Removable Edges in a 5-Connected Graph

Li Qiong XU ${ }^{1, *}$, Xiao Feng GUO ${ }^{2}$
1. School of Sciences, Jimei University, Fujian 361023, P. R. China;
2. School of Mathematics Sciences, Xiamen University, Fujian 361005, P. R. China

Abstract

An edge e of a k-connected graph G is said to be a removable edge if $G \ominus e$ is still k-connected, where $G \ominus e$ denotes the graph obtained from G by deleting e to get $G-$ e, and for any end vertex of e with degree $k-1$ in $G-e$, say x, delete x, and then add edges between any pair of non-adjacent vertices in $N_{G-e}(x)$. The existence of removable edges of k-connected graphs and some properties of 3-connected and 4 -connected graphs have been investigated $[1,11,14,15]$. In the present paper, we investigate some properties of 5 -connected graphs and study the distribution of removable edges on a cycle and a spanning tree in a 5 connected graph. Based on the properties, we proved that for a 5 -connected graph G of order at least 10, if the edge-vertex-atom of G contains at least three vertices, then G has at least $(3|G|+2) / 2$ removable edges.

Keywords 5 -connected graph; removable edge; edge-vertex-atom.

```
Document code A
MR(2010) Subject Classification 05C15
Chinese Library Classification O157.5
```


1. Introduction

Graph theoretic terminology used here generally follows that of Bondy [2]. We consider only finite and simple graphs.

Connectivity of graphs is a fundamental topic in graph theory research. For properties and constructions of several classes of k-edge-connected graphs and k-connected graphs, many investigations have been made. The concepts of contractible edges and removable edges of k connected graphs are very important in studying the constructions of k-connected graphs and in proving some properties of k-connected graphs by induction.

For removable edges of k-connected graphs, Holton et al. [6] first defined removable edges in a 3-connected graph. Later, Yin [17] defined removable edges in a 4-connected graph. The concept of removable edges in a 3 -connected graph and a 4-connected graph can be generalized to k-connected graphs [16].

Definition 1 ([16]) Let G be a k-connected graph, and let e be an edge of G. Let $G \ominus e$ denote

[^0]the graph obtained from G by the following operation: (1) delete e from G to get $G-e$; (2) for any end vertex of e with degree $k-1$ in $G-e$, say x, delete x, and then add edges between any pair of non-adjacent vertices in $N_{G-e}(x)$. If $G \ominus e$ is k-connected, then e is said to be a removable edge of G, otherwise e is said to be non-removable. The set of all non-removable edges of G and the set of all removable edges of G are denoted by $E_{N}(G)$ and $E_{R}(G)$ respectively.

Barnette and Grunbaum [1] proved that a 3-connected graph of order at least five has a removable edge. Based on the fact and the above graph operation, a constructive characterization of minimally 3 -connected graphs was given by Dawes [3], which differs from the characterization provided by Tutte [13].

In [17], Yin also proved that a 4-connected graph without removable edge is either K_{5} or K_{6} by removing a 1 -factor. Based on this result, he provided a constructive characterization of 4-connected graphs, which is simpler than Slater's method [10]. And then, We proved that a 5 -connected graph G has no removable edge if and only if $G \cong K_{6}$. Using this result, we gave the constructive characterization of 5-connected graphs. Recently, Su et al. [12] proved that a k connected graph without removable edge is either $K_{(k+1)}$ (when k is even) or the graph obtained from $K_{(k+2)}$ by removing a 1-factor. Based on this result, the constructive characterization of k-connected graphs is given.

For the removable edges and non-removable edges of a k-connected graph G, the following result was given in [16].

Theorem 1 ([16]) Let G be a k-connected graph of order at least $k+3(k \geq 3)$ and $e=x y \in$ $E(G)$. Then e is non-removable if and only if there exists $S \subseteq V(G)$ with $|S|=k-1$ such that $G-e-S$ has exactly two components A, B with $|A| \geq 2$ and $|B| \geq 2$, moreover $x \in A, y \in B$.

Without specific statement, in the following G always denotes a 5 -connected graph. The vertex set and edge set of G are denoted, respectively, by $V(G)$ and $E(G)$. The order and size of G are denoted, respectively, by $|G|$ and $|E(G)|$. The neighborhood of $x \in G$ is denoted by $\Gamma_{G}(x)$ and the degree of x is denoted by $d_{G}(x)$. For a nonempty subset N of $V(G)$, the induced subgraph by N in G is denoted by [N]. For a subset S of $V(G), G-S$ denotes the graph obtained by deleting all the vertices in S from G together with all the incident edges. If $G-S$ is disconnected, we say that S is a vertex-cut of $G . \delta(G)$ denotes the minimum degree of $V(G)$. The girth of G is the length of a shortest cycle in G and is denoted by $g(G)$. Let $A, B \subset V(G)$ such that $A \neq \emptyset, B \neq \emptyset, A \cap B=\emptyset$. Define $[A, B]=\{x y \in E(G) \mid x \in A, y \in B\}$. For $e \in E(G)$ and $S \subset V(G)$ such that $|S|=4$, if $G-e-S$ has exactly two connected components, say A and B, such that $|A| \geq 2$ and $B \geq 2$, then we say that (e, S) is a separating pair and $(e, S ; A, B)$ is a separating group, in which A and B are called the edge-vertex-cut fragments. An edge-vertex-cut fragments of G with a minimum number of vertices is called an edge-vertex-atom of G.

