k-Walk-Regular Digraphs

Wen LIU ${ }^{1, *}$, Jing LIN ${ }^{2}$
1. Mathematics and Information College, Hebei Normal University, Hebei 050016, P. R. China;
2. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P. R. China

Abstract

In this paper, we define a class of strongly connected digraph, called the k-walkregular digraph, study some properties of it, provide its some algebraic characterization and point out that the 0 -walk-regular digraph is the same as the walk-regular digraph discussed by Liu and Lin in 2010 and the D-walk-regular digraph is identical with the weakly distance-regular digraph defined by Comellas et al in 2004.

Keywords k-walk-regular digraph; predistance polynomial; the crossed $u v$-local multiplicity.
Document code A
MR(2010) Subject Classification 05C12; 05C20; 05C50
Chinese Library Classification O157.5

1. Introduction

Let $\Gamma=(V, E)$ be a strongly connected digraph, with V denoting the set of vertices and E the set of arcs. If $(u, v) \in E$, we say that u is adjacent to v (or v is adjacent from u). A walk of length l in Γ is a sequence $\left(u_{0}, u_{1}, \ldots, u_{l}\right)$ of vertices such that $\left(u_{i-1}, u_{i}\right) \in E, i=1,2, \ldots, l$, and a walk is closed if its first and last vertices are the same. If the vertices in a walk are distinct, we call it a path. We say a digraph is strongly connected if any two vertices can be joined by a path. The number of arcs traversed in the shortest walk from u to v is called the distance from u to v, denoted by $\partial(u, v)$, and we call the value $D:=\max \{\partial(u, v) \mid u, v \in V\}$ the diameter of Γ. Notice that what we consider is the oriented graphs, so $\partial(u, v)$ and $\partial(v, u)$ may not be equal. For any fixed integer $0 \leq k \leq D$, we will denote by $\Gamma_{k}^{+}(u)$ (respectively, $\left.\Gamma_{k}^{-}(u)\right)$ the set of vertices at distance k from u (respectively, the set of vertices from which u is at distance k). Sometimes it is written, for short, $\Gamma^{+}(u)$ or $\Gamma^{-}(u)$ instead of $\Gamma_{1}^{+}(v)$ or $\Gamma_{1}^{-}(v)$, respectively. Thus the out-valency and in-valency of u are $k_{+}(u):=\left|\Gamma^{+}(u)\right|$ and $k_{-}(u):=\left|\Gamma^{-}(u)\right|$. The digraph Γ is k-regular if $k_{+}(u)=k_{-}(u)=k$ for every $u \in V$.

The adjacency matrix A and the distance- k matrix A_{k}, where $0 \leq k \leq D$, of Γ are defined

[^0]by
\[

A_{u v}:= $$
\begin{cases}1, & \text { if }(u, v) \in E \\ 0, & \text { otherwise }\end{cases}
$$
\]

and

$$
\left(A_{k}\right)_{u v}:= \begin{cases}1, & \text { if } \partial(u, v)=k \\ 0, & \text { otherwise }\end{cases}
$$

respectively. If $A A^{\mathrm{T}}=A^{\mathrm{T}} A$, then Γ is said to be normal. As for normal matrices, there are the following properties:

Theorem 1 Let A be an $n \times n$ complex matrix with eigenvalues $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}$. Then A is normal if and only if any of the following assertions holds:
(a) $U^{*} A U=\Lambda$ for some matrix U such that $U U^{*}=I$, and $\Lambda=\operatorname{diag}\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}\right)$, where U^{*} is the transpose of U 's conjugate;
(b) $A^{*}=p(A)$ for some polynomial $p \in \mathbf{C}[x]$;
(c) $\operatorname{tr}\left(A A^{*}\right)=\sum_{i=0}^{n-1}\left|\lambda_{i}\right|^{2}$.

