin{align*}
& A_{1}\left(x_{m}, y_{m}\right)(t) \\
& =\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left[\left(\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}\right) x_{\infty}+\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} f\left(\tau, x_{m}(\tau), x_{m}^{\prime}(\tau), y_{m}(\tau), y_{m}^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right]+ \\
& \quad \int_{0}^{t} \int_{s}^{+\infty} f\left(\tau, x_{m}(\tau), x_{m}^{\prime}(\tau), y_{m}(\tau), y_{m}^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s+t x_{\infty} \tag{32}
\end{align*}
$$

and

$$
\begin{equation*}
A_{1}^{\prime}\left(x_{m}, y_{m}\right)(t)=\int_{t}^{+\infty} f\left(s, x_{m}(s), x_{m}^{\prime}(s), y_{m}(s), y_{m}^{\prime}(s)\right) \mathrm{d} s+x_{\infty} \tag{33}
\end{equation*}
$$

Lemma 4 implies that

$$
\begin{equation*}
\alpha_{D}\left(A_{1} V\right)=\max \left\{\sup _{t \in J} \alpha\left(\left(A_{1} V\right)^{\prime}(t)\right), \quad \sup _{t \in J} \alpha\left(\frac{\left(A_{1} V\right)(t)}{1+t}\right)\right\} \tag{34}
\end{equation*}
$$

where $\left(A_{1} V\right)(t)=\left\{A_{1}\left(x_{m}, y_{m}\right)(t): m=1,2,3, \ldots\right\}$, and $\left(A_{1} V\right)^{\prime}(t)=\left\{A_{1}^{\prime}\left(x_{m}, y_{m}\right)(t): m=\right.$ $1,2,3, \ldots\}$.

By (10), we know that the infinite integral $\int_{0}^{+\infty}\left\|f\left(t, x(t), x^{\prime}(t), y(t), y^{\prime}(t)\right)\right\| \mathrm{d} t$ is convergent uniformly for $m=1,2,3, \ldots$ So, for any $\varepsilon>0$, we can choose a sufficiently large $T>\xi_{i}$ ($i=$ $1,2, \ldots, m-2)>0$ such that

$$
\begin{equation*}
\int_{T}^{+\infty}\left\|f\left(t, x(t), x^{\prime}(t), y(t), y^{\prime}(t)\right)\right\| \mathrm{d} t<\varepsilon \tag{35}
\end{equation*}
$$

Then, by Guo et al. [1, Theorem 1.2.3] (29), (32), (33), (35), (H_{2}) and Lemma 7, we obtain

$$
\begin{aligned}
& \alpha\left(\frac{\left(A_{1} V\right)(t)}{1+t}\right) \\
& \quad \leq 2 \frac{D_{0}}{1+t} \int_{0}^{T} \alpha\left(\left\{f\left(s, x_{m}(s), x_{m}^{\prime}(s), y_{m}(s), y_{m}^{\prime}(s)\right):\left(x_{m}, y_{m}\right) \in V\right\}\right) \mathrm{d} s+2 \varepsilon+ \\
& 2 \int_{0}^{T} \frac{t}{1+t} \alpha\left(\left\{f\left(s, x_{m}(s), x_{m}^{\prime}(s), y_{m}(s), y_{m}^{\prime}(s)\right):\left(x_{m}, y_{m}\right) \in V\right\}\right) \mathrm{d} s+2 \varepsilon \\
& \quad \leq\left(2 D_{0}+2\right) \int_{0}^{+\infty} \alpha\left(\left\{f\left(s, x_{m}(s), x_{m}^{\prime}(s), y_{m}(s), y_{m}^{\prime}(s)\right):\left(x_{m}, y_{m}\right) \in V\right\}\right) \mathrm{d} s+4 \varepsilon
\end{aligned}
$$

$$
\begin{equation*}
\leq\left(2 D_{0}+2\right) \alpha_{X}(V) \int_{0}^{+\infty}\left(L_{00}(s)+K_{00}(s)\right)(1+s)+\left(L_{01}(s)+K_{01}(s)\right) \mathrm{d} s+4 \varepsilon \tag{36}
\end{equation*}
$$

and

$$
\begin{align*}
\alpha\left(\left(A_{1}^{\prime} V\right)(t)\right) & \leq 2 \int_{0}^{+\infty} \alpha\left(\left\{f\left(s, x_{m}(s), x_{m}^{\prime}(s), y_{m}(s), y_{m}^{\prime}(s)\right):\left(x_{m}, y_{m}\right) \in V\right\}\right) \mathrm{d} s+2 \varepsilon \\
& \leq \alpha_{X}(V) \int_{0}^{+\infty}\left(L_{00}(s)+K_{00}(s)\right)(1+s)+\left(L_{01}(s)+K_{01}(s)\right) \mathrm{d} s+2 \varepsilon \tag{37}
\end{align*}
$$