Let $E_{0} \subset E_{N}(G)$ such that $E_{0} \neq \emptyset$ and let $(x y, S ; A, B)$ be a separating group of G such that $x \in A$ and $y \in B$. If $x y \in E_{0}$, then A and B are called E_{0}-edge-vertex-cut fragments. An E_{0}-edge-vertex-cut fragment is called E_{0}-edge-vertex-cut end-fragment of G if it does not contain any other E_{0}-edge-vertex-cut fragment of G as a proper subset. It is easy to see that
any E_{0}-edge-vertex-cut fragment of G contains such an end-fragment.
Removable edges in 3-connected graphs and 4-connected graphs have been studied extensively $[1,11,14,15,17]$. In the present paper, we investigate some properties of 5 -connected graphs and study the distribution of removable edges on a cycle and a spanning tree in a 5 -connected graph. On the basis of the properties, we proved that for a 5 -connected graph G of order at least 10 , if the edge-vertex-atom of G contains at least three vertices, then G has at least $(3|G|+2) / 2$ removable edges.

2. The properties of removable edges in a 5-connected graph

Lemma 2 Let G be a 5-connected graph of order at least 10, an edge-vertex-atom of which contains at least three vertices. Let $(x y, S ; A, B)$ be a separating group of G such that $x \in A$, $y \in B$. Then every edge in $[\{x\}, S]$ is removable.

Proof By contradiction. Assume that there is an edge in $[\{x\}, S]$, say $x u$, is non-removable. So there is a corresponding separating group $(x u, T ; C, D)$ such that $x \in C, u \in D$. Let

$$
\begin{aligned}
& X_{1}=(C \cap S) \cup(S \cap T) \cup(A \cap T), \quad X_{2}=(D \cap S) \cup(S \cap T) \cup(A \cap T) \\
& X_{3}=(D \cap S) \cup(S \cap T) \cup(B \cap T), \quad X_{4}=(C \cap S) \cup(S \cap T) \cup(B \cap T)
\end{aligned}
$$

Obviously, $x \in A \cap C$. Since $X_{1} \cup\{y, u\}$ is a vertex-cut of G and G is 5 -connected, we have that $\left|X_{1}\right| \geq 3$. Next we will distinguish the following cases to proceed the proof.

Case $1 y \in B \cap C$. Then X_{4} is a vertex-cut of $G-x y$. Since G is 5 -connected, we have that $\left|X_{4}\right| \geq 4$. Since $\left|X_{2}\right|+\left|X_{4}\right|=|S|+|T|=8$, we have that $\left|X_{2}\right| \leq 4$. Thus $A \cap D=\emptyset$ (otherwise, X_{2} would be a vertex-cut of G, which contradicts that G is 5 -connected).

Assume that $B \cap D=\emptyset$. Then $|D|=|S \cap D| \geq 3$, and so $|S \cap C|+|S \cap T|=|S|-|S \cap D| \leq 1$, $|S \cap T|+|A \cap T|=\left|X_{2}\right|-|S \cap D| \leq 1$. Thus $\left|X_{1}\right| \leq 2$, which contradicts that $\left|X_{1}\right| \geq 3$.

Otherwise, $B \cap D \neq \emptyset$. Since X_{3} is a vertex-cut of $G,\left|X_{3}\right| \geq 5$. Since $\left|X_{1}\right|+\left|X_{3}\right|=8$ and $\left|X_{1}\right| \geq 3$, we have that $\left|X_{1}\right|=3$ and $\left|X_{3}\right|=5$. If $|A \cap C| \geq 2$, then $X_{1} \cup\{x\}$ is a vertex-cut of G with 4 vertices, a contradiction. Hence $|A \cap C|=1$. Then $|A \cap T|=|A|-|A \cap C| \geq 2$. So we have that $|S \cap C|+|S \cap T|=\left|X_{1}\right|-|A \cap T| \leq 1$ and $|S \cap T|+|B \cap T|=|T|-|A \cap T| \leq 2$, and so $\left|X_{4}\right|=|S \cap C|+|S \cap T|+|B \cap T| \leq 3$, which contradicts that $\left|X_{4}\right| \geq 4$.

Case $2 y \in B \cap T$.
We claim that $A \cap T \neq \emptyset$ and $S \cap C \neq \emptyset$. Otherwise, one of $A \cap T$ and $S \cap C$, say $A \cap T$, is empty. Since $A \cap C \neq \emptyset$ and A is a connected subgraph of G, we have that $A \cap D=\emptyset$, and so $|A|=|A \cap C| \geq 3$. Since $\left|X_{1}\right|=|S \cap C|+|S \cap T| \geq 3$ and $u \in S \cap D$, noting that $|S|=|S \cap C|+|S \cap T|+|S \cap D|=4$, we have that $\left|X_{1}\right|=|S \cap C|+|S \cap T|=3$ and $|S \cap D|=1$, and thus $X_{1} \cup\{x\}$ would be a vertex-cut of G. However, $\left|X_{1} \cup\{x\}\right|=4$, which contradicts that G is 5 -connected. Therefore, $A \cap T \neq \emptyset$. Obviously, $|A \cap T| \leq 3$.

Now we distinguish the following cases.

Case 2.1 $|A \cap T|=1$. Then $|S \cap C|+|S \cap T|=\left|X_{1}\right|-|A \cap T| \geq 2$. And since $|S|=$ $|S \cap C|+|S \cap T|+|S \cap D|=4$, we have that $|S \cap D| \leq 2$.

Case 2.1.1 $|S \cap D|=1$. Since $|S \cap T|+|S \cap D|=|S|-|S \cap C| \leq 3$ and $|S \cap T|+|B \cap T|=|T|-$ $|A \cap T|=3$, then $\left|X_{2}\right| \leq 4,\left|X_{3}\right|=4$. So $A \cap D=\emptyset=B \cap D,|D|=|A \cap D|+|S \cap D|+|B \cap D|=1$, which contradicts that $|D| \geq 2$.

Case 2.1.2 $|S \cap D|=2$. Then we have that $|S \cap C|+|S \cap T|=2$ and $\left|X_{1}\right|=|S \cap C|+|S \cap T|+$ $|A \cap T|=3$. An argument similar to that used in case 1 can lead to that $|A \cap C|=1$. And since $|S \cap T|+|S \cap D|=|S|-|S \cap C| \leq 3$, we have that $\left|X_{2}\right| \leq 4$. By noticing that G is 5 -connected, we have that $A \cap D=\emptyset$. Then, $|A|=|A \cap T|+|A \cap C|=2$, which contradicts that $|A| \geq 3$.