Now assume that A has $d+1$ distinct eigenvalues $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{d}$ and $m(x)=\left(x-\lambda_{0}\right)(x-$ $\left.\lambda_{1}\right) \cdots\left(x-\lambda_{d}\right)$ is the minimal polynomial of A. The spectrum of the digraph Γ, denoted by $s p \Gamma$ consists of the eigenvalues of A, which might be not real since A is not symmetric, together with their (algebraic) multiplicities:

$$
s p \Gamma=\left\{\lambda_{0}^{m\left(\lambda_{0}\right)}, \lambda_{1}^{m\left(\lambda_{1}\right)}, \ldots, \lambda_{d}^{m\left(\lambda_{d}\right)}\right\}
$$

where the superscripts stand for the multiplicities $m_{i}=m\left(\lambda_{i}\right)$ for $i=0,1, \ldots, n-1$ and λ_{0} is the maximal eigenvalue and $\lambda_{i} \neq \lambda_{j}$ if $i \neq j$. In particular, $m\left(\lambda_{0}\right)=1$ and $m\left(\lambda_{0}\right)+m\left(\lambda_{1}\right)+$ $\cdots+m\left(\lambda_{d}\right)=n$ (for details the readers can see [1]).

By the Perron-Frobenius theorem, λ_{0} is simple and has a positive eigenvector ν. If Γ is k-regular, then we may pick $\nu=\mathbf{j}$, where \mathbf{j} denotes the all 1 -vector, and $\lambda_{0}=k$.

The adjacency algebra of Γ (also called Bose-Mesner algebra when it is closed under the Hadamard-or componentwise-product) is defined by $\mathscr{A}(\Gamma):=\{p(A) \mid p \in \mathbf{C}[x]\}$, where A is the adjacency matrix of Γ. The dimension of $\mathscr{A}(\Gamma)$, as a \mathbf{C}-vector space, equals the degree of the minimum polynomial $m(x)$. It is obvious that $\left\{I, A, \ldots, A^{d}\right\}$ is a basis of the adjacency or Bose-Mesner algebra $\mathscr{A}(\Gamma)$ and the dimension of the Bose-Mesner algebra is at least $D+1$ since the powers $I, A, A^{2}, \ldots, A^{D}$ are linearly independent. By Theorem 1(a), we know that the eigenvectors of a normal $n \times n$ square matrix constitute an orthogonal basis of the vector space \mathbf{C}^{n}, with inner product $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{*} \mathbf{v}$. For each polynomial $p \in \mathbf{C}[x]$ we define p operates on the vector $\mathbf{v} \in \mathbf{C}^{n}$ by $p \mathbf{v}=p(A) \mathbf{v}$. For each λ_{i}, let U_{i} be the matrix whose columns form an orthonormal basis of the eigenspace $V_{i}:=\operatorname{Ker}\left(A-\lambda_{i} I\right)$. Then the orthogonal projection onto V_{i} is represented by the matrix $E_{i}=U_{i} U_{i}^{*}$, or alternatively, $E_{i}=\frac{1}{\phi_{i}} \prod_{j=0, j \neq i}^{d}\left(A-\lambda_{j} I\right)$, where $\phi_{i}=\prod_{j=0, j \neq i}^{d}\left(\lambda_{i}-\lambda_{j}\right)$. These matrices are called the principal idempotents of A and satisfy the following properties: $E_{i} E_{j}=\delta_{i j} E_{i}, A E_{i}=\lambda_{i} E_{i}$. Also $\left\{E_{0}, E_{1}, \ldots, E_{d}\right\}$ is a basis of $\mathscr{A}(\Gamma)$. Then we can give the orthogonal decomposition of the unitary vector \mathbf{e}_{u} representing vertex u
as follows:

$$
\begin{equation*}
\mathbf{e}_{u}=\mathbf{z}_{u}^{0}+\mathbf{z}_{u}^{1}+\ldots+\mathbf{z}_{u}^{d} \tag{1}
\end{equation*}
$$

where $\mathbf{z}_{u}^{i}=E_{i} \mathbf{e}_{u}, i=0,1, \ldots, d$.
Throughout this paper, we assume that Γ is a strongly connected digraph with order $n=|V|$, size $m=|E|$, diameter D, normal adjacency matrix A and $d+1$ distinct eigenvalues.

