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Abstract An edge e of a k-connected graph G is said to be a removable edge if G ⊖ e is

still k-connected, where G ⊖ e denotes the graph obtained from G by deleting e to get G −

e, and for any end vertex of e with degree k − 1 in G − e, say x, delete x, and then add

edges between any pair of non-adjacent vertices in NG−e(x). The existence of removable edges

of k-connected graphs and some properties of 3-connected and 4-connected graphs have been

investigated [1, 11, 14, 15]. In the present paper, we investigate some properties of 5-connected

graphs and study the distribution of removable edges on a cycle and a spanning tree in a 5-

connected graph. Based on the properties, we proved that for a 5-connected graph G of order

at least 10, if the edge-vertex-atom of G contains at least three vertices, then G has at least

(3|G| + 2)/2 removable edges.
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1. Introduction

Graph theoretic terminology used here generally follows that of Bondy [2]. We consider only

finite and simple graphs.

Connectivity of graphs is a fundamental topic in graph theory research. For properties

and constructions of several classes of k-edge-connected graphs and k-connected graphs, many

investigations have been made. The concepts of contractible edges and removable edges of k-

connected graphs are very important in studying the constructions of k-connected graphs and in

proving some properties of k-connected graphs by induction.

For removable edges of k-connected graphs, Holton et al. [6] first defined removable edges

in a 3-connected graph. Later, Yin [17] defined removable edges in a 4-connected graph. The

concept of removable edges in a 3-connected graph and a 4-connected graph can be generalized

to k-connected graphs [16].

Definition 1 ([16]) Let G be a k-connected graph, and let e be an edge of G. Let G⊖ e denote
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the graph obtained from G by the following operation: (1) delete e from G to get G− e; (2) for

any end vertex of e with degree k − 1 in G− e, say x, delete x, and then add edges between any

pair of non-adjacent vertices in NG−e(x). If G⊖e is k-connected, then e is said to be a removable

edge of G, otherwise e is said to be non-removable. The set of all non-removable edges of G and

the set of all removable edges of G are denoted by EN (G) and ER(G) respectively.

Barnette and Grunbaum [1] proved that a 3-connected graph of order at least five has a

removable edge. Based on the fact and the above graph operation, a constructive characterization

of minimally 3-connected graphs was given by Dawes [3], which differs from the characterization

provided by Tutte [13].

In [17], Yin also proved that a 4-connected graph without removable edge is either K5 or

K6 by removing a 1-factor. Based on this result, he provided a constructive characterization of

4-connected graphs, which is simpler than Slater’s method [10]. And then, We proved that a

5-connected graph G has no removable edge if and only if G ∼= K6. Using this result, we gave

the constructive characterization of 5-connected graphs. Recently, Su et al. [12] proved that a k-

connected graph without removable edge is either K(k+1) (when k is even) or the graph obtained

from K(k+2) by removing a 1-factor. Based on this result, the constructive characterization of

k-connected graphs is given.

For the removable edges and non-removable edges of a k-connected graph G, the following

result was given in [16].

Theorem 1 ([16]) Let G be a k-connected graph of order at least k + 3 (k ≥ 3) and e = xy ∈

E(G). Then e is non-removable if and only if there exists S ⊆ V (G) with |S| = k − 1 such that

G − e − S has exactly two components A, B with |A| ≥ 2 and |B| ≥ 2, moreover x ∈ A, y ∈ B.

Without specific statement, in the following G always denotes a 5-connected graph. The

vertex set and edge set of G are denoted, respectively, by V (G) and E(G). The order and size

of G are denoted, respectively, by |G| and |E(G)|. The neighborhood of x ∈ G is denoted by

ΓG(x) and the degree of x is denoted by dG(x). For a nonempty subset N of V (G), the induced

subgraph by N in G is denoted by [N ]. For a subset S of V (G), G − S denotes the graph

obtained by deleting all the vertices in S from G together with all the incident edges. If G − S

is disconnected, we say that S is a vertex-cut of G. δ(G) denotes the minimum degree of V (G).

The girth of G is the length of a shortest cycle in G and is denoted by g(G). Let A, B ⊂ V (G)

such that A 6= ∅, B 6= ∅, A ∩ B = ∅. Define [A, B] = {xy ∈ E(G)|x ∈ A, y ∈ B}. For e ∈ E(G)

and S ⊂ V (G) such that |S| = 4, if G− e−S has exactly two connected components, say A and

B, such that |A| ≥ 2 and B ≥ 2, then we say that (e, S) is a separating pair and (e, S; A, B) is a

separating group, in which A and B are called the edge-vertex-cut fragments. An edge-vertex-cut

fragments of G with a minimum number of vertices is called an edge-vertex-atom of G.