Case 2.2 $|A \cap T|=2$. Then $|S \cap T| \leq 1$. Then, we will discuss the following cases.
Case 2.2.1 $|S \cap T|=1$. Then we have that $|B \cap T|=1$ and $|S \cap C|+|S \cap D|=3$. By noticing that $S \cap C \neq \emptyset$ and $S \cap D \neq \emptyset$, we may assume that $|S \cap C|=1$ and $|S \cap D|=2$, then $\left|X_{3}\right|=4$ and $\left|X_{4}\right|=3$, so $B \cap D=\emptyset$ and $B \cap C=\emptyset$. Thus, $|B|=|B \cap C|+|B \cap D|+|B \cap T|=1$, which contradicts that $|B| \geq 2$.

Case 2.2.2 $|S \cap T|=0$. We have that $|B \cap T|=2$.
Assume that $|S \cap C|=1$. Then, we have that $\left|X_{1}\right|=3$ and $\left|X_{4}\right|=3$. An argument analogous to that used in case 1 can lead to that $|A \cap C|=1$ and $B \cap C=\emptyset$. Thus, $|C|=$ $|A \cap C|+|S \cap C|+|B \cap C|=2$, a contradiction.

Assume that $|S \cap C| \geq 2$. Then, we have that $|S \cap D| \leq 2$ and $\left|X_{2}\right|=\left|X_{3}\right| \leq 4$. An argument analogous to that used in case 2.2.1 can lead to that $A \cap D=\emptyset$ and $B \cap D=\emptyset$. Thus, $|D|=|A \cap D|+|S \cap D|+|B \cap D| \leq 2$, a contradiction.

Case 2.3 $|A \cap T|=3$. Then $|S \cap T|=0,|B \cap T|=1$. Since $S \cap C \neq \emptyset, S \cap D \neq \emptyset$, we have $\left|X_{3}\right| \leq 4,\left|X_{4}\right| \leq 4$. Thus $B \cap C=\emptyset, B \cap D=\emptyset$. So $|B|=|B \cap T|=1$, a contradiction.

The proof is now completed.
The next two results are consequences of Lemma 2.
Corollary 3 Let G be a 5 -connected graph of order at least 10 with $\delta(G) \geq 6$. Let $(x y, S ; A, B)$ be a separating group of G such that $x \in A, y \in B$. Then every edge in $[\{x\}, S]$ is removable.

Proof If $\delta(G) \geq 6$, we claim that the edge-vertex-atom of G contains at least three vertices. Otherwise, the edge-vertex-atom of G contains two vertices, say A, we take its separating group $(x y, S ; A, B)$ such that $x \in A, y \in B$. Assume that $A=\{x, z\}$. Since G is 5 -connected and $|S|=4$, we have that $d_{G}(z)=5$, which contradicts that $\delta(G) \geq 6$. From Lemma 2, the Corollary holds.

By a similar argument, the following result can be obtained easily.
Corollary 4 Let G be a 5 -connected graph of order at least 10 with $g(G) \geq 4$. Let $(x y, S ; A, B)$ be a separating group of G such that $x \in A, y \in B$. Then every edge in $[\{x\}, S]$ is removable.

Lemma 5 Let G be a 5-connected graph of order at least 10, an edge-vertex-atom of which contains at least three vertices. Let $(x y, S ; A, B)$ be a separating group of G such that $x \in A$, $y \in B$. Then $E(G[S]) \subseteq E_{R}(G)$.

Proof By contradiction. Assume that there is an edge in $E(G[S])$, say $u v$, is non-removable. So there is a corresponding separating group $(u v, T ; C, D)$ such that $u \in C, v \in D$. Let

$$
\begin{aligned}
& X_{1}=(C \cap S) \cup(S \cap T) \cup(A \cap T), \quad X_{2}=(D \cap S) \cup(S \cap T) \cup(A \cap T) \\
& X_{3}=(D \cap S) \cup(S \cap T) \cup(B \cap T), \quad X_{4}=(C \cap S) \cup(S \cap T) \cup(B \cap T)
\end{aligned}
$$

Obviously, $u \in S \cap C$ and $v \in D \cap S$. We discuss the following cases.
Case $1 x \in A \cap C$ and $y \in B \cap C$.
Then we have that $\left|X_{1}\right| \geq 4$ and $\left|X_{4}\right| \geq 4$. Since $\left|X_{1}\right|+\left|X_{3}\right|=|S|+|T|=\left|X_{2}\right|+\left|X_{4}\right|=8$, we have $\left|X_{2}\right| \leq 4$ and $\left|X_{3}\right| \leq 4$. Thus $A \cap D=\emptyset=B \cap D$. Since $|D|=|A \cap D|+|S \cap D|+|B \cap D|=$ $|S \cap D| \geq 3$, we have $|S \cap C|+|S \cap T|=|S|-|S \cap D| \leq 1$ and $|A \cap T|+|S \cap T|=\left|X_{2}\right|-|S \cap D| \leq 1$. Thus, $\left|X_{1}\right| \leq 2$, which contradicts $\left|X_{1}\right| \geq 4$.

Case $2 x \in A \cap C$ and $y \in B \cap T$.
Then we have that $\left|X_{1}\right| \geq 4$. Since $\left|X_{1}\right|+\left|X_{3}\right|=8$, we have that $\left|X_{3}\right| \leq 4$, thus $B \cap D=\emptyset$. If $B \cap C \neq \emptyset$, an argument analogous to that used in case 1 can lead to a contradiction. So $B \cap C=\emptyset$. Then $|B|=|B \cap T| \geq 3$. Noting that $|S \cap T|+|A \cap T|=|T|-|B \cap T| \leq 1$, we have that $|S \cap C|=\left|X_{1}\right|-|S \cap T|-|A \cap T| \geq 3$. Then $|S \cap D|=|S|-|S \cap T|-|S \cap C| \leq 1$. Hence $\left|X_{2}\right|=|A \cap T|+|S \cap T|+|S \cap D| \leq 2$, then $A \cap D=\emptyset$, thus $|D|=|A \cap D|+|S \cap D|+|B \cap D|=$ $|S \cap D| \leq 1$, which contradicts that $|D| \geq 2$.

