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Abstract An edge e of a k-connected graph G is said to be a removable edge if G & e is
still k-connected, where G © e denotes the graph obtained from G by deleting e to get G —
e, and for any end vertex of e with degree k — 1 in G — e, say x, delete x, and then add
edges between any pair of non-adjacent vertices in Ng—.(x). The existence of removable edges
of k-connected graphs and some properties of 3-connected and 4-connected graphs have been
investigated [1,11,14,15]. In the present paper, we investigate some properties of 5-connected
graphs and study the distribution of removable edges on a cycle and a spanning tree in a 5-
connected graph. Based on the properties, we proved that for a 5-connected graph G of order
at least 10, if the edge-vertex-atom of G contains at least three vertices, then G has at least
(3]G| + 2)/2 removable edges.
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1. Introduction

Graph theoretic terminology used here generally follows that of Bondy [2]. We consider only
finite and simple graphs.

Connectivity of graphs is a fundamental topic in graph theory research. For properties
and constructions of several classes of k-edge-connected graphs and k-connected graphs, many
investigations have been made. The concepts of contractible edges and removable edges of k-
connected graphs are very important in studying the constructions of k-connected graphs and in
proving some properties of k-connected graphs by induction.

For removable edges of k-connected graphs, Holton et al. [6] first defined removable edges
in a 3-connected graph. Later, Yin [17] defined removable edges in a 4-connected graph. The
concept of removable edges in a 3-connected graph and a 4-connected graph can be generalized

to k-connected graphs [16].

Definition 1 ([16]) Let G be a k-connected graph, and let e be an edge of G. Let G & e denote
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the graph obtained from G by the following operation: (1) delete e from G to get G — e; (2) for
any end vertex of e with degree k — 1 in G — e, say x, delete x, and then add edges between any
pair of non-adjacent vertices in Ng_.(z). If GEe is k-connected, then e is said to be a removable
edge of G, otherwise e is said to be non-removable. The set of all non-removable edges of G and

the set of all removable edges of G are denoted by En(G) and Er(G) respectively.

Barnette and Grunbaum [1] proved that a 3-connected graph of order at least five has a
removable edge. Based on the fact and the above graph operation, a constructive characterization
of minimally 3-connected graphs was given by Dawes [3], which differs from the characterization
provided by Tutte [13].

In [17], Yin also proved that a 4-connected graph without removable edge is either K5 or
K by removing a 1-factor. Based on this result, he provided a constructive characterization of
4-connected graphs, which is simpler than Slater’s method [10]. And then, We proved that a
5-connected graph G has no removable edge if and only if G = Kg. Using this result, we gave
the constructive characterization of 5-connected graphs. Recently, Su et al. [12] proved that a k-
connected graph without removable edge is either K ;1) (when k is even) or the graph obtained
from K(;40) by removing a 1-factor. Based on this result, the constructive characterization of

k-connected graphs is given.

For the removable edges and non-removable edges of a k-connected graph G, the following

result was given in [16].

Theorem 1 ([16]) Let G be a k-connected graph of order at least k+ 3 (k > 3) and e = xy €
E(G). Then e is non-removable if and only if there exists S C V(G) with |S| = k — 1 such that
G — e — S has exactly two components A, B with |A| > 2 and |B| > 2, moreover x € A, y € B.

Without specific statement, in the following G always denotes a 5-connected graph. The
vertex set and edge set of G are denoted, respectively, by V(G) and E(G). The order and size
of G are denoted, respectively, by |G| and |E(G)|. The neighborhood of € G is denoted by
I'c(x) and the degree of x is denoted by dg(z). For a nonempty subset N of V(G), the induced
subgraph by N in G is denoted by [N]. For a subset S of V(G), G — S denotes the graph
obtained by deleting all the vertices in S from G together with all the incident edges. If G — S
is disconnected, we say that S is a vertex-cut of G. §(G) denotes the minimum degree of V(G).
The girth of G is the length of a shortest cycle in G and is denoted by g(G). Let A, B C V(G)
such that A # (0, B# (0, AN B = (). Define [A, B] = {zy € E(G)|z € A,y € B}. For e € E(G)
and S C V(G) such that |S| = 4, if G — e — S has exactly two connected components, say A and
B, such that |A| > 2 and B > 2, then we say that (e,.S) is a separating pair and (e, S; A, B) is a
separating group, in which A and B are called the edge-vertex-cut fragments. An edge-vertex-cut
fragments of G with a minimum number of vertices is called an edge-vertex-atom of G.