Let E0 ⊂ EN (G) such that E0 6= ∅ and let (xy, S; A, B) be a separating group of G such

that x ∈ A and y ∈ B. If xy ∈ E0, then A and B are called E0-edge-vertex-cut fragments.

An E0-edge-vertex-cut fragment is called E0-edge-vertex-cut end-fragment of G if it does not

contain any other E0-edge-vertex-cut fragment of G as a proper subset. It is easy to see that
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any E0-edge-vertex-cut fragment of G contains such an end-fragment.

Removable edges in 3-connected graphs and 4-connected graphs have been studied extensively

[1, 11, 14, 15, 17]. In the present paper, we investigate some properties of 5-connected graphs and

study the distribution of removable edges on a cycle and a spanning tree in a 5-connected graph.

On the basis of the properties, we proved that for a 5-connected graph G of order at least 10,

if the edge-vertex-atom of G contains at least three vertices, then G has at least (3|G| + 2)/2

removable edges.

2. The properties of removable edges in a 5-connected graph

Lemma 2 Let G be a 5-connected graph of order at least 10, an edge-vertex-atom of which

contains at least three vertices. Let (xy, S; A, B) be a separating group of G such that x ∈ A,

y ∈ B. Then every edge in [{x}, S] is removable.

Proof By contradiction. Assume that there is an edge in [{x}, S], say xu, is non-removable. So

there is a corresponding separating group (xu, T ; C, D) such that x ∈ C, u ∈ D. Let

X1 = (C ∩ S) ∪ (S ∩ T ) ∪ (A ∩ T ), X2 = (D ∩ S) ∪ (S ∩ T ) ∪ (A ∩ T ),

X3 = (D ∩ S) ∪ (S ∩ T ) ∪ (B ∩ T ), X4 = (C ∩ S) ∪ (S ∩ T ) ∪ (B ∩ T ).

Obviously, x ∈ A ∩ C. Since X1 ∪ {y, u} is a vertex-cut of G and G is 5-connected, we have

that |X1| ≥ 3. Next we will distinguish the following cases to proceed the proof.

Case 1 y ∈ B ∩ C. Then X4 is a vertex-cut of G − xy. Since G is 5-connected, we have that

|X4| ≥ 4. Since |X2|+ |X4| = |S| + |T | = 8, we have that |X2| ≤ 4. Thus A ∩ D = ∅ (otherwise,

X2 would be a vertex-cut of G, which contradicts that G is 5-connected).

Assume that B∩D = ∅. Then |D| = |S∩D| ≥ 3, and so |S∩C|+ |S ∩T | = |S|− |S∩D| ≤ 1,

|S ∩ T | + |A ∩ T | = |X2| − |S ∩ D| ≤ 1. Thus |X1| ≤ 2, which contradicts that |X1| ≥ 3.

Otherwise, B ∩ D 6= ∅. Since X3 is a vertex-cut of G, |X3| ≥ 5. Since |X1| + |X3| = 8 and

|X1| ≥ 3, we have that |X1| = 3 and |X3| = 5. If |A ∩ C| ≥ 2, then X1 ∪ {x} is a vertex-cut of

G with 4 vertices, a contradiction. Hence |A ∩C| = 1. Then |A ∩ T | = |A| − |A ∩C| ≥ 2. So we

have that |S ∩ C| + |S ∩ T | = |X1| − |A ∩ T | ≤ 1 and |S ∩ T |+ |B ∩ T | = |T | − |A ∩ T | ≤ 2, and

so |X4| = |S ∩ C| + |S ∩ T |+ |B ∩ T | ≤ 3, which contradicts that |X4| ≥ 4.

Case 2 y ∈ B ∩ T .

We claim that A ∩ T 6= ∅ and S ∩ C 6= ∅. Otherwise, one of A ∩ T and S ∩ C, say A ∩ T ,

is empty. Since A ∩ C 6= ∅ and A is a connected subgraph of G, we have that A ∩ D = ∅,

and so |A| = |A ∩ C| ≥ 3. Since |X1| = |S ∩ C| + |S ∩ T | ≥ 3 and u ∈ S ∩ D, noting that

|S| = |S ∩C|+ |S ∩ T |+ |S ∩D| = 4, we have that |X1| = |S ∩C|+ |S ∩ T | = 3 and |S ∩D| = 1,

and thus X1 ∪ {x} would be a vertex-cut of G. However, |X1 ∪ {x}| = 4, which contradicts that

G is 5-connected. Therefore, A ∩ T 6= ∅. Obviously, |A ∩ T | ≤ 3.