Case $3 x \in A \cap T$ and $y \in B \cap T$.
Assume that $A \cap C \neq \emptyset$. Then $\left|X_{1}\right| \geq 4$, thus $B \cap D=\emptyset$. If $B \cap C \neq \emptyset$, an argument analogous to that used in case 1 can lead to a contradiction. If $B \cap C=\emptyset$, a similar argument used in case 2 can lead to a contradiction. Hence $A \cap C=\emptyset$. Similarly, $B \cap C=\emptyset$. Hence, $|C|=|A \cap C|+|S \cap C|+|B \cap C|=|S \cap C| \geq 3$. Noticing that $v \in S \cap D$ and $|S|=4$, we have that $|C|=|S \cap C|=3,|S \cap T|=0$ and $|S \cap D|=1$. Since $x \in A \cap T, y \in B \cap T$, it follows that $\left|X_{2}\right| \leq 4,\left|X_{3}\right| \leq 4$, and then $A \cap D=\emptyset=B \cap D$. Hence, $|D|=|A \cap D|+|S \cap D|+|B \cap D|=1$, which contradicts that $|D| \geq 2$.

The proof of other cases can reduce to the above case. The proof is now completed. \square
From Lemma 5 we can deduce the following result by a similar argument used in Corollary 3.

Corollary 6 Let G be a 5 -connected graph of order at least 10, and let $(x y, S ; A, B)$ be a separating group of G such that $x \in A, y \in B$. If $\delta(G) \geq 6$ or $g(G) \geq 4$, then $E(G[S]) \subseteq E_{R}(G)$.

Let us note an immediate consequence of Corollary 3, Corollary 4 and Corollary 6, concerning the distribute of removable edges in a triangle of G.

Corollary 7 Let G be a 5 -connected graph of order at least 10. If $\delta(G) \geq 6$ or $g(G) \geq 4$, then
every triangle of G contains at least one removable edge.

3. Removable edges in a cycle of a 5 -connected graph

Theorem 8 Let G be a 5 -connected graph of order at least 10 and C a cycle of G. If the edge-vertex-atom of G contains at least three vertices, then there are at least two removable edges of G in C.

Proof By contradiction. Assume that there is at most one removable edge of G in C. Let $F=E(C) \cap E_{R}(G)$. Then $|F| \leq 1$. Denote $E(C)-F$ by E_{0} and let $u w \in E_{0}$. We take a separating group $\left(u w, S^{\prime} ; A^{\prime}, B^{\prime}\right)$ such that $u \in A^{\prime}, w \in B^{\prime}$. From $|F| \leq 1$, we know that $\left(E\left(A^{\prime}\right) \cup\left[A^{\prime}, S^{\prime}\right]\right) \cap F=\emptyset$ or $\left(E\left(B^{\prime}\right) \cup\left[B^{\prime}, S^{\prime}\right]\right) \cap F=\emptyset$. Without loss of generality, we may assume that $\left(E\left(A^{\prime}\right) \cup\left[A^{\prime}, S^{\prime}\right]\right) \cap F=\emptyset$. Since A^{\prime} is an E_{0}-edge-vertex-cut fragment, A^{\prime} must contain an $E_{0^{-}}$ edge-vertex-cut end-fragment as its subgraph, say A. Then, we have that $(E(A) \cup[A, S]) \cap F=\emptyset$, and take a separating group $(x y, S ; A, B)$ such that $x \in A, y \in B$ with $x y \in E_{0}$.

Let $x z \in E_{0} \cap(E(A) \cup[A, S])$. Then obviously $z \notin S$. Otherwise, from Lemma $2, x z$ is a removable edge of G, a contradiction. We take a separating group ($x z, S_{1} ; A_{1}, B_{1}$) such that $x \in A_{1}, z \in B_{1}$. Then, we have that $x \in A \cap A_{1}, z \in A \cap B_{1}$. Let

$$
\begin{aligned}
& X_{1}=\left(A_{1} \cap S\right) \cup\left(S \cap S_{1}\right) \cup\left(A \cap S_{1}\right), \quad X_{2}=\left(A \cap S_{1}\right) \cup\left(S \cap S_{1}\right) \cup\left(B_{1} \cap S\right), \\
& X_{3}=\left(B_{1} \cap S\right) \cup\left(S \cap S_{1}\right) \cup\left(B \cap S_{1}\right), \quad X_{4}=\left(B \cap S_{1}\right) \cup\left(S \cap S_{1}\right) \cup\left(A_{1} \cap S\right) .
\end{aligned}
$$

From Lemma 2, we have that $y \notin B \cap S_{1}$, and so $y \in A_{1} \cap B$. Since $A \cap B_{1} \neq \emptyset$, we have that X_{2} is a vertex-cut of $G-x z$, so $\left|X_{2}\right| \geq 4$. By an analogous argument, we can deduce that $\left|X_{4}\right| \geq 4$. Since $\left|X_{2}\right|+\left|X_{4}\right|=|S|+\left|S_{1}\right|=8$, we can get that $\left|X_{2}\right|=\left|X_{4}\right|=4$, then $\left|A_{1} \cap S\right|=\left|A \cap S_{1}\right|,\left|B \cap S_{1}\right|=\left|B_{1} \cap S\right|$. We claim that $A \cap B_{1}=\{z\}$. Otherwise, $\left|A \cap B_{1}\right| \geq 2$. Then, $\left(x z, X_{2} ; A \cap B_{1}, A_{1} \cup B\right)$ is a separating group of G and $x z \in E_{0}$. It is easy to see that $A \cap B_{1}$ is an E_{0}-edge-vertex-cut fragment contained in A, which contradicts that A is an $E_{0^{-}}$ edge-vertex-cut end-fragment of G. Therefore, $A \cap B_{1}=\{z\}$. Since $x \in A \cap A_{1}, z \in A \cap B_{1}$, we have $X_{1} \cup\{y, z\}$ is a vertex-cut of G. Hence $\left|X_{1}\right| \geq 3$. We consider the following cases.