2. Main results

Definition $1 \Gamma=(V, E)$ is said to be a k-walk-regular digraph, for a given integer $k(0 \leq k \leq D)$, if the number of walks of length $l, a_{u v}^{l}=\left(A^{l}\right)_{u v}$, from vertex u to vertex v only depends on the distance from u to v, provided that this distance does not exceed k. In this case we just denote the number by a_{k}^{l}.

Thus, in particular, the 0-walk-regular digraph coincides with the walk-regular digraph, where the number of cycles of length l rooted at a given vertex is a constant through all the digraph defined by Liu and Lin in [5] and the D-walk-regular digraph is the same as weakly distanceregular digraph defined by Comellas in [2].

For a given digraph Γ with adjacency matrix A, we consider the following scalar product in $\mathbf{C}[x]$:

$$
\langle p, q\rangle=\frac{1}{n} \operatorname{tr}\left(p(A) q(A)^{*}\right) .
$$

This product is well defined in the quotient ring $\mathbf{C}[x] /(m(x))$, where $(m(x))$ is the ideal generated by the minimum polynomial of $\Gamma, m(x)$.

Proposition 1 If Γ is a normal digraph with spectrum $s p \Gamma$ defined above, then we have

$$
\langle p, q\rangle=\frac{1}{n} \operatorname{tr}\left(p(A) q(A)^{*}\right)=\frac{1}{n} \sum_{k=0}^{d} m_{k}\left(p\left(\lambda_{k}\right) \overline{q\left(\lambda_{k}\right)}\right)
$$

Proof A can be diagonalized by means of a unitary matrix, that is, $U^{*} A U=D$ for some matrix U such that $U^{*} U=I$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

$$
\begin{aligned}
\langle p, q\rangle & =\frac{1}{n} \operatorname{tr}\left(p(A) q(A)^{*}\right)=\frac{1}{n} \operatorname{tr}\left(U p(\Lambda) U^{*}\left(U q(\Lambda) U^{*}\right)^{*}\right)=\frac{1}{n} \operatorname{tr}\left(U p(\Lambda) U^{*} U q(\Lambda)^{*} U^{*}\right) \\
& =\frac{1}{n} \operatorname{tr}\left(U p(\Lambda) \overline{q(\Lambda)} U^{*}\right)=\frac{1}{n} \operatorname{tr}\left(p(\Lambda) \overline{q(\Lambda)} U^{*} U\right)=\frac{1}{n} \operatorname{tr}(p(\Lambda) \overline{q(\Lambda)}) \\
& =\frac{1}{n} \sum_{k=0}^{d} m_{k}\left(p\left(\lambda_{k}\right) \overline{q\left(\lambda_{k}\right)}\right)
\end{aligned}
$$

Notice that $1, x, x^{2}, \ldots, x^{d}$ are linearly independent in $\mathbf{C}_{d}[x]$, then by using the Gram-Schmidt method and normalizing appropriately, one can immediately prove the existence and the uniqueness of an orthogonal system of polynomials $\left\{p_{k}\right\}_{0 \leq k \leq d}$ called predistance polynomials which, for any $0 \leq h, k \leq d$, satisfy:
(1) $d g r\left(p_{k}\right)=k$;
(2) $\left\langle p_{h}, p_{k}\right\rangle=0$, if $h \neq k$;
(3) $\left\|p_{k}\right\|^{2}=p_{k}\left(\lambda_{0}\right)$.

Recall that, in a weakly distance-regular digraph, we have $D=d$ and such polynomials satisfy $p_{k}(A)=A_{k}(0 \leq k \leq d)$, where A_{k} stands for the distance- k matrix.