It follows from (34), (36) and (37) that

$$
\begin{equation*}
\alpha_{D}\left(A_{1} V\right) \leq\left(2 D_{0}+2\right) \alpha_{X}(V) \int_{0}^{+\infty}\left(L_{00}(s)+K_{00}(s)\right)(1+s)+\left(L_{01}(s)+K_{01}(s)\right) \mathrm{d} s \tag{38}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
\alpha_{D}\left(A_{2} V\right) \leq\left(2 D_{1}+2\right) \alpha_{X}(V) \int_{0}^{+\infty}\left(L_{10}(s)+K_{10}(s)\right)(1+s)+\left(L_{11}(s)+K_{11}(s)\right) \mathrm{d} s \tag{39}
\end{equation*}
$$

On the other hand, $\alpha_{X}(V) \leq \alpha_{X}\{\overline{c o}(\{u\} \cup(A V))\}=\alpha_{X}(A V)$. Then, (38), (39), (H_{2}) and Lemma 7 imply $\alpha_{X}(V)=0$. That is, V is relatively compact in $D C^{1}[J, E] \times D C^{1}[J, E]$. Hence, the Mönch fixed point theorem guarantees that A has a fixed point (\bar{x}, \bar{y}) in Q_{1}. Thus, Theorem 1 is proved.

Theorem 2 Let cone P be normal and conditions $\left(H_{1}\right)-\left(H_{3}\right)$ be satisfied. Then BVP (1) has a positive solution $(\bar{x}, \bar{y}) \in Q \cap\left(C^{2}\left[J_{+}^{\prime}, E\right] \times C^{2}\left[J_{+}^{\prime}, E\right]\right)$ which is minimal in the sense that $u^{(i)}(t) \geq \bar{x}^{(i)}(t), v^{(i)}(t) \geq \bar{y}^{(i)}(t), t \in J(i=0,1)$ for any positive solution $(u, v) \in Q \cap$ $\left(C^{2}\left[J_{+}^{\prime}, E\right] \times C^{2}\left[J_{+}^{\prime}, E\right]\right)$ of BVP (1). Moreover, $\|(\bar{x}, \bar{y})\|_{X} \leq 2 \gamma+\left\|\left(u_{0}, v_{0}\right)\right\|_{X}$, and there exists a monotone iterative sequence $\left\{\left(u_{m}(t), v_{m}(t)\right)\right\}$ such that $u_{m}^{(i)}(t) \rightarrow \bar{x}^{(i)}(t), v_{m}^{(i)}(t) \rightarrow \bar{y}^{(i)}(t)$ as $m \rightarrow \infty(i=0,1)$ uniformly on J and $u_{m}^{\prime \prime}(t) \rightarrow \bar{x}^{\prime \prime}(t), v_{m}^{\prime \prime}(t) \rightarrow \bar{y}^{\prime \prime}(t)$ as $m \rightarrow \infty$ for any $t \in J_{+}^{\prime}$, where

$$
\begin{align*}
u_{0}(t)= & \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left[\left(\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}\right) x_{\infty}+\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} f\left(\tau, \lambda_{0}^{*} x_{0}^{*}, \lambda_{0}^{*} x_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}\right) \mathrm{d} \tau \mathrm{~d} s\right]+ \\
& \int_{0}^{t} \int_{s}^{+\infty} f\left(\tau, \lambda_{0}^{*} x_{0}^{*}, \lambda_{0}^{*} x_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}\right) \mathrm{d} \tau \mathrm{~d} s+t x_{\infty} \tag{40}\\
v_{0}(t)= & \frac{1}{1-\sum_{i=1}^{m-2} \beta_{i}}\left[\left(\sum_{i=1}^{m-2} \beta_{i} \xi_{i}\right) y_{\infty}+\sum_{i=1}^{m-2} \beta_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} g\left(\tau, \lambda_{0}^{*} x_{0}^{*}, \lambda_{0}^{*} x_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}\right) \mathrm{d} \tau \mathrm{~d} s\right]+ \\
& \int_{0}^{t} \int_{s}^{+\infty} g\left(\tau, \lambda_{0}^{*} x_{0}^{*}, \lambda_{0}^{*} x_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}\right) \mathrm{d} \tau \mathrm{~d} s+t y_{\infty} \tag{41}
\end{align*}
$$

and

$$
\begin{aligned}
u_{m}(t)= & \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left[\left(\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}\right) x_{\infty}+\right. \\
& \left.\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} f\left(\tau, u_{m-1}(\tau), u_{m-1}^{\prime}(\tau), v_{m-1}(\tau), v_{m-1}^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right]+
\end{aligned}
$$

$$
\begin{align*}
& \int_{0}^{t} \int_{s}^{+\infty} f\left(\tau, u_{m-1}(\tau), u_{m-1}^{\prime}(\tau), v_{m-1}(\tau), v_{m-1}^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s+t x_{\infty}, \\
v_{m}(t)= & \frac{1}{1-\sum_{i=1}^{m-2} \beta_{i}}\left[\left(\sum_{i=1}^{m-2} \beta_{i} \xi_{i}\right) y_{\infty}+\right. \tag{42}\\
& \left.\sum_{i=1}^{m-2} \beta_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} g\left(\tau, u_{m-1}(\tau), u_{m-1}^{\prime}(\tau), v_{m-1}(\tau), v_{m-1}^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right]+ \\
& \int_{0}^{t} \int_{s}^{+\infty} g\left(\tau, u_{m-1}(\tau), u_{m-1}^{\prime}(\tau), v_{m-1}(\tau), v_{m-1}^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s+t y_{\infty} \\
& \forall t \in J, m=1,2,3, \ldots
\end{align*}
$$