Let Fy C En(G) such that Ey # () and let (xy, S; A, B) be a separating group of G such
that x+ € A and y € B. If zy € Ej, then A and B are called Eyp-edge-vertex-cut fragments.
An Ejy-edge-vertex-cut fragment is called Ey-edge-vertex-cut end-fragment of G if it does not

contain any other Fy-edge-vertex-cut fragment of G as a proper subset. It is easy to see that
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any FEy-edge-vertex-cut fragment of G contains such an end-fragment.

Removable edges in 3-connected graphs and 4-connected graphs have been studied extensively
[1,11,14,15,17]. In the present paper, we investigate some properties of 5-connected graphs and
study the distribution of removable edges on a cycle and a spanning tree in a 5-connected graph.
On the basis of the properties, we proved that for a 5-connected graph G of order at least 10,
if the edge-vertex-atom of G contains at least three vertices, then G has at least (3|G|+ 2)/2

removable edges.

2. The properties of removable edges in a 5-connected graph

Lemma 2 Let G be a 5-connected graph of order at least 10, an edge-vertex-atom of which
contains at least three vertices. Let (xy,S; A, B) be a separating group of G such that x € A,
y € B. Then every edge in [{z}, S] is removable.

Proof By contradiction. Assume that there is an edge in [{z}, S], say xu, is non-removable. So

there is a corresponding separating group (zu,T'; C, D) such that x € C, u € D. Let
Xi=CnSHu(SNT)u(ANT), Xo=(DNSHU(SNT)U(ANT),
Xs=(DNS)Yu(SNT)U(BNT), X4y=(CNSHUu(SNT)Uu(BNT).

Obviously, z € ANC. Since X; U {y,u} is a vertex-cut of G and G is 5-connected, we have
that | X;| > 3. Next we will distinguish the following cases to proceed the proof.

Case 1 y € BNC. Then X, is a vertex-cut of G — xy. Since G is 5-connected, we have that
| X4| > 4. Since |Xa| + | X4| = |S| + |T| = 8, we have that |X5| < 4. Thus AN D = () (otherwise,
X9 would be a vertex-cut of G, which contradicts that G is 5-connected).

Assume that BND = (). Then |D| = |SND| > 3, and so |[SNC|+|SNT|=|S|-|SND| <1,
ISNT|+ |ANT|=|Xz| — SN D| <1. Thus |X;1] < 2, which contradicts that |X1| > 3.

Otherwise, BN D # (. Since X3 is a vertex-cut of G, | X3| > 5. Since |X1| + |X3| = 8 and
|X1| > 3, we have that | X;| =3 and | X3| =5. If |ANC| > 2, then X; U {z} is a vertex-cut of
G with 4 vertices, a contradiction. Hence |[ANC| = 1. Then |[ANT| =|A|—|ANC| > 2. So we
have that |[SNC|+|SNT|=|X1|—|[ANT|<land |SNT|+|BNT|=|T|—|ANT]| <2, and
so | X4l =|SNC|+|SNT|+ |BNT| <3, which contradicts that | X,| > 4.

Case 2 ye BNT.

We claim that ANT # ) and SN C # (). Otherwise, one of ANT and SNC, say ANT,
is empty. Since AN C # () and A is a connected subgraph of GG, we have that AN D = 0,
and so |A] = [ANC| > 3. Since | X4| = [SNC|+|SNT| > 3 and v € SN D, noting that
S| =|SNC|+|SNT|+|SND| =4, we have that | X;| = [SNC|+|SNT|=3and |SND| =1,
and thus X; U {z} would be a vertex-cut of G. However, |X; U {2}| = 4, which contradicts that
G is 5-connected. Therefore, ANT # (). Obviously, |[ANT| < 3.

Now we distinguish the following cases.
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Case 2.1 [ANT|=1. Then |[SNC|+|SNT| = |X1| —|ANT| > 2. And since |S| =
[SNC|+|SNT|+]SND| =4, we have that |S N D| <2.