Now we distinguish the following cases.
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Case 2.1 |A ∩ T | = 1. Then |S ∩ C| + |S ∩ T | = |X1| − |A ∩ T | ≥ 2. And since |S| =

|S ∩ C| + |S ∩ T |+ |S ∩ D| = 4, we have that |S ∩ D| ≤ 2.

Case 2.1.1 |S∩D| = 1. Since |S∩T |+ |S∩D| = |S|− |S∩C| ≤ 3 and |S∩T |+ |B∩T | = |T |−

|A∩T | = 3, then |X2| ≤ 4, |X3| = 4. So A∩D = ∅ = B∩D, |D| = |A∩D|+ |S∩D|+ |B∩D| = 1,

which contradicts that |D| ≥ 2.

Case 2.1.2 |S ∩D| = 2. Then we have that |S ∩C|+ |S ∩T | = 2 and |X1| = |S ∩C|+ |S ∩T |+

|A∩ T | = 3. An argument similar to that used in case 1 can lead to that |A∩C| = 1. And since

|S ∩ T |+ |S ∩D| = |S| − |S ∩C| ≤ 3, we have that |X2| ≤ 4. By noticing that G is 5-connected,

we have that A ∩ D = ∅. Then, |A| = |A ∩ T |+ |A ∩ C| = 2, which contradicts that |A| ≥ 3.

Case 2.2 |A ∩ T | = 2. Then |S ∩ T | ≤ 1. Then, we will discuss the following cases.

Case 2.2.1 |S ∩ T | = 1. Then we have that |B ∩ T | = 1 and |S ∩C|+ |S ∩D| = 3. By noticing

that S ∩ C 6= ∅ and S ∩D 6= ∅, we may assume that |S ∩ C| = 1 and |S ∩ D| = 2, then |X3| = 4

and |X4| = 3, so B ∩D = ∅ and B ∩C = ∅. Thus, |B| = |B ∩C|+ |B ∩D|+ |B ∩ T | = 1, which

contradicts that |B| ≥ 2.

Case 2.2.2 |S ∩ T | = 0. We have that |B ∩ T | = 2.

Assume that |S ∩ C| = 1. Then, we have that |X1| = 3 and |X4| = 3. An argument

analogous to that used in case 1 can lead to that |A ∩ C| = 1 and B ∩ C = ∅. Thus, |C| =

|A ∩ C| + |S ∩ C| + |B ∩ C| = 2, a contradiction.

Assume that |S ∩ C| ≥ 2. Then, we have that |S ∩ D| ≤ 2 and |X2| = |X3| ≤ 4. An

argument analogous to that used in case 2.2.1 can lead to that A∩D = ∅ and B ∩D = ∅. Thus,

|D| = |A ∩ D| + |S ∩ D| + |B ∩ D| ≤ 2, a contradiction.

Case 2.3 |A ∩ T | = 3. Then |S ∩ T | = 0, |B ∩ T | = 1. Since S ∩ C 6= ∅, S ∩ D 6= ∅, we have

|X3| ≤ 4, |X4| ≤ 4. Thus B ∩ C = ∅, B ∩ D = ∅. So |B| = |B ∩ T | = 1, a contradiction.

The proof is now completed. 2

The next two results are consequences of Lemma 2.

Corollary 3 Let G be a 5-connected graph of order at least 10 with δ(G) ≥ 6. Let (xy, S; A, B)

be a separating group of G such that x ∈ A, y ∈ B. Then every edge in [{x}, S] is removable.

Proof If δ(G) ≥ 6, we claim that the edge-vertex-atom of G contains at least three vertices.

Otherwise, the edge-vertex-atom of G contains two vertices, say A, we take its separating group

(xy, S; A, B) such that x ∈ A, y ∈ B. Assume that A = {x, z}. Since G is 5-connected and

|S| = 4, we have that dG(z) = 5, which contradicts that δ(G) ≥ 6. From Lemma 2, the Corollary

holds. 2

By a similar argument, the following result can be obtained easily.

Corollary 4 Let G be a 5-connected graph of order at least 10 with g(G) ≥ 4. Let (xy, S; A, B)

be a separating group of G such that x ∈ A, y ∈ B. Then every edge in [{x}, S] is removable.
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Lemma 5 Let G be a 5-connected graph of order at least 10, an edge-vertex-atom of which

contains at least three vertices. Let (xy, S; A, B) be a separating group of G such that x ∈ A,

y ∈ B. Then E(G[S]) ⊆ ER(G).