Proof From (40) and (41) one can see that $\left(u_{0}, v_{0}\right) \in C[J, E] \times C[J, E]$ and

$$
\begin{equation*}
u_{0}^{\prime}(t)=\int_{t}^{+\infty} f\left(s, \lambda_{0}^{*} x_{0}^{*}, \lambda_{0}^{*} x_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}\right) \mathrm{d} s+x_{\infty} \tag{44}
\end{equation*}
$$

By (40) and (44), we know that $u_{0}^{(i)} \geq \lambda_{0}^{*} x_{\infty} \geq \lambda_{0}^{*} x_{0}^{*}(i=0,1)$ and

$$
\begin{aligned}
& \left\|u_{0}(t)\right\| \\
& \leq t\left(\int_{0}^{+\infty}\left\|f\left(\tau, \lambda_{0}^{*} x_{0}^{*}, \lambda_{0}^{*} x_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}\right)\right\| \mathrm{d} \tau+\left\|x_{\infty}\right\|\right)+\frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left\|x_{\infty}\right\|+ \\
& \quad \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \sum_{i=1}^{m-2} \alpha_{i} \xi_{m-2}\left(\int_{0}^{+\infty}\left\|f\left(\tau, \lambda_{0}^{*} x_{0}^{*}, \lambda_{0}^{*} x_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}\right)\right\| \mathrm{d} \tau\right) \\
& \leq t\left[\int_{0}^{+\infty} a_{0}(s)+b_{0}(s) h_{0}\left(\left\|\lambda_{0}^{*} x_{0}^{*}\right\|,\left\|\lambda_{0}^{*} x_{0}^{*}\right\|,\left\|\lambda_{1}^{*} y_{0}^{*}\right\|,\left\|\lambda_{1}^{*} y_{0}^{*}\right\|\right) \mathrm{d} s+\left\|x_{\infty}\right\|\right]+\frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left\|x_{\infty}\right\|+ \\
& \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}} \sum_{i=1}^{m-2} \alpha_{i} \xi_{m-2}\left(\int_{0}^{+\infty} a_{0}(s)+b_{0}(s) h_{0}\left(\left\|\lambda_{0}^{*} x_{0}^{*}\right\|,\left\|\lambda_{0}^{*} x_{0}^{*}\right\|,\left\|\lambda_{1}^{*} y_{0}^{*}\right\|,\left\|\lambda_{1}^{*} y_{0}^{*}\right\|\right) \mathrm{d} s\right) \\
& \left\|u_{0}^{\prime}(t)\right\|
\end{aligned}
$$

which imply that $\left\|u_{0}\right\|_{D}<\infty$. Similarly, we have $\left\|v_{0}\right\|_{D}<\infty$. Thus, $\left(u_{0}, v_{0}\right) \in D C^{1}[J, E] \times$ $D C^{1}[J, E]$. It follows from (4) and (42) that

$$
\begin{equation*}
\left(u_{m}, v_{m}\right)(t)=A\left(u_{m-1}, v_{m-1}\right)(t), \quad \forall t \in J, m=1,2,3, \ldots \tag{45}
\end{equation*}
$$

By Lemma 1 , we get $\left(u_{m}, v_{m}\right) \in Q$ and

$$
\begin{equation*}
\left\|\left(u_{m}, v_{m}\right)\right\|_{X}=\left\|A\left(u_{m-1}, v_{m_{1}}\right)\right\|_{X} \leq \frac{1}{2}\left\|\left(u_{m-1}, v_{m-1}\right)\right\|_{X}+\gamma \tag{46}
\end{equation*}
$$

By $\left(\mathrm{H}_{3}\right)$ and (45), we have

$$
\begin{equation*}
u_{1}(t)=A_{1}\left(u_{0}(t), v_{0}(t)\right) \geq A_{1}\left(\lambda_{0}^{*} x_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}\right)=u_{0}(t), \quad \forall t \in J \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{1}(t)=A_{2}\left(u_{0}(t), v_{0}(t)\right) \geq A_{2}\left(\lambda_{0}^{*} x_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}\right)=v_{0}(t), \quad \forall t \in J \tag{48}
\end{equation*}
$$

From Lemma 6, (45)-(48), it is easy to see by induction that

$$
\begin{align*}
&\left(\lambda_{0}^{*} x_{0}^{*}, \lambda_{1}^{*} y_{0}^{*}\right) \leq\left(u_{0}^{(i)}(t), v_{0}^{(i)}(t)\right) \leq\left(u_{1}^{(i)}(t), v_{1}^{(i)}(t)\right) \leq \cdots \leq\left(u_{m}^{(i)}(t), v_{m}^{(i)}(t)\right) \leq \cdots \\
& \forall t \in J, i=0,1 \tag{49}
\end{align*}
$$

and

$$
\begin{align*}
\left\|\left(u_{m}, v_{m}\right)\right\|_{X} & \leq \gamma+\frac{1}{2} \gamma+\cdots+\left(\frac{1}{2}\right)^{m-1} \gamma+\left(\frac{1}{2}\right)^{m}\left\|\left(u_{0}, v_{0}\right)\right\|_{X} \\
& \leq 2 \gamma+\left\|\left(u_{0}, v_{0}\right)\right\|_{X}, \quad m=1,2,3, \ldots \tag{50}
\end{align*}
$$