Case 2.1.1 |SND|=1. Since |SNT|+|SND| =|S|—|SNC| <3and |SNT|+|BNT|=|T|—
|[ANT| = 3, then | X3| <4, |X3| =4. So AND =0 = BnD, |D| =|AND|+|SND|+|BND| =1,
which contradicts that |D| > 2.

Case 2.1.2 |SND|=2. Then we have that [SNC|+|SNT| =2 and | X;|=|SNC|+|SNT|+
|[ANT| = 3. An argument similar to that used in case 1 can lead to that |[ANC| = 1. And since
|ISNT|+[SND|=|S]—|SNC| <3, we have that |X3| < 4. By noticing that G is 5-connected,
we have that AN D = (). Then, |A] =|ANT|+ |ANC| =2, which contradicts that |A| > 3.

Case 2.2 |[ANT|=2. Then [SNT| < 1. Then, we will discuss the following cases.

Case 2.2.1 |SNT|=1. Then we have that [BNT| =1 and |SNC|+|S N D| = 3. By noticing
that SNC # ) and SN D # @, we may assume that |[SNC| =1 and |SN D| =2, then | X3| =4
and [X4| =3,50 BND =0 and BNC = 0. Thus, |B|=|BNC|+|BND|+|BNT|=1, which
contradicts that |B| > 2.

Case 2.2.2 |[SNT|=0. We have that |[BNT| = 2.

Assume that |S N C| = 1. Then, we have that |X;| = 3 and |X4] = 3. An argument
analogous to that used in case 1 can lead to that [ANC| =1 and BNC = (. Thus, |C| =
[ANC|+|SNC|+|BNC| =2, a contradiction.

Assume that |S N C| > 2. Then, we have that |[S N D| < 2 and |X2| = |X3] < 4. An
argument analogous to that used in case 2.2.1 can lead to that AND = () and BN D = (). Thus,
|D|=|AND|+|SND|+|BnND|<2,a contradiction.

Case 2.3 |[ANT|=3. Then |[SNT|=0,|BNT|=1. Since SNC # 0, SN D # ), we have
|X5] <4, |X4] <4. Thus BNC =0, BND=1{. So |B|=|BNT|=1, a contradiction.
The proof is now completed. O

The next two results are consequences of Lemma 2.

Corollary 3 Let G be a 5-connected graph of order at least 10 with 6(G) > 6. Let (xy, S; A, B)
be a separating group of G such that © € A, y € B. Then every edge in [{z}, S] is removable.

Proof If 6(G) > 6, we claim that the edge-vertex-atom of G contains at least three vertices.
Otherwise, the edge-vertex-atom of GG contains two vertices, say A, we take its separating group
(zy,S; A, B) such that z € A, y € B. Assume that A = {z,2}. Since G is 5-connected and
|S| = 4, we have that dg(z) = 5, which contradicts that §(G) > 6. From Lemma 2, the Corollary
holds. O

By a similar argument, the following result can be obtained easily.

Corollary 4 Let G be a 5-connected graph of order at least 10 with g(G) > 4. Let (xy, S; A, B)
be a separating group of G such that x € A, y € B. Then every edge in [{z}, S] is removable.
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Lemma 5 Let G be a 5-connected graph of order at least 10, an edge-vertex-atom of which
contains at least three vertices. Let (xy,S; A, B) be a separating group of G such that x € A,
y € B. Then E(G[S]) C Egr(G).

Proof By contradiction. Assume that there is an edge in F(G[S]), say uv, is non-removable.

So there is a corresponding separating group (uv,T; C, D) such that u € C, v € D. Let
X1 =CNnSHU(SNT)U(ANT), Xo=(DNSHU(SNT)U(ANT),
Xs=(DnNSHu(SNT)u(BNT), X4=(CnSHYu(SNTHu(BNT).

Obviously, u € SN C and v € DN S. We discuss the following cases.

Casel r€ AnNCandye BNC.

Then we have that | X1| > 4 and | X4| > 4. Since | X1|+|X3| = |S|+|T| = | X2|+ | X4| = 8, we
have | X3| <4 and | X3| <4. Thus AND =0 = BND. Since |D| = |[AND|+|SND|+|BND| =
|SNDJ| > 3, we have |[SNC|+|SNT| = |S|—|SND| < 1and |[ANT|+|SNT| = |X2|—|SND| < 1.
Thus, |X1] < 2, which contradicts | X;| > 4.

