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Abstract In this paper, we define a class of strongly connected digraph, called the k-walk-

regular digraph, study some properties of it, provide its some algebraic characterization and

point out that the 0-walk-regular digraph is the same as the walk-regular digraph discussed by

Liu and Lin in 2010 and the D-walk-regular digraph is identical with the weakly distance-regular

digraph defined by Comellas et al in 2004.

Keywords k-walk-regular digraph; predistance polynomial; the crossed uv-local multiplicity.

Document code A

MR(2010) Subject Classification 05C12; 05C20; 05C50

Chinese Library Classification O157.5

1. Introduction

Let Γ = (V, E) be a strongly connected digraph, with V denoting the set of vertices and E

the set of arcs. If (u, v) ∈ E, we say that u is adjacent to v (or v is adjacent from u). A walk of

length l in Γ is a sequence (u0, u1, . . . , ul) of vertices such that (ui−1, ui) ∈ E, i = 1, 2, . . . , l, and

a walk is closed if its first and last vertices are the same. If the vertices in a walk are distinct,

we call it a path. We say a digraph is strongly connected if any two vertices can be joined by

a path. The number of arcs traversed in the shortest walk from u to v is called the distance

from u to v, denoted by ∂(u, v), and we call the value D := max{∂(u, v)|u, v ∈ V } the diameter

of Γ. Notice that what we consider is the oriented graphs, so ∂(u, v) and ∂(v, u) may not be

equal. For any fixed integer 0 ≤ k ≤ D, we will denote by Γ+
k (u) (respectively, Γ−

k (u)) the set

of vertices at distance k from u (respectively, the set of vertices from which u is at distance k).

Sometimes it is written, for short, Γ+(u) or Γ−(u) instead of Γ+
1 (v) or Γ−

1 (v), respectively. Thus

the out-valency and in-valency of u are k+(u) := |Γ+(u)| and k−(u) := |Γ−(u)|. The digraph Γ

is k-regular if k+(u) = k−(u) = k for every u ∈ V .

The adjacency matrix A and the distance-k matrix Ak, where 0 ≤ k ≤ D, of Γ are defined
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by

Auv :=

{

1, if (u, v) ∈ E,

0, otherwise,

and

(Ak)uv :=

{

1, if ∂(u, v) = k,

0, otherwise,

respectively. If AAT = ATA, then Γ is said to be normal. As for normal matrices, there are the

following properties:

Theorem 1 Let A be an n × n complex matrix with eigenvalues λ0, λ1, . . . , λn−1. Then A is

normal if and only if any of the following assertions holds:

(a) U∗AU = Λ for some matrix U such that UU∗ = I, and Λ = diag(λ0, λ1, . . . , λn−1),

where U∗ is the transpose of U ’s conjugate;

(b) A∗ = p(A) for some polynomial p ∈ C[x];

(c) tr(AA∗) =
∑n−1

i=0 |λi|
2.

Now assume that A has d + 1 distinct eigenvalues λ0, λ1, . . . , λd and m(x) = (x − λ0)(x −

λ1) · · · (x−λd) is the minimal polynomial of A. The spectrum of the digraph Γ, denoted by spΓ

consists of the eigenvalues of A, which might be not real since A is not symmetric, together with

their (algebraic) multiplicities:

spΓ = {λ
m(λ0)
0 , λ

m(λ1)
1 , . . . , λ

m(λd)
d },

where the superscripts stand for the multiplicities mi = m(λi) for i = 0, 1, . . . , n − 1 and λ0 is

the maximal eigenvalue and λi 6= λj if i 6= j. In particular, m(λ0) = 1 and m(λ0) + m(λ1) +

· · · + m(λd) = n (for details the readers can see [1]).

By the Perron-Frobenius theorem, λ0 is simple and has a positive eigenvector ν. If Γ is

k-regular, then we may pick ν = j, where j denotes the all 1-vector, and λ0 = k.

The adjacency algebra of Γ (also called Bose-Mesner algebra when it is closed under the

Hadamard-or componentwise-product) is defined by A (Γ) := {p(A)|p ∈ C[x]}, where A is the

adjacency matrix of Γ. The dimension of A (Γ), as a C-vector space, equals the degree of the

minimum polynomial m(x). It is obvious that {I, A, . . . , Ad} is a basis of the adjacency or

Bose-Mesner algebra A (Γ) and the dimension of the Bose-Mesner algebra is at least D + 1

since the powers I, A, A2, . . . , AD are linearly independent. By Theorem 1(a), we know that the

eigenvectors of a normal n × n square matrix constitute an orthogonal basis of the vector space

Cn, with inner product 〈u,v〉 = u∗v. For each polynomial p ∈ C[x] we define p operates on

the vector v ∈ Cn by pv = p(A)v. For each λi, let Ui be the matrix whose columns form an

orthonormal basis of the eigenspace Vi := Ker(A − λiI). Then the orthogonal projection onto

Vi is represented by the matrix Ei = UiU
∗
i , or alternatively, Ei = 1

φi

∏d

j=0,j 6=i(A − λjI), where

φi =
∏d

j=0,j 6=i(λi − λj). These matrices are called the principal idempotents of A and satisfy

the following properties: EiEj = δijEi, AEi = λiEi. Also {E0, E1, . . . , Ed} is a basis of A (Γ).