Let $K=\left\{(x, y) \in Q:\|(x, y)\|_{X} \leq 2 \gamma+\left\|\left(u_{0}, v_{0}\right)\right\|_{X}\right\}$. Then, K is a bounded closed convex set in space $D C^{1}[J, E] \times D C^{1}[J, E]$ and operator A maps K into K. Clearly, K is not empty since $\left(u_{0}, v_{0}\right) \in K$. Let $W=\left\{\left(u_{m}, v_{m}\right): m=0,1,2, \ldots\right\}, A W=\left\{A\left(u_{m}, v_{m}\right): m=0,1,2, \ldots\right\}$. Obviously, $W \subset K$ and $W=\left\{\left(u_{0}, v_{0}\right)\right\} \cup A(W)$. Similarly to the above proof of Theorem 1 , we can obtain $\alpha_{X}(A W)=0$, i.e., W is relatively compact in $D C^{1}[J, E] \times D C^{1}[J, E]$. So, there exists a $(\bar{x}, \bar{y}) \in D C^{1}[J, E] \times D C^{1}[J, E]$ and a subsequence $\left\{\left(u_{m_{j}}, v_{m_{j}}\right): j=1,2,3, \ldots\right\} \subset W$ such that $\left\{\left(u_{m_{j}}, v_{m_{j}}\right)(t): j=1,2,3, \ldots\right\}$ converges to $\left(\bar{x}^{(i)}(t), \bar{y}^{(i)}(t)\right)$ uniformly on $J(i=0,1)$. Since P is normal and $\left\{\left(u_{m}^{(i)}(t), v_{m}^{(i)}(t)\right): m=1,2,3, \ldots\right\}$ is nondecreasing, by Lemma 8 it is easy to see that the entire sequence $\left\{\left(u_{m}^{(i)}(t), v_{m}^{(i)}(t)\right): m=1,2,3, \ldots\right\}$ converges to $\left(\bar{x}^{(i)}(t), \bar{y}^{(i)}(t)\right)$ uniformly on $J(i=0,1)$. Considering the fact that $\left(u_{m}, v_{m}\right) \in K$ and K is a closed convex set in space $D C^{1}[J, E] \times D C^{1}[J, E]$, we have $(\bar{x}, \bar{y}) \in K$. It is clear that

$$
\begin{equation*}
f\left(s, u_{m}(s), u_{m}^{\prime}(s), v_{m}(s), v_{m}^{\prime}(s)\right) \rightarrow f\left(s, \bar{x}(s), \bar{x}^{\prime}(s), \bar{y}(s), \bar{y}^{\prime}(s)\right), \quad \text { as } m \rightarrow \infty, \forall s \in J_{+} \tag{51}
\end{equation*}
$$

By $\left(\mathrm{H}_{1}\right)$ and (50), we have

$$
\begin{align*}
& \left\|f\left(s, u_{m}(s), u_{m}^{\prime}(s), v_{m}(s), v_{m}^{\prime}(s)\right)-f\left(s, \bar{x}(s), \bar{x}^{\prime}(s), \bar{y}(s), \bar{y}^{\prime}(s)\right)\right\| \\
& \quad \leq 8 \varepsilon_{0} c_{0}(s)(1+s)\left\|\left(u_{m}, v_{m}\right)\right\|_{X}+2 a_{0}(s)+2 M_{0} b_{0}(s) \\
& \quad \leq 8 \varepsilon_{0} c_{0}(s)(1+s)\left(2 \gamma+\left\|\left(u_{0}, v_{0}\right)\right\|_{X}\right)+2 a_{0}(s)+2 M_{0} b_{0}(s) \tag{52}
\end{align*}
$$

Noticing (51) and (52) and taking limit as $m \rightarrow \infty$ in (42), we obtain

$$
\begin{align*}
\bar{x}(t)= & \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left[\left(\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}\right) x_{\infty}+\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} f\left(\tau, \bar{x}(\tau), \bar{x}^{\prime}(\tau), \bar{y}(\tau), \bar{y}^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right]+ \\
& \int_{0}^{t} \int_{s}^{+\infty} f\left(\tau, \bar{x}(\tau), \bar{x}^{\prime}(\tau), \bar{y}(\tau), \bar{y}^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s+t x_{\infty} \tag{53}
\end{align*}
$$