Case2 re AnCandye BNT.

Then we have that |X1| > 4. Since |X1| + | X3| = 8, we have that | X3| <4, thus BN D = 0.
If BN C # (, an argument analogous to that used in case 1 can lead to a contradiction. So
BNC ={. Then |B| = |BNT| > 3. Noting that |[SNT|+|ANT|=|T|—|BNT| <1, we have
that |[SNC|=|X1| = |SNT|—|ANT| > 3. Then |SND|=|S|—|SNT|—|SNC| <1. Hence
| Xo| = |ANT|+|SNT|+|SND| <2, then AND =@, thus |[D| = |[AND|+|SND|+|BND| =
|S N D| <1, which contradicts that | D] > 2.

Case 3 re ANTandye BNT.

Assume that ANC # 0. Then |X;| > 4, thus BN D = 0. If BNC # 0, an argument
analogous to that used in case 1 can lead to a contradiction. If BN C = ), a similar argument
used in case 2 can lead to a contradiction. Hence AN C = (. Similarly, BN C = (). Hence,
ICl=|ANC|+|SNC|+|BNC|=]SNC| > 3. Noticing that v € SN D and |S| = 4, we have
that |C|=|SNC|=3,|SNT|=0and |[SND|=1. Sincex € ANT,y € BNT, it follows that
|X2| <4, |X3| <4,and then AND =0 = BnND. Hence, |D| =|AND|+|SND|+|BND|=1,
which contradicts that | D] > 2.

The proof of other cases can reduce to the above case. The proof is now completed. O

From Lemma 5 we can deduce the following result by a similar argument used in Corollary
3.

Corollary 6 Let G be a 5-connected graph of order at least 10, and let (zy,S; A, B) be a
separating group of G such that v € A, y € B. If §(G) > 6 or g(G) > 4, then E(G[S]) C Er(G).
Let us note an immediate consequence of Corollary 3, Corollary 4 and Corollary 6, concerning

the distribute of removable edges in a triangle of G.

Corollary 7 Let G be a 5-connected graph of order at least 10. If §(G) > 6 or g(G) > 4, then
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every triangle of G contains at least one removable edge.

3. Removable edges in a cycle of a 5-connected graph

Theorem 8 Let G be a 5-connected graph of order at least 10 and C a cycle of G. If the
edge-vertex-atom of G contains at least three vertices, then there are at least two removable
edges of G in C.

Proof By contradiction. Assume that there is at most one removable edge of G in C. Let
F = E(C)N ER(G). Then |F| < 1. Denote E(C) — F by Ey and let uw € Ey. We take
a separating group (uw,S’; A’, B') such that u € A’, w € B’. From |F| < 1, we know that
(E(AYUA, S')NF =0 or (E(B")U[B’,S’)NF = (. Without loss of generality, we may assume
that (E(A")U[A’, S'))NF = (. Since A’ is an Ey-edge-vertex-cut fragment, A’ must contain an Fy-
edge-vertex-cut end-fragment as its subgraph, say A. Then, we have that (E(A)U[A, S])NF = (),
and take a separating group (zy, S; A, B) such that x € A, y € B with zy € Ey.

Let zz € Eg N (E(A) U[A,S]). Then obviously z ¢ S. Otherwise, from Lemma 2, zz is
a removable edge of G, a contradiction. We take a separating group (zz, S1; A1, B1) such that
x € Ay, z € By. Then, we have that x € AN Ay, 2 € AN B;. Let

X1=(A1NnSHu(SNSHUANSy), Xo=(ANSHU(SNS1)U (B NS),
Xs=(BiNnSHYu(SNS)U(BNSy), Xg=(BNSHUSNS)U(AINS).

From Lemma 2, we have that y ¢ BN Sy, and so y € A; N B. Since AN By # 0, we have
that X5 is a vertex-cut of G — zz, so |X3| > 4. By an analogous argument, we can deduce
that |X4| > 4. Since |Xa| + |X4| = |S] + |S1] = 8, we can get that |Xa| = |X4| = 4, then
|[A1 N S| =]ANSy|, |BNSi| = |B1NS|. We claim that AN By = {z}. Otherwise, |AN By| > 2.
Then, (xz, X2; AN By, A1 U B) is a separating group of G and zz € Ey. It is easy to see that
AN By is an FEy-edge-vertex-cut fragment contained in A, which contradicts that A is an Fjy-
edge-vertex-cut end-fragment of G. Therefore, AN By = {z}. Since x € AN Ay, z € AN By, we
have X3 U {y, z} is a vertex-cut of G. Hence | X;| > 3. We consider the following cases.