Then we can give the orthogonal decomposition of the unitary vector eu representing vertex u
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as follows:

eu = z0
u + z1

u + . . . + zd
u, (1)

where zi
u = Eieu, i = 0, 1, . . . , d.

Throughout this paper, we assume that Γ is a strongly connected digraph with order n = |V |,

size m = |E|, diameter D, normal adjacency matrix A and d + 1 distinct eigenvalues.

2. Main results

Definition 1 Γ = (V, E) is said to be a k-walk-regular digraph, for a given integer k (0 ≤ k ≤ D),

if the number of walks of length l, al
uv = (Al)uv, from vertex u to vertex v only depends on the

distance from u to v, provided that this distance does not exceed k. In this case we just denote

the number by al
k.

Thus, in particular, the 0-walk-regular digraph coincides with the walk-regular digraph, where

the number of cycles of length l rooted at a given vertex is a constant through all the digraph

defined by Liu and Lin in [5] and the D-walk-regular digraph is the same as weakly distance-

regular digraph defined by Comellas in [2].

For a given digraph Γ with adjacency matrix A, we consider the following scalar product in

C[x]:

〈p, q〉 =
1

n
tr(p(A)q(A)∗).

This product is well defined in the quotient ring C[x]/(m(x)), where (m(x)) is the ideal generated

by the minimum polynomial of Γ, m(x).

Proposition 1 If Γ is a normal digraph with spectrum spΓ defined above, then we have

〈p, q〉 =
1

n
tr(p(A)q(A)∗) =

1

n

d
∑

k=0

mk(p(λk)q(λk)).

Proof A can be diagonalized by means of a unitary matrix, that is, U∗AU = D for some matrix

U such that U∗U = I and Λ = diag(λ1, . . . , λn).

〈p, q〉 =
1

n
tr(p(A)q(A)∗) =

1

n
tr(Up(Λ)U∗(Uq(Λ)U∗)∗) =

1

n
tr(Up(Λ)U∗Uq(Λ)∗U∗)

=
1

n
tr(Up(Λ)q(Λ)U∗) =

1

n
tr(p(Λ)q(Λ)U∗U) =

1

n
tr(p(Λ)q(Λ))

=
1

n

d
∑

k=0

mk(p(λk)q(λk)). 2

Notice that 1, x, x2, . . . , xd are linearly independent in Cd[x], then by using the Gram-Schmidt

method and normalizing appropriately, one can immediately prove the existence and the unique-

ness of an orthogonal system of polynomials {pk}0≤k≤d called predistance polynomials which,

for any 0 ≤ h, k ≤ d, satisfy:

(1) dgr(pk) = k;

(2) 〈ph, pk〉 = 0, if h 6= k;

(3) ‖ pk ‖2= pk(λ0).
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Recall that, in a weakly distance-regular digraph, we have D = d and such polynomials

satisfy pk(A) = Ak (0 ≤ k ≤ d), where Ak stands for the distance-k matrix.

From the decomposition (1) we define the crossed uv-local multiplicity of eigenvalue λk as

muv(λk) = (Ek)uv (which is similar to the definition in [3]). Furthermore,

muv(λk) = (Ek)uv = 〈Ekeu, ev〉 = 〈Ekeu, Ekev〉 = 〈zk
u, zk

v〉, u, v ∈ V.

Now, for a given k, 0 ≤ k ≤ d, if the crossed uv-local multiplicities of λh, muv(λh), only

depend on the distance from u to v, provided that ∂(u, v) = i ≤ k, we denote muv(λh) , mih.

Theorem 2 Let Γ be a strongly connected normal digraph with predistance polynomials

p0, p1, . . . , pd. Then the following statements are equivalent.

(i) Γ is k-walk-regular;

(ii) The uv-local multiplicities of λh, muv(λh), only depend on the distance from u to v,

provided that ∂(u, v) = i ≤ k, that is, muv(λh) = mih.

Proof Since Al can be expressed as a linear combination of the idempotents Ek : Al =
∑d

h=0 λl
hEh, we have that the number of walks al

uv can be computed in terms of the crossed

uv-local multiplicities as

al
uv = (Al)uv =

d
∑

h=0

λl
h(Eh)uv =

d
∑

h=0

muv(λh)λl
h.

Then if muv(λh) = mih for any u, v ∈ V such that ∂(u, v) = i ≤ k, and l ≥ 0, al
uv =

∑d

h=0 mihλl
h

is independent of u, v, provided that ∂(u, v) = i ≤ k and Γ is k-walk-regular.