Proof By contradiction. Assume that there is an edge in E(G[S]), say uv, is non-removable.

So there is a corresponding separating group (uv, T ; C, D) such that u ∈ C, v ∈ D. Let

X1 = (C ∩ S) ∪ (S ∩ T ) ∪ (A ∩ T ), X2 = (D ∩ S) ∪ (S ∩ T ) ∪ (A ∩ T ),

X3 = (D ∩ S) ∪ (S ∩ T ) ∪ (B ∩ T ), X4 = (C ∩ S) ∪ (S ∩ T ) ∪ (B ∩ T ).

Obviously, u ∈ S ∩ C and v ∈ D ∩ S. We discuss the following cases.

Case 1 x ∈ A ∩ C and y ∈ B ∩ C.

Then we have that |X1| ≥ 4 and |X4| ≥ 4. Since |X1|+ |X3| = |S|+ |T | = |X2|+ |X4| = 8, we

have |X2| ≤ 4 and |X3| ≤ 4. Thus A∩D = ∅ = B∩D. Since |D| = |A∩D|+ |S∩D|+ |B∩D| =

|S∩D| ≥ 3, we have |S∩C|+ |S∩T | = |S|−|S∩D| ≤ 1 and |A∩T |+ |S∩T | = |X2|−|S∩D| ≤ 1.

Thus, |X1| ≤ 2, which contradicts |X1| ≥ 4.

Case 2 x ∈ A ∩ C and y ∈ B ∩ T .

Then we have that |X1| ≥ 4. Since |X1| + |X3| = 8, we have that |X3| ≤ 4, thus B ∩ D = ∅.

If B ∩ C 6= ∅, an argument analogous to that used in case 1 can lead to a contradiction. So

B ∩C = ∅. Then |B| = |B ∩ T | ≥ 3. Noting that |S ∩ T |+ |A ∩ T | = |T | − |B ∩ T | ≤ 1, we have

that |S ∩ C| = |X1| − |S ∩ T | − |A ∩ T | ≥ 3. Then |S ∩ D| = |S| − |S ∩ T | − |S ∩ C| ≤ 1. Hence

|X2| = |A∩T |+ |S ∩ T |+ |S ∩D| ≤ 2, then A∩D = ∅, thus |D| = |A∩D|+ |S ∩D|+ |B ∩D| =

|S ∩ D| ≤ 1, which contradicts that |D| ≥ 2.

Case 3 x ∈ A ∩ T and y ∈ B ∩ T .

Assume that A ∩ C 6= ∅. Then |X1| ≥ 4, thus B ∩ D = ∅. If B ∩ C 6= ∅, an argument

analogous to that used in case 1 can lead to a contradiction. If B ∩ C = ∅, a similar argument

used in case 2 can lead to a contradiction. Hence A ∩ C = ∅. Similarly, B ∩ C = ∅. Hence,

|C| = |A ∩ C| + |S ∩ C| + |B ∩ C| = |S ∩ C| ≥ 3. Noticing that v ∈ S ∩ D and |S| = 4, we have

that |C| = |S ∩ C| = 3, |S ∩ T | = 0 and |S ∩D| = 1. Since x ∈ A ∩ T , y ∈ B ∩ T , it follows that

|X2| ≤ 4, |X3| ≤ 4, and then A∩D = ∅ = B ∩D. Hence, |D| = |A∩D|+ |S ∩D|+ |B ∩D| = 1,

which contradicts that |D| ≥ 2.

The proof of other cases can reduce to the above case. The proof is now completed. 2

From Lemma 5 we can deduce the following result by a similar argument used in Corollary

3.

Corollary 6 Let G be a 5-connected graph of order at least 10, and let (xy, S; A, B) be a

separating group of G such that x ∈ A, y ∈ B. If δ(G) ≥ 6 or g(G) ≥ 4, then E(G[S]) ⊆ ER(G).

Let us note an immediate consequence of Corollary 3, Corollary 4 and Corollary 6, concerning

the distribute of removable edges in a triangle of G.

Corollary 7 Let G be a 5-connected graph of order at least 10. If δ(G) ≥ 6 or g(G) ≥ 4, then
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every triangle of G contains at least one removable edge.

3. Removable edges in a cycle of a 5-connected graph

Theorem 8 Let G be a 5-connected graph of order at least 10 and C a cycle of G. If the

edge-vertex-atom of G contains at least three vertices, then there are at least two removable

edges of G in C.