Case $1 \quad\left|X_{1}\right| \geq 4$. Since $\left|X_{1}\right|+\left|X_{3}\right|=|S|+\left|S_{1}\right|=8,\left|X_{3}\right| \leq 4$. Then $B \cap B_{1}=\emptyset$, and so $\left|B_{1}\right|=\left|A \cap B_{1}\right|+\left|S \cap B_{1}\right|+\left|B \cap B_{1}\right|=1+\left|S \cap B_{1}\right|$. Since $\left|B_{1}\right| \geq 3,\left|S \cap B_{1}\right| \geq 2$.

If $\left|S \cap B_{1}\right| \geq 3$, then $\left|S \cap A_{1}\right|+\left|S \cap S_{1}\right|=|S|-\left|S \cap B_{1}\right| \leq 1,\left|S_{1} \cap A\right|+\left|S \cap S_{1}\right|=\left|X_{2}\right|-\left|S \cap B_{1}\right| \leq 1$. Hence $\left|X_{1}\right| \leq 2$, a contradiction.

If $\left|S \cap B_{1}\right|=2$, then $\left|S \cap A_{1}\right|+\left|S \cap S_{1}\right|=|S|-\left|S \cap B_{1}\right|=2,\left|S_{1} \cap A\right|+\left|S \cap S_{1}\right|=\left|X_{2}\right|-\left|S \cap B_{1}\right|=2$. Noting that $\left|X_{1}\right| \geq 4$, we have that $\left|S \cap A_{1}\right|=2,\left|S \cap S_{1}\right|=0,\left|A \cap S_{1}\right|=2$ and $\left|B \cap S_{1}\right|=2$. Let $A \cap S_{1}=\{a, b\}, S \cap B_{1}=\{c, d\}$ and $B \cap S_{1}=\{e, f\}$. If $c d \notin E(G)$, it is easy to see that $c a, c f, d a, d e, d f \in E(G)$. If $c d \in E(G)$, we claim that $a d, a c \in E(G)$. If not, there are two cases.
(1) $\left|N_{G}(a) \cap\{c, d\}\right|=1$. Without loss of generality, we may assume that $a c \in E(G)$, $a d \notin E(G)$. Let $S^{\prime}=\left(S_{1} \backslash\{a\}\right) \cup\{z\}, A^{\prime}=B_{1} \backslash\{z\}, B^{\prime}=G-a c-A^{\prime}-S^{\prime}$. Then $\left(a c, S^{\prime} ; A^{\prime}, B^{\prime}\right)$ is a separating group of G and $\left|A^{\prime}\right|=2$, a contradiction.
(2) $\left|N_{G}(a) \cap\{c, d\}\right|=0$. Then, $\left(S_{1} \backslash\{a\}\right) \cup\{z\}$ is a vertex-cut of G with cardinality 4, a contradiction.

Hence, $a c, a d \in E(G)$. Similarly $b c, b d \in E(G)$. By symmetry, we can show that $e c, e d, f c, f d \in$ $E(G)$. From Lemma $3, z a, z b \in E_{R}(G)$. Since $E(C) \cap\{z a, z b, z c, z d\} \neq \emptyset$ and $(E(A) \cup[A, S]) \cap F=$ \emptyset, there holds $\{z c, z d\} \cap E_{N}(G) \neq \emptyset$. Without loss of generality, we may assume that $z c \in E_{N}(G)$, and take a corresponding separating group $(z c, T ; C, D)$ such that $z \in C, c \in D$. Let

$$
\begin{array}{ll}
Y_{1}=\left(S_{1} \cap C\right) \cup\left(S_{1} \cap T\right) \cup\left(A_{1} \cap T\right), & Y_{2}=\left(A_{1} \cap T\right) \cup\left(S_{1} \cap T\right) \cup\left(S_{1} \cap D\right) \\
Y_{3}=\left(S_{1} \cap D\right) \cup\left(S_{1} \cap T\right) \cup\left(B_{1} \cap T\right), & Y_{4}=\left(B_{1} \cap T\right) \cup\left(S_{1} \cap T\right) \cup\left(S_{1} \cap C\right)
\end{array}
$$

Obviously, $x \in A_{1} \cap C, c \in B_{1} \cap D$. Since each of a, b is adjacent to both c and z, we have $a, b \in S_{1} \cap T$. By an analogous argument used in Lemma 2 we can show that $\left|Y_{1}\right|=\left|Y_{3}\right|=4$, $\left|Y_{4}\right| \geq 3,\left|Y_{2}\right| \leq 5$. Since $\left|B_{1}\right|=3, z d \in E(G)$, we have $\left|B_{1} \cap D\right|=1,\left|B_{1} \cap T\right| \leq 1$. Then, we consider the following cases.

Case 1.1 $\left|Y_{4}\right| \geq 4$. Then $\left|Y_{2}\right| \leq 4$, so $A_{1} \cap D=\emptyset$. Since $\left|B_{1} \cap D\right|=1,|D| \geq 3$, it follows $\left|D \cap S_{1}\right| \geq 2$. Noting that $\left|S_{1}\right|=4$ and $\left|S_{1} \cap T\right| \geq 2$, so $\left|D \cap S_{1}\right|=2=\left|S_{1} \cap T\right|,\left|S_{1} \cap C\right|=0$. Then $\left|Y_{4}\right| \leq 3$, a contradiction.

