k-Walk-Regular Digraphs

Wen LIU1,*, Jing LIN2

1. *Mathematics and Information College, Hebei Normal University, Hebei 050016, P. R. China*
2. *School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P. R. China*

Abstract In this paper, we define a class of strongly connected digraph, called the k-walk-regular digraph, study some properties of it, provide its some algebraic characterization and point out that the 0-walk-regular digraph is the same as the walk-regular digraph discussed by Liu and Lin in 2010 and the D-walk-regular digraph is identical with the weakly distance-regular digraph defined by Comellas et al in 2004.

Keywords k-walk-regular digraph; predistance polynomial; the crossed uc-local multiplicity.

Document code A

MR(2010) Subject Classification 05C12; 05C20; 05C50

Chinese Library Classification O157.5

1. Introduction

Let $\Gamma = (V, E)$ be a strongly connected digraph, with V denoting the set of vertices and E the set of arcs. If $(u, v) \in E$, we say that u is adjacent to v (or v is adjacent from u). A walk of length l in Γ is a sequence (u_0, u_1, \ldots, u_l) of vertices such that $(u_{i-1}, u_i) \in E$, $i = 1, 2, \ldots, l$, and a walk is closed if its first and last vertices are the same. If the vertices in a walk are distinct, we call it a path. We say a digraph is strongly connected if any two vertices can be joined by a path. The number of arcs traversed in the shortest walk from u to v is called the distance from u to v, denoted by $\partial(u, v)$, and we call the value $D := \max\{\partial(u, v) | u, v \in V\}$ the diameter of Γ. Notice that what we consider is the oriented graphs, so $\partial(u, v)$ and $\partial(v, u)$ may not be equal. For any fixed integer $0 \leq k \leq D$, we will denote by $\Gamma^+(u)$ (respectively, $\Gamma^-(u)$) the set of vertices at distance k from u (respectively, the set of vertices from which u is at distance k). Sometimes it is written, for short, $\Gamma^+(u)$ or $\Gamma^-(u)$ instead of $\Gamma^+(v)$ or $\Gamma^-(v)$, respectively. Thus the out-valency and in-valency of u are $k^+(u) := |\Gamma^+(u)|$ and $k^-(u) := |\Gamma^-(u)|$. The digraph Γ is k-regular if $k^+(u) = k^-(u) = k$ for every $u \in V$.

The adjacency matrix A and the distance-k matrix A_k, where $0 \leq k \leq D$, of Γ are defined...
by

\[A_{uv} := \begin{cases} 1, & \text{if } (u, v) \in E, \\ 0, & \text{otherwise}, \end{cases} \]

and

\[(A_k)_{uv} := \begin{cases} 1, & \text{if } \partial(u, v) = k, \\ 0, & \text{otherwise}, \end{cases} \]

respectively. If \(AA^T = A^T A, \) then \(\Gamma \) is said to be normal. As for normal matrices, there are the following properties:

Theorem 1 Let \(A \) be an \(n \times n \) complex matrix with eigenvalues \(\lambda_0, \lambda_1, \ldots, \lambda_{n-1} \). Then \(A \) is normal if and only if any of the following assertions holds:

(a) \(U^* AU = \Lambda \) for some matrix \(U \) such that \(UU^* = I \), and \(\Lambda = \text{diag}(\lambda_0, \lambda_1, \ldots, \lambda_{n-1}) \), where \(U^* \) is the transpose of \(U \)'s conjugate;

(b) \(A^* = p(A) \) for some polynomial \(p \in \mathbb{C}[x] \);

(c) \(\text{tr}(AA^*) = \sum_{i=0}^{n-1} |\lambda_i|^2 \).