In the same way, taking limit $m \rightarrow \infty$ in (43), we get

$$
\begin{align*}
\bar{y}(t)= & \frac{1}{1-\sum_{i=1}^{m-2} \beta_{i}}\left[\left(\sum_{i=1}^{m-2} \beta_{i} \xi_{i}\right) y_{\infty}+\sum_{i=1}^{m-2} \beta_{i} \int_{0}^{\xi_{i}} \int_{s}^{+\infty} g\left(\tau, \bar{x}(\tau), \bar{x}^{\prime}(\tau), \bar{y}(\tau), \bar{y}^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right]+ \\
& \int_{0}^{t} \int_{s}^{+\infty} g\left(\tau, \bar{x}(\tau), \bar{x}^{\prime}(\tau), \bar{y}(\tau), \bar{y}^{\prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s+t y_{\infty} \tag{54}
\end{align*}
$$

which together with (53) and Lemma 2 shows that $(\bar{x}, \bar{y}) \in K \cap C^{2}\left[J_{+}, E\right] \times C^{2}\left[J_{+}, E\right]$ and $(\bar{x}(t), \bar{y}(t))$ is a positive solution of BVP (1). Differentiating (42) twice, we have

$$
u_{m}^{\prime \prime}(t)=-f\left(t, u_{m-1}(t), u_{m-1}^{\prime}(t), v_{m-1}(t), v_{m-1}^{\prime}(t)\right), \quad \forall t \in J_{+}^{\prime}, m=1,2,3, \ldots
$$

Hence, by (51), we obtain

$$
\lim _{m \rightarrow \infty} u_{m}^{\prime \prime}(t)=-f\left(t, \bar{x}(t), \bar{x}^{\prime}(t), \bar{y}(t), \bar{y}^{\prime}(t)\right)=\bar{x}^{\prime \prime}(t), \quad \forall t \in J_{+}^{\prime}
$$

Similarly, one has

$$
\lim _{m \rightarrow \infty} v_{m}^{\prime \prime}(t)=-g\left(t, \bar{x}(t), \bar{x}^{\prime}(t), \bar{y}(t), \bar{y}^{\prime}(t)\right)=\bar{y}^{\prime \prime}(t), \quad \forall t \in J_{+}^{\prime}
$$

Let $(m(t), n(t))$ be any positive solution of BVP (1). By Lemma 2, we have $(m, n) \in Q$ and $(m(t), n(t))=A(m, n)(t)$, for $t \in J$. It is clear that $m^{(i)}(t) \geq \lambda_{0}^{*} x_{0}^{*}>\theta, n^{(i)}(t) \geq \lambda_{1}^{*} y_{0}^{*}>\theta$ for any $t \in J(i=0,1)$. So, by Lemma 6 , we know that $m^{(i)}(t) \geq u_{0}^{(i)}(t), n^{(i)}(t) \geq v_{0}^{(i)}(t)$ for any $t \in J(i=0,1)$. Assume that $m^{(i)}(t) \geq u_{m-1}^{(i)}(t), n^{(i)}(t) \geq v_{m-1}^{(i)}(t)$ for $t \in J, m \geq 1(i=$ $0,1)$. Then, we have from Lemma 6 that $\left(A_{1}^{(i)}(m, n)(t), A_{2}^{(i)}(m, n)(t)\right) \geq\left(A_{1}^{(i)}\left(u_{m-1}, v_{m-1}\right)\right)(t)$, $\left.\left.A_{2}^{(i)}\left(u_{m-1}, v_{m-1}\right)\right)(t)\right)$ for $t \in J(i=0,1)$, i.e., $\left(m^{(i)}(t), n^{(i)}(t)\right) \geq\left(u_{m}^{(i)}(t), v_{m}^{(i)}(t)\right)$ for $t \in J(i=$ $0,1)$. Hence, by induction, we get

$$
\begin{equation*}
m^{(i)}(t) \geq \bar{x}_{m}^{(i)}(t), n^{(i)}(t) \geq \bar{y}_{m}^{(i)}(t), \quad \forall t \in J, i=0,1 ; m=0,1,2, \ldots \tag{55}
\end{equation*}
$$

Now, taking limits in (55) gives $m^{(i)}(t) \geq \bar{x}^{(i)}(t), n^{(i)}(t) \geq \bar{y}^{(i)}(t)$ for $t \in J(i=0,1)$. The proof is completed.

Theorem 3 Let cone P be fully regular and conditions $\left(H_{1}\right)$ and $\left(H_{3}\right)$ be satisfied. Then the conclusion of Theorem 2 holds.

Proof The proof is almost the same as that of Theorem 2. The only difference is that, instead of using condition $\left(\mathrm{H}_{2}\right)$, the conclusion $\alpha_{X}(W)=0$ is implied directly by (49) and (50), the full regularity of P and Lemma 8.