Case $1.2\left|Y_{4}\right|=3$, then $\left|Y_{2}\right|=5$. We discuss the following cases.
Case 1.2.1 $\left|B_{1} \cap T\right|=0$. Then $\left|B_{1} \cap C\right|=2$. Thus, $Y_{4} \cup\{z\}$ is a vertex-cut of G with cardinality 4, a contradiction.

Case 1.2.2 $\left|B_{1} \cap T\right|=1$. Then, $\left|A_{1} \cap T\right|+\left|S_{1} \cap T\right|=3,\left|S_{1} \cap D\right|=\left|Y_{2}\right|-\left|A_{1} \cap T\right|-\left|S_{1} \cap T\right|=2$, and then $\left|S_{1} \cap T\right| \leq\left|S_{1}\right|-\left|S_{1} \cap D\right| \leq 2$. Noting that $a, b \in S_{1} \cap T$, thus $\left|S_{1} \cap T\right|=2$. Then, we have that $\left|A_{1} \cap T\right|=1,\left|S_{1} \cap D\right|=2,\left|S_{1} \cap C\right|=0$, and so $\left|Y_{1}\right|=3$, a contradiction.

Case $2\left|X_{1}\right|=3$. Then we claim that $\left|A_{1} \cap A\right|=1$. Otherwise, $X_{1} \cup\{x\}$ is a vertex-cut of G with cardinality 4 , a contradiction. Since $|A| \geq 3$ and $\left|A \cap B_{1}\right|=1$, we have $\left|A \cap S_{1}\right| \geq 1$. Then $\left|A_{1} \cap S\right|+\left|S_{1} \cap S\right|=\left|X_{1}\right|-\left|A \cap S_{1}\right| \leq 2$, thus $\left|B_{1} \cap S\right|=|S|-\left|A_{1} \cap S\right|-\left|S_{1} \cap S\right| \geq 2$. If $\left|B_{1} \cap S\right| \geq 3$, then $\left|S \cap A_{1}\right|+\left|S \cap S_{1}\right|=|S|-\left|S \cap B_{1}\right| \leq 1,\left|A \cap S_{1}\right|=\left|X_{2}\right|-\left|S \cap S_{1}\right|-\left|S \cap B_{1}\right| \leq 1$, and so $\left|X_{1}\right| \leq 2$, a contradiction. If $\left|B_{1} \cap S\right|=2$, then $\left|B \cap S_{1}\right|=2$. Noticing that $\left|X_{3}\right|=5$, we have $\left|S \cap S_{1}\right|=1,\left|S \cap A_{1}\right|=1,\left|A \cap S_{1}\right|=1$. Assume that $A \cap S_{1}=\{a\}, S \cap A_{1}=\{b\}$. If $a b \notin E(G)$, then, $(S \backslash\{b\}) \cup\{x\}$ is a vertex-cut of G with cardinality 4 , a contradiction. If $a b \in E(G)$, then let $A^{\prime}=A \backslash\{x\}, S^{\prime}=(S \backslash\{b\}) \cup\{x\}, B^{\prime}=G-a b-S^{\prime}-A^{\prime}$. We have that $\left(a b, S^{\prime} ; A^{\prime}, B^{\prime}\right)$ is a separating group of G with $\left|A^{\prime}\right|=2$, a contradiction.

The proof now is completed.
Corollary 9 Let G be a 5-connected graph of order at least 10 and C a cycle of G. If $\delta(G) \geq 6$ or $g(G) \geq 4$, then there are at least two removable edges of G in C.

4. Removable edges in a spanning tree of a 5 -connected graph

Theorem 10 Let G be a 5-connected graph and T a spanning tree of G. If $\delta(G) \geq 6$, then there are at least two removable edges of G in T.

Proof Clearly, $|G| \geq 7$. If $|G|=7$, then $G=K_{7}$. Since every edge of K_{7} is removable, the conclusion holds. Now we may assume that $|G| \geq 8$. By contradiction. Assume that there is at most one removable edge of G in T. Let $F=E(T) \cap E_{R}(G)$. Then $|F| \leq 1$. Denote $E(T)-F$ by E_{0}, we take a separating group $\left(u w, S^{\prime} ; A^{\prime}, B^{\prime}\right)$ such that $u \in A^{\prime}, w \in B^{\prime}$ and $u w \in E_{0}$. From $|F| \leq 1$, we know that $\left(E\left(A^{\prime}\right) \cup\left[A^{\prime}, S^{\prime}\right]\right) \cap F=\emptyset$ or $\left(E\left(B^{\prime}\right) \cup\left[B^{\prime}, S^{\prime}\right]\right) \cap F=\emptyset$. Without loss of generality, we may assume that $\left(E\left(A^{\prime}\right) \cup\left[A^{\prime}, S^{\prime}\right]\right) \cap F=\emptyset$. Since A^{\prime} is an E_{0}-edge-vertex-cut fragment, A^{\prime} must contain an E_{0}-edge-vertex-cut end-fragment as its subgraph, say A. Then, we have that $(E(A) \cup[A, S]) \cap F=\emptyset$, and we take a separating group $(x y, S ; A, B)$ such that $x \in A, y \in B$ with $x y \in E_{0}$.

Let $u z \in E_{0} \cap(E(A) \cup[A, S])$. We take a separating group $(u z, T ; C, D)$ such that $u \in C$, $z \in D$. Let

$$
\begin{aligned}
& X_{1}=(C \cap S) \cup(S \cap T) \cup(A \cap T), \quad X_{2}=(A \cap T) \cup(S \cap T) \cup(D \cap S), \\
& X_{3}=(D \cap S) \cup(S \cap T) \cup(B \cap T), \quad X_{4}=(B \cap T) \cup(S \cap T) \cup(C \cap S) .
\end{aligned}
$$

If $u=x$, it follows from Lemma 2 that $z \in A \cap D, y \in B \cap C$. By an analogous argument used in Theorem 8, we have that $\left|X_{2}\right|=\left|X_{4}\right|=4$. We claim that $A \cap D=\{z\}$. Otherwise, $|A \cap D| \geq 2$. Let $A_{1}=A \cap D, S_{1}=X_{2}$ and $B_{1}=G-A_{1}-S_{1}-x z$. Then we get an edge-vertexcut fragment A_{1} which is a proper subset of A. This is a contradiction. Thus, $A \cap D=\{z\}$, and then $d_{G}(z)=5$, a contradiction.