Proof By contradiction. Assume that there is at most one removable edge of G in C. Let

F = E(C) ∩ ER(G). Then |F | ≤ 1. Denote E(C) − F by E0 and let uw ∈ E0. We take

a separating group (uw, S′; A′, B′) such that u ∈ A′, w ∈ B′. From |F | ≤ 1, we know that

(E(A′)∪[A′, S′])∩F = ∅ or (E(B′)∪[B′, S′])∩F = ∅. Without loss of generality, we may assume

that (E(A′)∪[A′, S′])∩F = ∅. Since A′ is an E0-edge-vertex-cut fragment, A′ must contain an E0-

edge-vertex-cut end-fragment as its subgraph, say A. Then, we have that (E(A)∪[A, S])∩F = ∅,

and take a separating group (xy, S; A, B) such that x ∈ A, y ∈ B with xy ∈ E0.

Let xz ∈ E0 ∩ (E(A) ∪ [A, S]). Then obviously z /∈ S. Otherwise, from Lemma 2, xz is

a removable edge of G, a contradiction. We take a separating group (xz, S1; A1, B1) such that

x ∈ A1, z ∈ B1. Then, we have that x ∈ A ∩ A1, z ∈ A ∩ B1. Let

X1 = (A1 ∩ S) ∪ (S ∩ S1) ∪ (A ∩ S1), X2 = (A ∩ S1) ∪ (S ∩ S1) ∪ (B1 ∩ S),

X3 = (B1 ∩ S) ∪ (S ∩ S1) ∪ (B ∩ S1), X4 = (B ∩ S1) ∪ (S ∩ S1) ∪ (A1 ∩ S).

From Lemma 2, we have that y /∈ B ∩ S1, and so y ∈ A1 ∩ B. Since A ∩ B1 6= ∅, we have

that X2 is a vertex-cut of G − xz, so |X2| ≥ 4. By an analogous argument, we can deduce

that |X4| ≥ 4. Since |X2| + |X4| = |S| + |S1| = 8, we can get that |X2| = |X4| = 4, then

|A1 ∩ S| = |A ∩ S1|, |B ∩ S1| = |B1 ∩ S|. We claim that A ∩B1 = {z}. Otherwise, |A ∩ B1| ≥ 2.

Then, (xz, X2; A ∩ B1, A1 ∪ B) is a separating group of G and xz ∈ E0. It is easy to see that

A ∩ B1 is an E0-edge-vertex-cut fragment contained in A, which contradicts that A is an E0-

edge-vertex-cut end-fragment of G. Therefore, A ∩ B1 = {z}. Since x ∈ A ∩ A1, z ∈ A ∩ B1, we

have X1 ∪ {y, z} is a vertex-cut of G. Hence |X1| ≥ 3. We consider the following cases.

Case 1 |X1| ≥ 4. Since |X1| + |X3| = |S| + |S1| = 8, |X3| ≤ 4. Then B ∩ B1 = ∅, and so

|B1| = |A ∩ B1| + |S ∩ B1| + |B ∩ B1| = 1 + |S ∩ B1|. Since |B1| ≥ 3, |S ∩ B1| ≥ 2.

If |S∩B1| ≥ 3, then |S∩A1|+|S∩S1| = |S|−|S∩B1| ≤ 1, |S1∩A|+|S∩S1| = |X2|−|S∩B1| ≤ 1.

Hence |X1| ≤ 2, a contradiction.

If |S∩B1| = 2, then |S∩A1|+|S∩S1| = |S|−|S∩B1| = 2, |S1∩A|+|S∩S1| = |X2|−|S∩B1| = 2.

Noting that |X1| ≥ 4, we have that |S ∩ A1| = 2, |S ∩ S1| = 0, |A ∩ S1| = 2 and |B ∩ S1| = 2.

Let A ∩ S1 = {a, b}, S ∩ B1 = {c, d} and B ∩ S1 = {e, f}. If cd /∈ E(G), it is easy to see that

ca, cf, da, de, df ∈ E(G). If cd ∈ E(G), we claim that ad, ac ∈ E(G). If not, there are two cases.

(1) |NG(a) ∩ {c, d}| = 1. Without loss of generality, we may assume that ac ∈ E(G),

ad /∈ E(G). Let S′ = (S1 \ {a})∪{z}, A′ = B1 \ {z}, B′ = G−ac−A′−S′. Then (ac, S′; A′, B′)

is a separating group of G and |A′| = 2, a contradiction.
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(2) |NG(a) ∩ {c, d}| = 0. Then, (S1 \ {a}) ∪ {z} is a vertex-cut of G with cardinality 4, a

contradiction.