Case 1 |X;| > 4. Since |X1| 4+ |X3] = |S| +|S1| = 8, |X3] < 4. Then BN B; = ), and so
|Bi| =|ANBi|+ |SNBi|+|BNB| =1+ |SNBy|. Since |By| >3, [SNB;| > 2.

If |SNBy| > 3, then |SNA;|+]SNS1| = |S|—|SNB1| < 1, |S1NA|+|SNS1| = | X2|—|SNB| < 1.
Hence | X;| < 2, a contradiction.

If |[SNBy| = 2, then |SNA1[+|SNS1| = |S|—|SNB1| = 2, |S1NA|+|SNS1| = | X2|—|SNBy| = 2.
Noting that |X1| > 4, we have that [SN A;] =2, |SNS1| =0, |[AN S| =2 and |[BN S| = 2.
Let AN Sy = {a,b}, SN By = {c,d} and BNS; = {e, f}. If cd ¢ E(G), it is easy to see that
ca,cf,da,de,df € E(G). If ed € E(G), we claim that ad, ac € E(G). If not, there are two cases.

(1) |Ng(a) N{c,d}| = 1. Without loss of generality, we may assume that ac € E(G),
ad ¢ E(G). Let 8" = (S1\{a})U{z}, A’ = B1\{z}, B =G —ac— A’ —S’. Then (ac,S’; A’, B')

is a separating group of G and |A’| = 2, a contradiction.
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(2) |Ng(a)N{c,d}| = 0. Then, (S1\ {a})U {2z} is a vertex-cut of G with cardinality 4, a
contradiction.

Hence, ac, ad € E(G). Similarly be, bd € E(G). By symmetry, we can show that ec, ed, fe, fd €
E(G). From Lemma 3, za, zb € Er(G). Since E(C)N{za, zb, z¢, zd} # () and (E(A)U[A, S])NF =
(), there holds {zc, zd} NEn(G) # (). Without loss of generality, we may assume that zc € En(G),
and take a corresponding separating group (zc¢, T; C, D) such that z € C, ¢ € D. Let

i=G1nO)uSinTYu A nT), Yo=(AiNT)U(S1NT)U(S;ND),
Ys=(S1ND)u(S1NT)U(B1NT), Yo=B1NT)U(S1NTYU(S1NC).

Obviously, x € A1 NC, ¢ € By N D. Since each of a, b is adjacent to both ¢ and z, we have
a,b € S;NT. By an analogous argument used in Lemma 2 we can show that |Y;| = |Y3| = 4,
[Ya| > 3, [Y2| < 5. Since |B1] = 3, zd € E(G), we have |[By N D| =1, |BiNT| < 1. Then, we

consider the following cases.

Case 1.1 |Yy| > 4. Then |Y2] < 4,50 AyND = 0. Since |[ByND| =1, |D| > 3, it follows
|D N Sy| > 2. Noting that |[S1| =4 and |S1NT|>2,s0 |[DNS1|=2=15NT],|S1NC|=0.
Then |Yy| < 3, a contradiction.

Case 1.2 |Yy| = 3, then |Y3| = 5. We discuss the following cases.

Case 1.2.1 |B;NT| =0. Then |B;NC| = 2. Thus, Y;U{z} is a vertex-cut of G with cardinality

4, a contradiction.

Case 1.2.2 |B;NT| =1. Then, |A1NT|+|51NT| =3, |S1ND| = |Yo| - |[A1NT|—|51NT| =2,
and then |S; NT| <|S1| — |51 N D| < 2. Noting that a,b € S; NT, thus |S; NT| = 2. Then, we
have that |[A; NT| =1, |S1ND|=2,|5.NC|=0, and so |Y1]| = 3, a contradiction.