Now assume that \(A \) has \(d + 1 \) distinct eigenvalues \(\lambda_0, \lambda_1, \ldots, \lambda_d \) and \(m(x) = (x - \lambda_0)(x - \lambda_1) \cdots (x - \lambda_d) \) is the minimal polynomial of \(A \). The spectrum of the digraph \(\Gamma \), denoted by \(\text{sp} \Gamma \), consists of the eigenvalues of \(A \), which might be not real since \(A \) is not symmetric, together with their (algebraic) multiplicities:

\[\text{sp} \Gamma = \{ \lambda_0^{m(\lambda_0)}, \lambda_1^{m(\lambda_1)}, \ldots, \lambda_d^{m(\lambda_d)} \}, \]

where the superscripts stand for the multiplicities \(m_i = m(\lambda_i) \) for \(i = 0, 1, \ldots, n - 1 \) and \(\lambda_0 \) is the maximal eigenvalue and \(\lambda_i \neq \lambda_j \) if \(i \neq j \). In particular, \(m(\lambda_0) = 1 \) and \(m(\lambda_0) + m(\lambda_1) + \cdots + m(\lambda_d) = n \) (for details the readers can see [1]).

By the Perron-Frobenius theorem, \(\lambda_0 \) is simple and has a positive eigenvector \(\nu \). If \(\Gamma \) is \(k \)-regular, then we may pick \(\nu = j \), where \(j \) denotes the all 1-vector, and \(\lambda_0 = k \).

The adjacency algebra of \(\Gamma \) (also called Bose-Mesner algebra when it is closed under the Hadamard-or componentwise-product) is defined by \(\mathcal{A}(\Gamma) := \{ p(A) | p \in \mathbb{C}[x] \} \), where \(A \) is the adjacency matrix of \(\Gamma \). The dimension of \(\mathcal{A}(\Gamma) \), as a \(\mathbb{C} \)-vector space, equals the degree of the minimum polynomial \(m(x) \). It is obvious that \(\{ I, A, A^2, \ldots, A^d \} \) is a basis of the adjacency or Bose-Mesner algebra \(\mathcal{A}(\Gamma) \) and the dimension of the Bose-Mesner algebra is at least \(D + 1 \) since the powers \(I, A, A^2, \ldots, A^D \) are linearly independent. By Theorem 1(a), we know that the eigenvectors of a normal \(n \times n \) square matrix constitute an orthogonal basis of the vector space \(\mathbb{C}^n \), with inner product \(\langle u, v \rangle = u^* v \). For each polynomial \(p \in \mathbb{C}[x] \) we define \(p \) operates on the vector \(v \in \mathbb{C}^n \) by \(pv = p(A)v \). For each \(\lambda_i \), let \(U_i \) be the matrix whose columns form an orthonormal basis of the eigenspace \(V_i := \text{Ker}(A - \lambda_i I) \). Then the orthogonal projection onto \(V_i \) is represented by the matrix \(E_i = U_i U_i^* \), or alternatively, \(E_i = \frac{1}{\phi_i} \prod_{j=0,j\neq i}^d (A - \lambda_j I) \), where \(\phi_i = \prod_{j=0,j\neq i}^d (\lambda_i - \lambda_j) \). These matrices are called the principal idempotents of \(A \) and satisfy the following properties: \(E_i E_j = \delta_{ij} E_i, AE_i = \lambda_i E_i \). Also \(\{ E_0, E_1, \ldots, E_d \} \) is a basis of \(\mathcal{A}(\Gamma) \). Then we can give the orthogonal decomposition of the unitary vector \(e_u \) representing vertex \(u \)
as follows:

\[e_u = z_u^0 + z_u^1 + \ldots + z_u^d, \]

where \(z_u^i = E_i e_u, \ i = 0, 1, \ldots, d. \)

Throughout this paper, we assume that \(\Gamma \) is a strongly connected digraph with order \(n = |V| \), size \(m = |E| \), diameter \(D \), normal adjacency matrix \(A \) and \(d + 1 \) distinct eigenvalues.

2. Main results

Definition 1 \(\Gamma = (V, E) \) is said to be a \(k \)-walk-regular digraph, for a given integer \(k \) (\(0 \leq k \leq D \)), if the number of walks of length \(l \), \(a_{l uv}^k = (A^l)_{uv} \), from vertex \(u \) to vertex \(v \) only depends on the distance from \(u \) to \(v \), provided that this distance does not exceed \(k \). In this case we just denote the number by \(a_{l k} \).