4. An example

Consider the infinite system of scalar singular second order three-point boundary value problems:

$$
\left\{\begin{align*}
-x_{n}^{\prime \prime}(t)= & \frac{1}{3 n^{2} \sqrt{t}(1+t)}\left(2+x_{n}(t)+y_{n}(t)+x_{2 n}^{\prime}(t)+y_{3 n}^{\prime}(t)+\frac{1}{2 n^{2} x_{n}(t)}+\frac{1}{8 n^{3} x_{2 n}^{\prime}(t)}\right)^{\frac{1}{3}}+ \tag{56}\\
& \frac{1}{3 e^{2 t}(1+t)} \ln \left(1+x_{n}(t)\right) \\
-y_{n}^{\prime \prime}(t)= & \frac{1}{6 n^{3} \sqrt[3]{t^{2}}(1+t)}\left(1+x_{3 n}(t)+x_{4 n}^{\prime}(t)+\frac{1}{3 n^{2} y_{3 n}(t)}+\frac{1}{4 n^{3} y_{2 n}^{\prime}(t)}\right)^{\frac{1}{5}}+ \\
& \frac{1}{6 e^{3 t}(1+t)} \ln \left(1+y_{2 n}^{\prime}(t)\right) \\
x_{n}(0)= & \frac{1}{3} x_{n}(1), \quad x_{n}^{\prime}(\infty)=\frac{1}{n}, \quad y_{n}(0)=\frac{3}{4} y_{n}(1), \quad y_{n}^{\prime}(\infty)=\frac{1}{2 n}, \quad n=1,2, \ldots
\end{align*}\right.
$$

Proposition 1 Infinite system (56) has a minimal positive solution $\left(x_{n}(t)\right.$, $y_{n}(t)$) satisfying $x_{n}(t), x_{n}^{\prime}(t), y_{n}(t), y_{n}^{\prime}(t) \geq \frac{1}{2 n}$ for $0 \leq t<+\infty(n=1,2,3, \ldots)$.

Proof Let $E=c_{0}=\left\{x=\left(x_{1}, \ldots, x_{n}, \ldots\right): x_{n} \rightarrow 0\right\}$ with the norm $\|x\|=\sup _{n}\left|x_{n}\right|$. Obviously, $(E,\|\cdot\|)$ is a real Banach space. Choose $P=\left\{x=\left(x_{n}\right) \in c_{0}: x_{n} \geq 0, n=1,2,3, \ldots\right\}$. It is easy to verify that P is a normal cone in E with normal constant 1 . Now we consider infinite system (56), which can be regarded as a BVP of form (1) in E with $\alpha_{1}=\frac{1}{3}, \beta_{1}=\frac{3}{4}, \xi_{1}=1, x_{\infty}=$ $\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right), y_{\infty}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots\right)$. In this situation, $x=\left(x_{1}, \ldots, x_{n}, \ldots\right), u=\left(u_{1}, \ldots, u_{n}, \ldots\right)$, $y=\left(y_{1}, \ldots, y_{n}, \ldots\right), v=\left(v_{1}, \ldots, v_{n}, \ldots\right), f=\left(f_{1}, \ldots, f_{n}, \ldots\right)$, in which

$$
\begin{align*}
f_{n}(t, x, u, y, v)= & \frac{1}{3 n^{2} \sqrt{t}(1+t)}\left(2+x_{n}+y_{n}+u_{2 n}+v_{3 n}+\frac{1}{2 n^{2} x_{n}}+\frac{1}{8 n^{3} u_{2 n}}\right)^{\frac{1}{3}}+ \\
& \frac{1}{3 e^{2 t}(1+t)} \ln \left(1+x_{n}\right), \tag{57}\\
g_{n}(t, x, u, y, v)= & \frac{1}{6 n^{3} \sqrt[3]{t^{2}}(1+t)}\left(1+x_{3 n}+u_{4 n}+\frac{1}{3 n^{2} y_{3 n}}+\frac{1}{4 n^{3} v_{2 n}}\right)^{\frac{1}{5}}+ \\
& \frac{1}{6 e^{3 t}(1+t)} \ln \left(1+v_{2 n}\right) . \tag{58}
\end{align*}
$$

Let $x_{0}^{*}=x_{\infty}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right), y_{0}^{*}=y_{\infty}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots\right)$. Then $P_{0 \lambda}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)\right.$: $\left.x_{n} \geq \frac{\lambda}{n}, n=1,2,3, \ldots\right\}, P_{1 \lambda}=\left\{y=\left(y_{1}, y_{2}, \ldots, y_{n}, \ldots\right): y_{n} \geq \frac{\lambda}{2 n}, n=1,2,3, \ldots\right\}$, for $\lambda>0$. By simple computation, we have $D_{0}=\frac{1}{2}, D_{1}=3, \lambda_{0}^{*}=\frac{1}{2}, \lambda_{1}^{*}=1$. It is clear that $f, g \in C\left[J_{+} \times P_{0 \lambda} \times P_{0 \lambda} \times P_{1 \lambda} \times P_{1 \lambda}, P\right]$ for any $\lambda>0$. Notice that $e^{3 t}>\sqrt[3]{t^{2}}, e^{2 t}>\sqrt{t}$ for $t>0$, by (57) and (58), we get

$$
\begin{equation*}
\|f(t, x, u, y, v)\| \leq \frac{1}{3 \sqrt{t}}\left[\left(\frac{7}{2}+\|x\|+\|u\|+\|v\|+\|y\|\right)^{\frac{1}{3}}+\ln (1+\|x\|)\right] \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
\|g(t, x, u, y, v)\| \leq \frac{1}{6 \sqrt[3]{t^{2}}}\left[(4+\|x\|+\|u\|)^{\frac{1}{5}}+\ln (1+\|v\|)\right] \tag{60}
\end{equation*}
$$