Case 2 |X;| = 3. Then we claim that |4y N A| = 1. Otherwise, X; U {2} is a vertex-cut of
G with cardinality 4, a contradiction. Since |A| > 3 and |A N By| = 1, we have |[AN S| > 1.
Then |41 NS|+1]S1NS| =X | —]ANS1| <2, thus |[BiNS|=|S|—|Ai1nNS|—|S1NnS|>2. If
|B1NS| > 3, then [SNA;|+[SNS1| = |S|—|SNB1| <1, |[ANS:| = | X2 —|SNS1|—[SNB1| < 1,
and so |X1| < 2, a contradiction. If |B; N S| = 2, then |B N S;| = 2. Noticing that | X3| = 5,
we have |SNS1| =1, [SNA] =1, |[ANS1| = 1. Assume that AN S; = {a}, SN A; = {b}.
If ab ¢ E(G), then, (S\ {b}) U {z} is a vertex-cut of G with cardinality 4, a contradiction. If
ab € E(G), then let A’ = A\ {z}, S’ = (S\ {b}) U{z}, B' =G —ab— S — A’. We have that
(ab,S'; A’, B') is a separating group of G with |A’| = 2, a contradiction.

The proof now is completed. O

Corollary 9 Let G be a 5-connected graph of order at least 10 and C a cycle of G. If §(G) > 6
or g(G) > 4, then there are at least two removable edges of G in C'.
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4. Removable edges in a spanning tree of a 5-connected graph

Theorem 10 Let G be a 5-connected graph and T a spanning tree of G. If §(G) > 6, then

there are at least two removable edges of G in T.

Proof Clearly, |G| > 7. If |G| = 7, then G = K7. Since every edge of K7 is removable, the
conclusion holds. Now we may assume that |G| > 8. By contradiction. Assume that there is at
most one removable edge of G in T. Let F = E(T) N Egr(G). Then |F| < 1. Denote E(T) — F
by Ep, we take a separating group (uw, S’; A’, B') such that u € A, w € B’ and uw € Ey. From
|F| <1, we know that (E(A)U[A,S')NF =0 or (E(B)U[B,S])NF = (. Without loss
of generality, we may assume that (E(A") U [A’,S']) N F = (. Since A’ is an Ey-edge-vertex-cut
fragment, A’ must contain an Ey-edge-vertex-cut end-fragment as its subgraph, say A. Then,
we have that (E(A) U [4,S]) N F = (}, and we take a separating group (xy, S; A, B) such that
x €A,y € Bwith zy € Ey.

Let uz € Eg N (E(A) U[4,S]). We take a separating group (uz,T;C, D) such that u € C,
z€D. Let

X1 =CNnSHU(SNT)U(ANT), Xo=(ANT)U(SNT)U(DNS),
Xs=(DNS)Yu(SNT)U(BNT), Xy=(BNT)U(SNT)U(CNS).

If u = z, it follows from Lemma 2 that z € AN D, y € BNC. By an analogous argument
used in Theorem 8, we have that |X3| = |X4] = 4. We claim that AN D = {z}. Otherwise,
|[AND| > 2. Let Ay = ANnD, S; = Xo and By = G— A; — S1 —zz. Then we get an edge-vertex-
cut fragment A; which is a proper subset of A. This is a contradiction. Thus, AN D = {z}, and

then dg(z) = 5, a contradiction.

If u # =, we consider the following cases.

Case 1 uz € E(A). Thenu e ANC, z€ AND. Since AND # 0, X5 is a vertex-cut of G — uz,
then |Xs3| > 4. If | X3| = 4, by an argument similar to that used above, AN D = {z}, and then
dg(z) = 5, a contradiction. So |Xa| > 5.

Case 1.1 z € ANC,y € BNC. By a similar argument, we can get that |X4| > 4. Noticing
that | Xa| 4+ |X4| = |S| + |T| = 8, then |X3| < 4, a contradiction.

Case 1.2 z € ANC,y € BNT. Since |X2| > 5, we have |SND| > |[BNT|, |X4| < 3.
Thus BN C = . Since X; U{y, z} is a vertex-cut of G, there holds |X;| > 3. Noticing that
X | + |Xs| = |S] + [T| = 8, we get | Xy < 5.

If | X1| > 4, then |SNC| > |BNT|, | X3| <4, and then BN D = (. Hence |B| = |BNT| > 3.
Thus |S| > |SND|+[SNC|>2|BNT| > 6, which contradicts |S| = 4.