Thus, in particular, the 0-walk-regular digraph coincides with the walk-regular digraph, where the number of cycles of length \(l \) rooted at a given vertex is a constant through all the digraph defined by Liu and Lin in [5] and the \(D \)-walk-regular digraph is the same as weakly distance-regular digraph defined by Comellas in [2].

For a given digraph \(\Gamma \) with adjacency matrix \(A \), we consider the following scalar product in \(\mathbb{C}[x] \):

\[\langle p, q \rangle = \frac{1}{n} \text{tr}(p(A)q(A^*)). \]

This product is well defined in the quotient ring \(\mathbb{C}[x]/(m(x)) \), where \((m(x)) \) is the ideal generated by the minimum polynomial of \(\Gamma \), \(m(x) \).

Proposition 1 If \(\Gamma \) is a normal digraph with spectrum \(\text{sp} \Gamma \) defined above, then we have

\[\langle p, q \rangle = \frac{1}{n} \text{tr}(p(A)q(A^*)) = \frac{1}{n} \sum_{k=0}^{d} m_k(p(\lambda_k)q(\lambda_k)). \]

Proof A can be diagonalized by means of a unitary matrix, that is, \(U^*AU = D \) for some matrix \(U \) such that \(U^*U = I \) and \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n) \).

\[\langle p, q \rangle = \frac{1}{n} \text{tr}(p(A)q(A^*)) = \frac{1}{n} \text{tr}(Up(\Lambda)U^*(Uq(\Lambda)U^*)) = \frac{1}{n} \text{tr}(Up(\Lambda)U^*Uq(\Lambda)U^*) = \frac{1}{n} \text{tr}(Up(\Lambda)q(\Lambda)U^*) = \frac{1}{n} \text{tr}(p(\Lambda)q(\Lambda)) \]

\[= \frac{1}{n} \sum_{k=0}^{d} m_k(p(\lambda_k)q(\lambda_k)). \square \]

Notice that \(1, x, x^2, \ldots, x^d \) are linearly independent in \(\mathbb{C}_d[x] \), then by using the Gram-Schmidt method and normalizing appropriately, one can immediately prove the existence and the uniqueness of an orthogonal system of polynomials \(\{p_k\}_{0 \leq k \leq d} \) called predistance polynomials which, for any \(0 \leq h, k \leq d \), satisfy:

1. \(dgr(p_k) = k; \)
2. \(\langle p_h, p_k \rangle = 0, \) if \(h \neq k; \)
3. \(\| p_k \|^2 = p_k(\lambda_0). \)
Recall that, in a weakly distance-regular digraph, we have $D = d$ and such polynomials satisfy $p_k(A) = A_k$ ($0 \leq k \leq d$), where A_k stands for the distance-k matrix.

From the decomposition (1) we define the crossed uv-local multiplicity of eigenvalue λ_k as $m_{uv}(\lambda_k) = (E_k)_{uv}$ (which is similar to the definition in [3]). Furthermore,

$$m_{uv}(\lambda_k) = (E_k)_{uv} = (E_k e_u, e_v) = (E_k e_u, E_k e_v) = (z_u^k, z_v^k), \quad u, v \in V.$$

Now, for a given k, $0 \leq k \leq d$, if the crossed uv-local multiplicities of λ_h, $m_{uv}(\lambda_h)$, only depend on the distance from u to v, provided that $\partial(u, v) = i \leq k$, we denote $m_{uv}(\lambda_h) \triangleq m_{ih}$.

Theorem 2 Let Γ be a strongly connected normal digraph with predistance polynomials p_0, p_1, \ldots, p_d. Then the following statements are equivalent.

(i) Γ is k-walk-regular;

(ii) The uv-local multiplicities of λ_h, $m_{uv}(\lambda_h)$, only depend on the distance from u to v, provided that $\partial(u, v) = i \leq k$, that is, $m_{uv}(\lambda_h) = m_{ih}$.