Hence, ac, ad ∈ E(G). Similarly bc, bd ∈ E(G). By symmetry, we can show that ec, ed, fc, fd ∈

E(G). From Lemma 3, za, zb ∈ ER(G). Since E(C)∩{za, zb, zc, zd} 6= ∅ and (E(A)∪[A, S])∩F =

∅, there holds {zc, zd}∩EN(G) 6= ∅. Without loss of generality, we may assume that zc ∈ EN (G),

and take a corresponding separating group (zc, T ; C, D) such that z ∈ C, c ∈ D. Let

Y1 = (S1 ∩ C) ∪ (S1 ∩ T ) ∪ (A1 ∩ T ), Y2 = (A1 ∩ T ) ∪ (S1 ∩ T ) ∪ (S1 ∩ D),

Y3 = (S1 ∩ D) ∪ (S1 ∩ T ) ∪ (B1 ∩ T ), Y4 = (B1 ∩ T ) ∪ (S1 ∩ T ) ∪ (S1 ∩ C).

Obviously, x ∈ A1 ∩ C, c ∈ B1 ∩ D. Since each of a, b is adjacent to both c and z, we have

a, b ∈ S1 ∩ T . By an analogous argument used in Lemma 2 we can show that |Y1| = |Y3| = 4,

|Y4| ≥ 3, |Y2| ≤ 5. Since |B1| = 3, zd ∈ E(G), we have |B1 ∩ D| = 1, |B1 ∩ T | ≤ 1. Then, we

consider the following cases.

Case 1.1 |Y4| ≥ 4. Then |Y2| ≤ 4, so A1 ∩ D = ∅. Since |B1 ∩ D| = 1, |D| ≥ 3, it follows

|D ∩ S1| ≥ 2. Noting that |S1| = 4 and |S1 ∩ T | ≥ 2, so |D ∩ S1| = 2 = |S1 ∩ T |, |S1 ∩ C| = 0.

Then |Y4| ≤ 3, a contradiction.

Case 1.2 |Y4| = 3, then |Y2| = 5. We discuss the following cases.

Case 1.2.1 |B1∩T | = 0. Then |B1∩C| = 2. Thus, Y4∪{z} is a vertex-cut of G with cardinality

4, a contradiction.

Case 1.2.2 |B1∩T | = 1. Then, |A1∩T |+ |S1∩T | = 3, |S1∩D| = |Y2|− |A1∩T |− |S1∩T | = 2,

and then |S1 ∩ T | ≤ |S1| − |S1 ∩ D| ≤ 2. Noting that a, b ∈ S1 ∩ T , thus |S1 ∩ T | = 2. Then, we

have that |A1 ∩ T | = 1, |S1 ∩ D| = 2, |S1 ∩ C| = 0, and so |Y1| = 3, a contradiction.

Case 2 |X1| = 3. Then we claim that |A1 ∩ A| = 1. Otherwise, X1 ∪ {x} is a vertex-cut of

G with cardinality 4, a contradiction. Since |A| ≥ 3 and |A ∩ B1| = 1, we have |A ∩ S1| ≥ 1.

Then |A1 ∩ S| + |S1 ∩ S| = |X1| − |A ∩ S1| ≤ 2, thus |B1 ∩ S| = |S| − |A1 ∩ S| − |S1 ∩ S| ≥ 2. If

|B1∩S| ≥ 3, then |S∩A1|+ |S∩S1| = |S|−|S∩B1| ≤ 1, |A∩S1| = |X2|−|S∩S1|−|S∩B1| ≤ 1,

and so |X1| ≤ 2, a contradiction. If |B1 ∩ S| = 2, then |B ∩ S1| = 2. Noticing that |X3| = 5,

we have |S ∩ S1| = 1, |S ∩ A1| = 1, |A ∩ S1| = 1. Assume that A ∩ S1 = {a}, S ∩ A1 = {b}.

If ab /∈ E(G), then, (S \ {b}) ∪ {x} is a vertex-cut of G with cardinality 4, a contradiction. If

ab ∈ E(G), then let A′ = A \ {x}, S′ = (S \ {b}) ∪ {x}, B′ = G − ab − S′ − A′. We have that

(ab, S′; A′, B′) is a separating group of G with |A′| = 2, a contradiction.

The proof now is completed. 2

Corollary 9 Let G be a 5-connected graph of order at least 10 and C a cycle of G. If δ(G) ≥ 6

or g(G) ≥ 4, then there are at least two removable edges of G in C.
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4. Removable edges in a spanning tree of a 5-connected graph

Theorem 10 Let G be a 5-connected graph and T a spanning tree of G. If δ(G) ≥ 6, then

there are at least two removable edges of G in T .