which imply that $\left(\mathrm{H}_{1}\right)$ is satisfied for $a_{0}(t)=0, b_{0}(t)=c_{0}(t)=\frac{1}{3 \sqrt{t}}, a_{1}(t)=0, b_{1}(t)=c_{1}(t)=$ $\frac{1}{6 \sqrt[3]{t^{2}}}$ and

$$
\begin{gathered}
h_{0}\left(u_{0}, u_{1}, u_{2}, u_{3}\right)=\left(\frac{7}{2}+u_{0}+u_{1}+u_{2}+u_{3}\right)^{\frac{1}{3}}+\ln \left(1+u_{0}\right), \\
h_{1}\left(u_{0}, u_{1}, u_{2}, u_{3}\right)=\left(4+u_{0}+u_{1}\right)^{\frac{1}{5}}+\ln \left(1+u_{3}\right) .
\end{gathered}
$$

Let

$$
\begin{array}{ll}
f^{1}=\left\{f_{1}^{1}, f_{2}^{1}, \ldots, f_{n}^{1}, \ldots\right\}, & f^{2}=\left\{f_{1}^{2}, f_{2}^{2}, \ldots, f_{n}^{2}, \ldots\right\}, \\
g^{1}=\left\{g_{1}^{1}, g_{2}^{1}, \ldots, g_{n}^{1}, \ldots\right\}, & g^{2}=\left\{g_{1}^{2}, g_{2}^{2}, \ldots, g_{n}^{2}, \ldots\right\}
\end{array}
$$

where

$$
\begin{equation*}
f_{n}^{1}(t, x, u, y, v)=\frac{1}{3 n^{2} \sqrt{t}(1+t)}\left(2+x_{n}+y_{n}+u_{2 n}+v_{3 n}+\frac{1}{2 n^{2} x_{n}}+\frac{1}{8 n^{3} u_{2 n}}\right)^{\frac{1}{3}} \tag{61}
\end{equation*}
$$

$$
\begin{gather*}
f_{n}^{2}(t, x, u, y, v)=\frac{1}{3 e^{2 t}(1+t)} \ln \left(1+x_{n}\right) \tag{62}\\
g_{n}^{1}(t, x, u, y, v)=\frac{1}{6 n^{3} \sqrt[3]{t^{2}}(1+t)}\left(1+x_{3 n}+u_{4 n}+\frac{1}{3 n^{2} y_{3 n}}+\frac{1}{4 n^{3} v_{2 n}}\right)^{\frac{1}{5}} \tag{63}\\
g_{n}^{2}(t, x, u, y, v)=\frac{1}{6 e^{3 t}(1+t)} \ln \left(1+v_{2 n}\right) \tag{64}
\end{gather*}
$$

Let $t \in J_{+}$, and $R>0$ be given and $\left\{z^{(m)}\right\}$ be any sequence in $f^{1}\left(t, P_{0 R}^{*}, P_{0 R}^{*}, P_{1 R}^{*}, P_{1 R}^{*}\right)$, where $z^{(m)}=\left(z_{1}^{(m)}, \ldots, z_{n}^{(m)}, \ldots\right)$. By (61), we have

$$
\begin{equation*}
0 \leq z_{n}^{(m)} \leq \frac{1}{3 n^{2} \sqrt{t}}\left(\frac{7}{2}+4 R\right)^{\frac{1}{3}}, \quad n, m=1,2,3, \ldots \tag{65}
\end{equation*}
$$

So, $\left\{z_{n}^{(m)}\right\}$ is bounded and by the diagonal method together with the method of constructing subsequence, we can choose a subsequence $\left\{m_{i}\right\} \subset\{m\}$ such that

$$
\begin{equation*}
\left\{z_{n}^{(m)}\right\} \rightarrow \bar{z}_{n} \quad \text { as } i \rightarrow \infty, \quad n=1,2,3, \ldots \tag{66}
\end{equation*}
$$

which implies by (65)

$$
\begin{equation*}
0 \leq \bar{z}_{n} \leq \frac{1}{3 n^{2} \sqrt{t}}\left(\frac{7}{2}+4 R\right)^{\frac{1}{3}}, \quad n=1,2,3, \ldots \tag{67}
\end{equation*}
$$

Hence $\bar{z}=\left(\bar{z}_{1}, \ldots, \bar{z}_{n}, \ldots\right) \in c_{0}$. It is easy to see from (65)-(67) that

$$
\left\|z^{\left(m_{i}\right)}-\bar{z}\right\|=\sup _{n}\left|z_{n}^{\left(m_{i}\right)}-\bar{z}_{n}\right| \rightarrow 0 \text { as } i \rightarrow \infty
$$