Conversly, the crossed uv-local multiplicities are muv(λh) = (Eh)uv = (Ph(A))uv , where

Ph(A) = 1
φh

∏d

j=0,j 6=h(A − λjI). If Γ is k-walk-regular, we have that there are constant uv-

entries for I, A, A2, . . ., provided that ∂(u, v) ≤ k. Observe that Ph(A) is a polynomial of A, so

we have that muv(λh) is a constant independent of u, v. 2

Proposition 2 Let Γ be a strongly connected normal digraph with predistance polynomials

p0, p1, . . . , pd. If Γ is k-walk-regular, then pi(A) = Ai, for 0 ≤ i ≤ k.

Proof Suppose Γ is a k-walk-regular digraph. The number of walks with length i from vertex

u to vertex v at distance i (0 ≤ i ≤ k) is al
uv = al

i (a constant). Hence

Al = al
0I + al

1A + al
2A2 + · · · + al

iAi, 0 ≤ i ≤ k, (8)

where, necessarily, ai
i 6= 0 and as already mentioned, ai

j = 0 for any j > i. In matrix form
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where C := (al
i) is a lower triangular matrix. Since ai

i > 0 for any 0 ≤ i ≤ k, the matrix C is

non-singular and its inverse C−1 is also a lower triangular matrix. Hence Ai is a polynomial,

say, qi of degree of i in A for any 0 ≤ i ≤ k:

Ai = qi(A) = αi
0I + αi

1A + αi
2A

2 + · · · + αi
kAk, 0 ≤ i ≤ k, (10)

where αi
i 6= 0. These polynomials are orthogonal with respect to the scalar product since

〈qi, qj〉 =
1

n
tr(qi(A)qj(A)∗) =

1

n
tr(AiA

T
j ) = 0, i 6= j.

Moreover, notice that Aij = qi(A)j = qi(λ0)j since j is an eigenvector of λ0, it is easy to see the

number of vertices at distance i, 0 ≤ i ≤ k, from a given vertex u is a constant through all the

digraph: ni = |Γ+
i (u)| = qi(λ0) for every u ∈ V . Thus

‖qi‖
2 = 〈qi, qi〉 =

1

n
tr(qi(A)qi(A)∗) =

1

n
tr(AiA

T
i ) = qi(λ0).

Therefore, the obtained polynomials are, in fact, the (pre)distance polynomials qi = pi, 0 ≤ i ≤ k,

for the uniqueness of the predistance polynomials. 2

From the result above it is immediate to have

Proposition 3 Let Γ be a k-walk-regular digraph and a strongly connected normal digraph.

Then the number of vertices at distance k from any given vertex is equal to pk(λ0), for each

k = 0, 1, . . . , t.

Proof By the Proposition 2 we have that Ai = pi(A), i = 0, 1, . . . , k and Γ is a λ0-regular di-

graph. Thus we have that j = (1, 1, . . . , 1)T is an eigenvector of A corresponding to the eigenvalue

λ0. Consequently, Akj = pk(A)j = pk(λ0)j, which implies that nk = pk(λ0), k = 0, 1, . . . , t. 2

Theorem 3 Let Γ be a strongly connected normal digraph with predistance polynomials

p0, p1, . . . , pd. Then the following two statements are equivalent:

(i) Γ is k-walk-regular;

(ii) (pj(A))uv = 0, for k + 1 ≤ j ≤ d, ∂(u, v) = i ≤ k.

Proof If Γ is k-walk-regular, then

(pi(A)Eh)uu = pi(λh)(Eh)uu = pi(λh)muu(λh) = pi(λh) · m0h,

for any h with 0 ≤ h ≤ d. But if ∂(u, v) = i ≤ k, we have already known that pi(A) = Ai and

then

(pi(A)Eh)uu = (AiEh)uu =
∑

v∈V

(Ai)uv(Eh)vu =
∑

v∈V

(Ai)uv(Eh)uv

=
∑

v∈V

(Ai)uv(Eh)uv =
∑

v∈Γ+

i
(u)

muv(λh) = nimih,

where we have used the invariance of the crossed local multiplicities muv(λh) = mih, and the
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number of vertices at distance i from any given vertex ni = pi(λ0). So

mih =
mhpi(λh)

npi(λ0)
, 0 ≤ i ≤ k, 0 ≤ h ≤ d.

Therefore,

(pj(A))uv =

d
∑

h=o

pj(λh)(Eh)uv =

d
∑

h=o

pj(λh)mih =
1

npi(λ0)

d
∑

h=0

mhpj(λh)pi(λh)

=
1

npi(λ0)
〈pj , pi〉 = 0, i ≤ k < j.

Conversly, assume that (ii) holds and for every h, 0 ≤ h ≤ d. Now we consider the expression

of Ph =
∑d

j=0 βhjpj , where βhj is the coefficient of Ph in terms of pj . If ∂(u, v) = i ≤ k,

muv(λh) = (Eh)uv = (Ph(A))uv =

d
∑

j=0

βhj(pj(A))uv

=

k
∑

j=0

βhj(Aj)uv +

d
∑

j=k+1

βhj(pj(A))uv = βhi.

Thus, the crossed multiplicities, muv(λh) = βhi, only depend on the distance from u to v. 2
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