Proof Clearly, |G| ≥ 7. If |G| = 7, then G = K7. Since every edge of K7 is removable, the

conclusion holds. Now we may assume that |G| ≥ 8. By contradiction. Assume that there is at

most one removable edge of G in T . Let F = E(T ) ∩ ER(G). Then |F | ≤ 1. Denote E(T ) − F

by E0, we take a separating group (uw, S′; A′, B′) such that u ∈ A′, w ∈ B′ and uw ∈ E0. From

|F | ≤ 1, we know that (E(A′) ∪ [A′, S′]) ∩ F = ∅ or (E(B′) ∪ [B′, S′]) ∩ F = ∅. Without loss

of generality, we may assume that (E(A′) ∪ [A′, S′]) ∩ F = ∅. Since A′ is an E0-edge-vertex-cut

fragment, A′ must contain an E0-edge-vertex-cut end-fragment as its subgraph, say A. Then,

we have that (E(A) ∪ [A, S]) ∩ F = ∅, and we take a separating group (xy, S; A, B) such that

x ∈ A, y ∈ B with xy ∈ E0.

Let uz ∈ E0 ∩ (E(A) ∪ [A, S]). We take a separating group (uz, T ; C, D) such that u ∈ C,

z ∈ D. Let

X1 = (C ∩ S) ∪ (S ∩ T ) ∪ (A ∩ T ), X2 = (A ∩ T ) ∪ (S ∩ T ) ∪ (D ∩ S),

X3 = (D ∩ S) ∪ (S ∩ T ) ∪ (B ∩ T ), X4 = (B ∩ T ) ∪ (S ∩ T ) ∪ (C ∩ S).

If u = x, it follows from Lemma 2 that z ∈ A ∩ D, y ∈ B ∩ C. By an analogous argument

used in Theorem 8, we have that |X2| = |X4| = 4. We claim that A ∩ D = {z}. Otherwise,

|A∩D| ≥ 2. Let A1 = A∩D, S1 = X2 and B1 = G−A1−S1−xz. Then we get an edge-vertex-

cut fragment A1 which is a proper subset of A. This is a contradiction. Thus, A∩D = {z}, and

then dG(z) = 5, a contradiction.

If u 6= x, we consider the following cases.

Case 1 uz ∈ E(A). Then u ∈ A∩C, z ∈ A∩D. Since A∩D 6= ∅, X2 is a vertex-cut of G− uz,

then |X2| ≥ 4. If |X2| = 4, by an argument similar to that used above, A ∩ D = {z}, and then

dG(z) = 5, a contradiction. So |X2| ≥ 5.

Case 1.1 x ∈ A ∩ C, y ∈ B ∩ C. By a similar argument, we can get that |X4| ≥ 4. Noticing

that |X2| + |X4| = |S| + |T | = 8, then |X2| ≤ 4, a contradiction.

Case 1.2 x ∈ A ∩ C, y ∈ B ∩ T . Since |X2| ≥ 5, we have |S ∩ D| > |B ∩ T |, |X4| ≤ 3.

Thus B ∩ C = ∅. Since X1 ∪ {y, z} is a vertex-cut of G, there holds |X1| ≥ 3. Noticing that

|X1| + |X3| = |S| + |T | = 8, we get |X3| ≤ 5.

If |X1| ≥ 4, then |S ∩C| ≥ |B ∩ T |, |X3| ≤ 4, and then B ∩D = ∅. Hence |B| = |B ∩ T | ≥ 3.

Thus |S| ≥ |S ∩ D| + |S ∩ C| ≥ 2|B ∩ T | ≥ 6, which contradicts |S| = 4.

If |X1| = 3, we claim that |A ∩ C| = 2. Otherwise, |A ∩ C| ≥ 3, let S1 = X1 ∪ {u},

A1 = A ∩C − {u}, B1 = B ∪D. Then we get an edge-vertex-cut fragment A1 which is a proper

subset of A, a contradiction. Hence |A ∩ C| = 2, and then dG(x) = dG(u) = 5, a contradiction.

Case 1.3 x ∈ A ∩ T , y ∈ B ∩ T . By Lemma 5, xy ∈ ER(G), a contradiction.
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Case 1.4 x ∈ A ∩ T , y ∈ B ∩ C. Using an argument analogous to the one in case 1.1 can lead

to a contradiction.