Thus, we have proved that $f^{1}\left(t, P_{0 R}^{*}, P_{0 R}^{*}, P_{1 R}^{*}, P_{1 R}^{*}\right)$ is relatively compact in c_{0}.
For any $t \in J_{+}, R>0, x, y, \bar{x}, \bar{y} \in D \subset P_{0 R}^{*}$, we have by (62)

$$
\begin{align*}
\left|f_{n}^{2}(t, x, u, y, v)-f_{n}^{2}(t, \bar{x}, \bar{u}, \bar{y}, \bar{v})\right| & =\frac{1}{3 e^{2 t}(1+t)}\left|\ln \left(1+x_{n}\right)-\ln \left(1+\bar{x}_{n}\right)\right| \\
& \leq \frac{1}{3 e^{2 t}(1+t)} \frac{\left|x_{n}-\bar{x}_{n}\right|}{1+\xi_{n}} \tag{68}
\end{align*}
$$

where ξ_{n} is between x_{n} and \bar{x}_{n}. By (68), we get

$$
\begin{equation*}
\left\|f^{2}(t, x, u, y, v)-f^{2}(t, \bar{x}, \bar{u}, \bar{y}, \bar{v})\right\| \leq \frac{1}{3 e^{2 t}(1+t)}\|x-\bar{x}\|, x, y, \bar{x}, \bar{y} \in D \tag{69}
\end{equation*}
$$

In the same way, we can prove that $g^{1}\left(t, P_{0 R}^{*}, P_{0 R}^{*}, P_{1 R}^{*}, P_{1 R}^{*}\right)$ is relatively compact in c_{0}, and we can also get

$$
\begin{equation*}
\left\|g^{2}(t, x, u, y, v)-g^{2}(t, \bar{x}, \bar{u}, \bar{y}, \bar{v})\right\| \leq \frac{1}{6 e^{3 t}(1+t)}\|v-\bar{v}\|, x, y, \bar{x}, \bar{y} \in D \tag{70}
\end{equation*}
$$

Thus, by (69) and (70), it is easy to see that $\left(\mathrm{H}_{2}\right)$ holds for $L_{00}(t)=\frac{1}{3 e^{2 t}(1+t)}, L_{10}(t)=\frac{1}{6 e^{3 t}(1+t)}$. Our conclusion follows from Theorem 1.

References

[1] GUO Dajun, LAKSHMIKANTHAM V, LIU Xinzhi. Nonlinear Integral Equation in Abstract Spaces [M]. Kluwer Academic Publishers, Dordrecht, 1996.
[2] DEMLING K. Ordinary Differential Equations in Banach Spaces [M]. Springer-Verlag, Berlin-New York, 1977.
[3] LAKSHMIKANTHAM V, LEELA S. Nonlinear Differential Equation in Abstract Spaces [M]. Pergamon Press, Oxford-New York, 1981.
[4] GUO Dajun, LAKSHMIKANTHAM V. Nonlinear Problems in Abstract Cones [M]. Academic Press, Inc., Boston, MA, 1988.
[5] GUPTA C P. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation [J]. J. Math. Anal. Appl., 1992, 168(2): 540-551.
[6] FENG Wenying, WEBB J R L. Solvability of m-point boundary value problems with nonlinear growth [J]. J. Math. Anal. Appl., 1997, 212(2): 467-480.
[7] SUN Jingxian, XU Xian, O'REGAN D. Nodal solutions for m-point boundary value problems using bifurcation methods [J]. Nonlinear Anal., 2008, 68(10): 3034-3046.
[8] XU Xian. Positive solutions for singular m-point boundary value problems with positive parameter [J]. J. Math. Anal. Appl., 2004, 291(1): 352-367.
[9] MA Ruyun, CASTANEDA N. Existence of solutions of nonlinear m-point boundary-value problems [J]. J. Math. Anal. Appl., 2001, 256(2): 556-567.
[10] ZHAO Jing, LIU Zhenbin, LIU Lishan. The existence of solutions of infinite boundary value problems for first-order impulsive differential systems in Banach spaces [J]. J. Comput. Appl. Math., 2008, 222(2): 524-530.
[11] ZHANG Guowei, SUN Jingxian. Positive solutions of m-point boundary value problems [J]. J. Math. Anal. Appl., 2004, 291(2): 406-418.
[12] ZHAO Yulin, CHEN Haibo. Existence of multiple positive solutions for m-point boundary value problems in Banach spaces [J]. J. Comput. Appl. Math., 2008, 215(1): 79-90.
[13] LIU Bing. Positive solutions of a nonlinear four-point boundary value problems in Banach spaces [J]. J. Math. Anal. Appl., 2005, 305(1): 253-276.
[14] LIU Yansheng. Boundary value problems for second order differential equations on unbounded domains in a Banach space [J]. Appl. Math. Comput., 2003, 135(2-3): 569-583.
[15] GUO Dajun. Existence of positive solutions for $n t h$-order nonlinear impulsive singular integro-differential equations in Banach spaces [J]. Nonlinear Anal., 2008, 68(9): 2727-2740.
[16] ZHANG Xingqiu. Existence of positive solutions for multi-point boundary value problems on infinite intervals in Banach spaces [J]. Appl. Math. Comput., 2008, 206(2): 932-941.

[^0]: Received November 23, 2009; Accepted January 19, 2010
 Supported by the National Natural Science Foundation of China (Grant No. 10971179), the China Postdoctoral Science Foundation (Grant No. 20110491154), the Foundation of Outstanding Middle-Aged and Young Scientists of Shandong Province (Grant No. BS2010SF004) and a Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J10LA53).
 E-mail address: zhxq197508@163.com