If $u \neq x$, we consider the following cases.
Case $1 u z \in E(A)$. Then $u \in A \cap C, z \in A \cap D$. Since $A \cap D \neq \emptyset, X_{2}$ is a vertex-cut of $G-u z$, then $\left|X_{2}\right| \geq 4$. If $\left|X_{2}\right|=4$, by an argument similar to that used above, $A \cap D=\{z\}$, and then $d_{G}(z)=5$, a contradiction. So $\left|X_{2}\right| \geq 5$.

Case $1.1 x \in A \cap C, y \in B \cap C$. By a similar argument, we can get that $\left|X_{4}\right| \geq 4$. Noticing that $\left|X_{2}\right|+\left|X_{4}\right|=|S|+|T|=8$, then $\left|X_{2}\right| \leq 4$, a contradiction.

Case $1.2 x \in A \cap C, y \in B \cap T$. Since $\left|X_{2}\right| \geq 5$, we have $|S \cap D|>|B \cap T|,\left|X_{4}\right| \leq 3$. Thus $B \cap C=\emptyset$. Since $X_{1} \cup\{y, z\}$ is a vertex-cut of G, there holds $\left|X_{1}\right| \geq 3$. Noticing that $\left|X_{1}\right|+\left|X_{3}\right|=|S|+|T|=8$, we get $\left|X_{3}\right| \leq 5$.

If $\left|X_{1}\right| \geq 4$, then $|S \cap C| \geq|B \cap T|,\left|X_{3}\right| \leq 4$, and then $B \cap D=\emptyset$. Hence $|B|=|B \cap T| \geq 3$. Thus $|S| \geq|S \cap D|+|S \cap C| \geq 2|B \cap T| \geq 6$, which contradicts $|S|=4$.

If $\left|X_{1}\right|=3$, we claim that $|A \cap C|=2$. Otherwise, $|A \cap C| \geq 3$, let $S_{1}=X_{1} \cup\{u\}$, $A_{1}=A \cap C-\{u\}, B_{1}=B \cup D$. Then we get an edge-vertex-cut fragment A_{1} which is a proper subset of A, a contradiction. Hence $|A \cap C|=2$, and then $d_{G}(x)=d_{G}(u)=5$, a contradiction.

Case $1.3 x \in A \cap T, y \in B \cap T$. By Lemma $5, x y \in E_{R}(G)$, a contradiction.

Case $1.4 x \in A \cap T, y \in B \cap C$. Using an argument analogous to the one in case 1.1 can lead to a contradiction.

Other cases such as $x \in A \cap T, y \in B \cap D ; x \in A \cap D, y \in B \cap T ; x \in A \cap D, y \in B \cap D$ can reduce to the above cases by symmetry.

Case $2 u z \in[A, S]$. Then $u \in A \cap C, z \in S \cap D$.
Case $2.1 x \in A \cap C, y \in B \cap C$. A contradiction yields by an analogous argument used in case 1.2.

Case $2.2 x \in A \cap C, y \in B \cap T$. Since X_{1} is a vertex-cut of $G-x y-u z,\left|X_{1}\right| \geq 3$. Suppose $\left|X_{1}\right|=3$. If $|A \cap C|=2$, then $d_{G}(x)=d_{G}(u)=5$, a contradiction. Thus, $|A \cap C| \geq 3$. Let $S_{1}=X_{1} \cup\{u\}, A_{1}=A \cap C-\{u\}, B_{1}=B \cup D$. Then we get an edge-vertex-cut fragment A_{1} which is a proper subset of A, a contradiction. Therefore $\left|X_{1}\right| \geq 4$. And then $|A \cap T| \geq|S \cap D|$, $\left|X_{3}\right| \leq 4$. Hence $B \cap D=\emptyset$.

Since $\left|X_{2}\right|+\left|X_{4}\right|=8$, we have $\left|X_{2}\right| \leq 4$ or $\left|X_{4}\right| \leq 4$. Without loss of generality, we may assume that $\left|X_{4}\right| \leq 4$, then $B \cap C=\emptyset$. Thus, $|B|=|B \cap C|+|B \cap T|+|B \cap D|=|B \cap T| \geq 3$. Since $|T|=4$, we have $|A \cap T|=1,|S \cap T|=0,|B \cap T|=3,|S \cap D|=1,|S \cap C|=3$. Then $\left|X_{4}\right|=6$, a contradiction.

Case $2.3 x \in A \cap T, y \in B \cap C$. Then $\left|X_{4}\right| \geq 4$, and then $|S \cap C| \geq|A \cap T| \geq 1$. Noticing that $\left|X_{2}\right|+\left|X_{4}\right|=8$, we have that $\left|X_{2}\right| \leq 4$, and then $A \cap D=\emptyset$. By a similar argument, $B \cap D=\emptyset$. Then $|D|=|S \cap D| \geq 3$. Since $|S|=4$, we have $|S \cap D|=3,|S \cap C|=1,|S \cap T|=0$. Therefore, $|A \cap T|=1,|B \cap T|=3$. Thus, $\left|X_{1}\right|=2$, and $X_{1} \cup\{z\}$ is a vertex-cut of G, a contradiction.