If | X1] = 3, we claim that |[A N C| = 2. Otherwise, [ANC| > 3, let 51 = X; U {u},
A1 = ANC —{u}, By = BUD. Then we get an edge-vertex-cut fragment A; which is a proper
subset of A, a contradiction. Hence |A N C| = 2, and then dg(x) = dg(u) = 5, a contradiction.

Case 1.3 v € ANT,ye€ BNT. By Lemma 5, zy € Er(G), a contradiction.
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Case 1.4 z€ ANT,y € BNC. Using an argument analogous to the one in case 1.1 can lead
to a contradiction.
Other casessuchasz € ANT,ye BND;x € AND,ye BNT;x € AND,y€ BND can

reduce to the above cases by symmetry.
Case 2 uz € [A,S]. Thenue ANC, z€ SND.

Case 2.1 x € ANC,ye€ BNC. A contradiction yields by an analogous argument used in case
1.2.

Case 2.2 z € ANC,y € BNT. Since X; is a vertex-cut of G — zy — uz, |X1| > 3. Suppose
|X1] = 3. If |[ANC| = 2, then dg(z) = dg(u) = 5, a contradiction. Thus, |[A N C| > 3. Let
S1 = X3 U{u}, Ay = AnC — {u}, By = BUD. Then we get an edge-vertex-cut fragment A;
which is a proper subset of A, a contradiction. Therefore |X;| > 4. And then |ANT| > |SND|,
| X3| < 4. Hence BN D = ().

Since |Xa| 4 | X4| = 8, we have |X2| < 4 or |X4| < 4. Without loss of generality, we may
assume that | X4| <4, then BNC = 0. Thus, |B|=|BNC|+|BNT|+|BND|=|BNT|>3.
Since |T| =4, we have |[ANT| =1, |SNT| =0, |BNT|=3,|SND|=1,|SNC| =3. Then

| X4| = 6, a contradiction.

Case 2.3 € ANT,y € BNC. Then |X4| > 4, and then |[SNC| > |[ANT| > 1. Noticing that
| X2| 4 | X4| = 8, we have that | X2| < 4, and then AN D = (. By a similar argument, BN D = (.
Then |D| = |SND| > 3. Since |S| =4, we have |[SND| =3, |SNC| =1, |SNT| = 0. Therefore,
|[ANT| =1, |BNT|=3. Thus, |X1]| =2, and X3 U {z} is a vertex-cut of G, a contradiction.

Case 2.4 © € ANT,y € BND. By asimilar argument, we have | X;| = | X3| = 4. If |[ANC| > 2,
then (uz, X1; ANC, BU D) is a separating group of G, and AN C' is a proper subset of A. This
is a contradiction. If |A N C| =1, then dg(u) = 5, a contradiction.

Case 2.5 z € AND,y € BNT. By a similar argument, we have that |X;| > 4 and |Xs| > 4,
then | X3| < 4 and | X4| < 4, hence BND = () and BNC = (). Therefore |B| = |[BNT| > 3. Since
|X3| <4,|SNC|>|BNT| > 3. Hence |[SNC|=3=|BNT|,|SNT|=0,|ANT|=|SND|=1.
Thus |X3| = 2, and Xz U {y} is a vertex-cut of G with cardinality 3, a contradiction.

Case 2.6 v € AND, y € BNnD. By an analogous argument used in case 2.4, we can get a
contradiction.
The proof now is completed. O

By a similar argument we also have the following results.

Theorem 11 Let G be a 5-connected graph and T a spanning tree of G. If §(G) > 6, then
there are at least two removable edges of G in G — E(T).

Now we have the main theorems of this paper.

Theorem 12 Let G be a 5-connected graph of order at least 10 and 6(G) > 6. Then Er(G) >
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2|G| + 2.

Proof Let G’ = G[EN(G)]. From Theorem 8 and Theorem 10, G’ is a forest, then |En(G)| <
|G| = 2. Thus, Er(G) = |E(G) — Ex(G)| = 3|G| - (|G| = 2) =2|G|+2. O

By a similar argument we also have the following results.

Theorem 13 Let G be a 5-connected graph of order at least 10. If the edge-vertex-atom of G
contains at least three vertices, then Er(G) > (3|G| +2)/2.

Theorem 14 Let G be a 5-connected graph of order at least 10 and g(G) > 4. Then Er(G) >
(3|G| +4)/2.
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