Proof Since A^l can be expressed as a linear combination of the idempotents $E_h : A^l = \sum_{h=0}^d \lambda_h^l E_h$, we have that the number of walks a_{uv}^l can be computed in terms of the crossed uv-local multiplicities as

$$a_{uv}^l = (A^l)_{uv} = \sum_{h=0}^d \lambda_h^l (E_h)_{uv} = \sum_{h=0}^d m_{uv}(\lambda_h) \lambda_h^l.$$

Then if $m_{uv}(\lambda_h) = m_{ih}$ for any $u, v \in V$ such that $\partial(u, v) = i \leq k$, and $l \geq 0$, $a_{uv}^l = \sum_{h=0}^d m_{ih} \lambda_h^l$ is independent of u, v, provided that $\partial(u, v) = i \leq k$ and Γ is k-walk-regular.

Conversly, the crossed uv-local multiplicities are $m_{uv}(\lambda_h) = (E_h)_{uv} = (P_h(A))_{uv}$, where $P_h(A) = \frac{1}{\partial_h} \prod_{j=0,j \neq h}^d (A - \lambda_j I)$. If Γ is k-walk-regular, we have that there are constant uv-entries for I, A, A^2, \ldots, provided that $\partial(u, v) \leq k$. Observe that $P_h(A)$ is a polynomial of A, so we have that $m_{uv}(\lambda_h)$ is a constant independent of u, v. \Box

Proposition 2 Let Γ be a strongly connected normal digraph with predistance polynomials p_0, p_1, \ldots, p_d. If Γ is k-walk-regular, then $p_i(A) = A_i$, for $0 \leq i \leq k$.

Proof Suppose Γ is a k-walk-regular digraph. The number of walks of length i from vertex u to vertex v at distance i ($0 \leq i \leq k$) is $a_{uv}^i = a_i^i$ (a constant). Hence

$$A^i = a_0^i I + a_1^i A + a_2^i A^2 + \cdots + a_k^i A_k, \quad 0 \leq i \leq k, \quad (8)$$

where, necessarily, $a_i^i \neq 0$ and as already mentioned, $a_j^i = 0$ for any $j > i$. In matrix form

$$
\begin{pmatrix}
I \\
A \\
A^2 \\
\vdots \\
A^k
\end{pmatrix} =
\begin{pmatrix}
a_0^0 & 0 & 0 & 0 & \cdots & 0 \\
a_0^1 & a_1^1 & 0 & 0 & \cdots & 0 \\
a_0^2 & a_1^2 & a_2^2 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_0^k & a_1^k & a_2^k & a_3^k & \cdots & a_k^k
\end{pmatrix}
\begin{pmatrix}
I \\
A \\
A^2 \\
\vdots \\
A^k
\end{pmatrix}, \quad (9)
$$
where \(C := (a_{ij}^r) \) is a lower triangular matrix. Since \(a_{ij}^r > 0 \) for any \(0 \leq i \leq k \), the matrix \(C \) is non-singular and its inverse \(C^{-1} \) is also a lower triangular matrix. Hence \(A_i \) is a polynomial, say, \(q_i \) of degree of \(i \) in \(A \) for any \(0 \leq i \leq k \):

\[
A_i = q_i(A) = a_0^r I + a_1^r A + a_2^r A^2 + \cdots + a_k^r A^k, \quad 0 \leq i \leq k,
\]

where \(a_i^r \neq 0 \). These polynomials are orthogonal with respect to the scalar product since

\[
\langle q_i, q_j \rangle = \frac{1}{n} \text{tr}(q_i(A)q_j(A)^*) = \frac{1}{n} \text{tr}(A_iA_j^T) = 0, \quad i \neq j.
\]

Moreover, notice that \(A_i j = q_i(A) j = q_i(\lambda_0) j \) since \(j \) is an eigenvector of \(\lambda_0 \), it is easy to see the number of vertices at distance \(i \), \(0 \leq i \leq k \), from a given vertex \(u \) is a constant through all the digraph: \(n_i = |\Gamma^+_i(u)| = q_i(\lambda_0) \) for every \(u \in V \). Thus

\[
\|q_i\|^2 = \langle q_i, q_i \rangle = \frac{1}{n} \text{tr}(q_i(A)q_i(A)^*) = \frac{1}{n} \text{tr}(A_iA_i^T) = q_i(\lambda_0).
\]