Other cases such as x ∈ A∩ T , y ∈ B ∩D; x ∈ A ∩D, y ∈ B ∩ T ; x ∈ A ∩D, y ∈ B ∩D can

reduce to the above cases by symmetry.

Case 2 uz ∈ [A, S]. Then u ∈ A ∩ C, z ∈ S ∩ D.

Case 2.1 x ∈ A∩C, y ∈ B ∩C. A contradiction yields by an analogous argument used in case

1.2.

Case 2.2 x ∈ A ∩ C, y ∈ B ∩ T . Since X1 is a vertex-cut of G − xy − uz, |X1| ≥ 3. Suppose

|X1| = 3. If |A ∩ C| = 2, then dG(x) = dG(u) = 5, a contradiction. Thus, |A ∩ C| ≥ 3. Let

S1 = X1 ∪ {u}, A1 = A ∩ C − {u}, B1 = B ∪ D. Then we get an edge-vertex-cut fragment A1

which is a proper subset of A, a contradiction. Therefore |X1| ≥ 4. And then |A∩ T | ≥ |S ∩D|,

|X3| ≤ 4. Hence B ∩ D = ∅.

Since |X2| + |X4| = 8, we have |X2| ≤ 4 or |X4| ≤ 4. Without loss of generality, we may

assume that |X4| ≤ 4, then B ∩ C = ∅. Thus, |B| = |B ∩ C| + |B ∩ T |+ |B ∩ D| = |B ∩ T | ≥ 3.

Since |T | = 4, we have |A ∩ T | = 1, |S ∩ T | = 0, |B ∩ T | = 3, |S ∩ D| = 1, |S ∩ C| = 3. Then

|X4| = 6, a contradiction.

Case 2.3 x ∈ A ∩ T , y ∈ B ∩C. Then |X4| ≥ 4, and then |S ∩C| ≥ |A ∩ T | ≥ 1. Noticing that

|X2|+ |X4| = 8, we have that |X2| ≤ 4, and then A∩D = ∅. By a similar argument, B ∩D = ∅.

Then |D| = |S ∩D| ≥ 3. Since |S| = 4, we have |S ∩D| = 3, |S ∩C| = 1, |S ∩T | = 0. Therefore,

|A ∩ T | = 1, |B ∩ T | = 3. Thus, |X1| = 2, and X1 ∪ {z} is a vertex-cut of G, a contradiction.

Case 2.4 x ∈ A∩T , y ∈ B∩D. By a similar argument, we have |X1| = |X3| = 4. If |A∩C| ≥ 2,

then (uz, X1; A ∩C, B ∪D) is a separating group of G, and A ∩C is a proper subset of A. This

is a contradiction. If |A ∩ C| = 1, then dG(u) = 5, a contradiction.

Case 2.5 x ∈ A ∩ D, y ∈ B ∩ T . By a similar argument, we have that |X1| ≥ 4 and |X2| ≥ 4,

then |X3| ≤ 4 and |X4| ≤ 4, hence B∩D = ∅ and B∩C = ∅. Therefore |B| = |B∩T | ≥ 3. Since

|X3| ≤ 4, |S ∩C| ≥ |B ∩T | ≥ 3. Hence |S ∩C| = 3 = |B ∩T |, |S ∩T | = 0, |A∩T | = |S ∩D| = 1.

Thus |X2| = 2, and X2 ∪ {y} is a vertex-cut of G with cardinality 3, a contradiction.

Case 2.6 x ∈ A ∩ D, y ∈ B ∩ D. By an analogous argument used in case 2.4, we can get a

contradiction.

The proof now is completed. 2

By a similar argument we also have the following results.

Theorem 11 Let G be a 5-connected graph and T a spanning tree of G. If δ(G) ≥ 6, then

there are at least two removable edges of G in G − E(T ).

Now we have the main theorems of this paper.

Theorem 12 Let G be a 5-connected graph of order at least 10 and δ(G) ≥ 6. Then ER(G) ≥
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2|G| + 2.

Proof Let G′ = G[EN (G)]. From Theorem 8 and Theorem 10, G′ is a forest, then |EN (G)| ≤

|G| − 2. Thus, ER(G) = |E(G) − EN (G)| ≥ 3|G| − (|G| − 2) = 2|G| + 2. 2

By a similar argument we also have the following results.

Theorem 13 Let G be a 5-connected graph of order at least 10. If the edge-vertex-atom of G

contains at least three vertices, then ER(G) ≥ (3|G| + 2)/2.

Theorem 14 Let G be a 5-connected graph of order at least 10 and g(G) ≥ 4. Then ER(G) ≥

(3|G| + 4)/2.
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