Case $2.4 x \in A \cap T, y \in B \cap D$. By a similar argument, we have $\left|X_{1}\right|=\left|X_{3}\right|=4$. If $|A \cap C| \geq 2$, then $\left(u z, X_{1} ; A \cap C, B \cup D\right)$ is a separating group of G, and $A \cap C$ is a proper subset of A. This is a contradiction. If $|A \cap C|=1$, then $d_{G}(u)=5$, a contradiction.

Case $2.5 x \in A \cap D, y \in B \cap T$. By a similar argument, we have that $\left|X_{1}\right| \geq 4$ and $\left|X_{2}\right| \geq 4$, then $\left|X_{3}\right| \leq 4$ and $\left|X_{4}\right| \leq 4$, hence $B \cap D=\emptyset$ and $B \cap C=\emptyset$. Therefore $|B|=|B \cap T| \geq 3$. Since $\left|X_{3}\right| \leq 4,|S \cap C| \geq|B \cap T| \geq 3$. Hence $|S \cap C|=3=|B \cap T|,|S \cap T|=0,|A \cap T|=|S \cap D|=1$. Thus $\left|X_{2}\right|=2$, and $X_{2} \cup\{y\}$ is a vertex-cut of G with cardinality 3, a contradiction.

Case $2.6 x \in A \cap D, y \in B \cap D$. By an analogous argument used in case 2.4, we can get a contradiction.

The proof now is completed.
By a similar argument we also have the following results.
Theorem 11 Let G be a 5-connected graph and T a spanning tree of G. If $\delta(G) \geq 6$, then there are at least two removable edges of G in $G-E(T)$.

Now we have the main theorems of this paper.
Theorem 12 Let G be a 5-connected graph of order at least 10 and $\delta(G) \geq 6$. Then $E_{R}(G) \geq$
$2|G|+2$.
Proof Let $G^{\prime}=G\left[E_{N}(G)\right]$. From Theorem 8 and Theorem 10, G^{\prime} is a forest, then $\left|E_{N}(G)\right| \leq$ $|G|-2$. Thus, $E_{R}(G)=\left|E(G)-E_{N}(G)\right| \geq 3|G|-(|G|-2)=2|G|+2$.

By a similar argument we also have the following results.
Theorem 13 Let G be a 5 -connected graph of order at least 10. If the edge-vertex-atom of G contains at least three vertices, then $E_{R}(G) \geq(3|G|+2) / 2$.

Theorem 14 Let G be a 5 -connected graph of order at least 10 and $g(G) \geq 4$. Then $E_{R}(G) \geq$ $(3|G|+4) / 2$.

References

[1] BARBETTE D W, GRÜNBAUM B. On Steinitz's Theorem Concerning Convex 3-Polytopes and on Some Properties of Planar Graphs [M]. Springer, Berlin, 1966.
[2] BONDY J A, Murty U S R. Graph Theory with Applications [M]. American Elsevier Publishing Co., Inc., New York, 1976.
[3] DAWES R W. Minimally 3-connected graphs [J]. J. Combin. Theory Ser. B, 1986, 40(2): 159-168.
[4] DIRAC G A. Minimally 2-connected graphs [J]. J. Reine Angew. Math., 1967, 228: 204-216.
[5] HABIB M, PÉROCHE B. A construction method for minimally k-edge-connected graphs [J]. Ann. Discrete Math., 1980, 9: 199-204.
[6] HOLTON D A, JACKSON B, SAITO A. et al. Removable edges in 3-connected graphs [J]. J. Graph Theory, 1990, 14(4): 465-473.
[7] MADER W. A reduction method for edge-connectivity in graphs [J]. Ann. Discrete Math., 1978, 3: 145-164.
[8] MADER W. Generalizations of critical connectivity of graphs [J]. Discrete Math., 1988, 72(1-3): 267-283.
[9] MARTINOV N. Uncontractible 4-connected graphs [J]. J. Graph Theory, 1982, 6(3): 343-344.
[10] SLATER P J. A classification of 4-connected graphs [J]. J. Combinatorial Theory Ser. B, 1974, 17: 281-298.
[11] SU Jianji. The number of removable edges in 3-connected graphs [J]. J. Combin. Theory Ser. B, 1999, 75(1): 74-87.
[12] SU Jianji, GUO Xiaofeng, XU Liqiong. Removable edges in a k-connected graph and a construction method for k-connected graphs [J]. Discrete Math., 2009, 309(10): 3161-3165.
[13] TUTTE W T. A theory of 3-connected graphs [J]. Nederl. Akad. Wetensch. Proc. Ser. A, 1961, 64: 441-455.
[14] WU Jichang, LI Xueliang, SU Jianji. The number of removable edges in a 4-connected graph [J]. J. Combin. Theory Ser. B, 2004, 92(1): 13-40.
[15] WU Jichang, LI Xueliang, WANG Lusheng. Removable edges in a cycle of a 4 -connected graph [J]. Discrete Math., 2004, 287(1-3): 103-111.
[16] XU Liqiong, GUO Xiaofeng. Removable edges in a 5-connected graph and a construction method of 5connected graphs [J]. Discrete Math., 2008, 308(9): 1726-1731.
[17] YIN Jianhua. Removable edges and constructions of 4-connected graphs [J]. J. Sys. Sci. Math. Scis., 1999, 19(4): 434-438.
[18] ZHANG Fuji, GUO Xiaofeng, CHEN Rongsi. A Construction Method for Critically k-Edge-Connected Graphs [M]. New York Acad. Sci., New York, 1989.
[19] ZHANG Fuji, GUO Xiaofeng. Reducible chains in several types of 2-connected graphs [J]. Discrete Math., 1992, 105(1-3): 285-291.

[^0]: Received July 8, 2009; Accepted January 18, 2010
 Supported by the National Natural Science Foundation of China (Grant No. 10831001) and the Science-Technology Foundation for Young Scientists of Fujian Province (Grant No. 2007F3070).

 * Corresponding author

 E-mail address: xuliqiong@jmu.edu.cn (L. Q. XU)