Therefore, the obtained polynomials are, in fact, the (pre)distance polynomials \(q_i = p_i, 0 \leq i \leq k \), for the uniqueness of the predistance polynomials. \(\square \)

From the result above it is immediate to have

Proposition 3 Let \(\Gamma \) be a \(k \)-walk-regular digraph and a strongly connected normal digraph. Then the number of vertices at distance \(k \) from any given vertex is equal to \(p_k(\lambda_0) \), for each \(k = 0, 1, \ldots, t \).

Proof By the Proposition 2 we have that \(A_i = p_i(A), i = 0, 1, \ldots, k \) and \(\Gamma \) is a \(\lambda_0 \)-regular digraph. Thus we have that \(j = (1,1, \ldots, 1)^T \) is an eigenvector of \(A \) corresponding to the eigenvalue \(\lambda_0 \). Consequently, \(A_k j = p_k(A) j = p_k(\lambda_0) j \), which implies that \(n_k = p_k(\lambda_0), k = 0, 1, \ldots, t \). \(\square \)

Theorem 3 Let \(\Gamma \) be a strongly connected normal digraph with predistance polynomials \(p_0, p_1, \ldots, p_t \). Then the following two statements are equivalent:

(i) \(\Gamma \) is \(k \)-walk-regular;

(ii) \((p_j(A))_{uv} = 0 \), for \(k + 1 \leq j \leq d \), \(\partial(u, v) = i \leq k \).

Proof If \(\Gamma \) is \(k \)-walk-regular, then

\[
(p_i(A)E_h)_{uv} = p_i(\lambda_h)(E_h)_{uv} = p_i(\lambda_h)m_{uu}(\lambda_h) = p_i(\lambda_h) \cdot m_{0h},
\]

for any \(h \) with \(0 \leq h \leq d \). But if \(\partial(u, v) = i \leq k \), we have already known that \(p_i(A) = A_i \) and then

\[
(p_i(A)E_h)_{uv} = (A_iE_h)_{uv} = \sum_{v \in V}(A_i)_{uv}(E_h)_{vu} = \sum_{v \in V}(A_i)_{uv}(E_h)_{uv} = \sum_{v \in V}(A_i)_{uv}(\lambda_h)_{uv} = n_i m_{ih},
\]

where we have used the invariance of the crossed local multiplicities \(m_{uv}(\lambda_h) = m_{ih} \), and the
number of vertices at distance i from any given vertex $n_i = p_i(\lambda_0)$. So

$$m_{ih} = \frac{m_h p_i(\lambda_h)}{np_i(\lambda_0)}, \quad 0 \leq i \leq k, \ 0 \leq h \leq d.$$

Therefore,

$$ (p_j(A))_{uv} = \sum_{h=0}^{d} p_j(\lambda_h)(E_h)_{uv} = \sum_{h=0}^{d} p_j(\lambda_h)m_{ih} = \frac{1}{np_i(\lambda_0)} \sum_{h=0}^{d} m_h p_j(\lambda_h)p_i(\lambda_h)

= \frac{1}{np_i(\lambda_0)} (p_j, p_i) = 0, \quad i \leq k < j. $$

Conversely, assume that (ii) holds and for every h, $0 \leq h \leq d$. Now we consider the expression of $P_h = \sum_{j=0}^{d} \beta_{hj}p_j$, where β_{hj} is the coefficient of P_h in terms of p_j. If $\partial(u, v) = i \leq k$,

$$ m_{uv}(\lambda_h) = (E_h)_{uv} = (P_h(A))_{uv} = \sum_{j=0}^{d} \beta_{hj}(p_j(A))_{uv}

= \sum_{j=0}^{k} \beta_{hj}(A_j)_{uv} + \sum_{j=k+1}^{d} \beta_{hj}(p_j(A))_{uv} = \beta_{hi}. $$

Thus, the crossed multiplicities, $m_{uv}(\lambda_h) = \beta_{hi}$, only depend on the distance from u to v. □

References