From the decomposition (1) we define the crossed $u v$-local multiplicity of eigenvalue λ_{k} as $m_{u v}\left(\lambda_{k}\right)=\left(E_{k}\right)_{u v}$ (which is similar to the definition in [3]). Furthermore,

$$
m_{u v}\left(\lambda_{k}\right)=\left(E_{k}\right)_{u v}=\left\langle E_{k} \mathbf{e}_{u}, \mathbf{e}_{v}\right\rangle=\left\langle E_{k} \mathbf{e}_{u}, E_{k} \mathbf{e}_{v}\right\rangle=\left\langle\mathbf{z}_{u}^{k}, \mathbf{z}_{v}^{k}\right\rangle, \quad u, v \in V
$$

Now, for a given $k, 0 \leq k \leq d$, if the crossed $u v$-local multiplicities of $\lambda_{h}, m_{u v}\left(\lambda_{h}\right)$, only depend on the distance from u to v, provided that $\partial(u, v)=i \leq k$, we denote $m_{u v}\left(\lambda_{h}\right) \triangleq m_{i h}$.

Theorem 2 Let Γ be a strongly connected normal digraph with predistance polynomials $p_{0}, p_{1}, \ldots, p_{d}$. Then the following statements are equivalent.
(i) Γ is k-walk-regular;
(ii) The uv-local multiplicities of $\lambda_{h}, m_{u v}\left(\lambda_{h}\right)$, only depend on the distance from u to v, provided that $\partial(u, v)=i \leq k$, that is, $m_{u v}\left(\lambda_{h}\right)=m_{i h}$.

Proof Since A^{l} can be expressed as a linear combination of the idempotents $E_{k}: A^{l}=$ $\sum_{h=0}^{d} \lambda_{h}^{l} E_{h}$, we have that the number of walks $a_{u v}^{l}$ can be computed in terms of the crossed $u v$-local multiplicities as

$$
a_{u v}^{l}=\left(A^{l}\right)_{u v}=\sum_{h=0}^{d} \lambda_{h}^{l}\left(E_{h}\right)_{u v}=\sum_{h=0}^{d} m_{u v}\left(\lambda_{h}\right) \lambda_{h}^{l}
$$

Then if $m_{u v}\left(\lambda_{h}\right)=m_{i h}$ for any $u, v \in V$ such that $\partial(u, v)=i \leq k$, and $l \geq 0, a_{u v}^{l}=\sum_{h=0}^{d} m_{i h} \lambda_{h}^{l}$ is independent of u, v, provided that $\partial(u, v)=i \leq k$ and Γ is k-walk-regular.

Conversly, the crossed uv-local multiplicities are $m_{u v}\left(\lambda_{h}\right)=\left(E_{h}\right)_{u v}=\left(P_{h}(A)\right)_{u v}$, where $P_{h}(A)=\frac{1}{\phi_{h}} \prod_{j=0, j \neq h}^{d}\left(A-\lambda_{j} I\right)$. If Γ is k-walk-regular, we have that there are constant $u v$ entries for I, A, A^{2}, \ldots, provided that $\partial(u, v) \leq k$. Observe that $P_{h}(A)$ is a polynomial of A, so we have that $m_{u v}\left(\lambda_{h}\right)$ is a constant independent of u, v.

Proposition 2 Let Γ be a strongly connected normal digraph with predistance polynomials $p_{0}, p_{1}, \ldots, p_{d}$. If Γ is k-walk-regular, then $p_{i}(A)=A_{i}$, for $0 \leq i \leq k$.

Proof Suppose Γ is a k-walk-regular digraph. The number of walks with length i from vertex u to vertex v at distance $i(0 \leq i \leq k)$ is $a_{u v}^{l}=a_{i}^{l}$ (a constant). Hence

$$
\begin{equation*}
A^{l}=a_{0}^{l} I+a_{1}^{l} A+a_{2}^{l} A_{2}+\cdots+a_{i}^{l} A_{i}, \quad 0 \leq i \leq k \tag{8}
\end{equation*}
$$

where, necessarily, $a_{i}^{i} \neq 0$ and as already mentioned, $a_{j}^{i}=0$ for any $j>i$. In matrix form

$$
\left(\begin{array}{c}
I \tag{9}\\
A \\
A^{2} \\
\vdots \\
A^{k}
\end{array}\right)=\left(\begin{array}{cccccc}
a_{0}^{0} & 0 & 0 & 0 & \ldots & 0 \\
a_{0}^{1} & a_{1}^{1} & 0 & 0 & \ldots & 0 \\
a_{0}^{2} & a_{1}^{2} & a_{2}^{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{0}^{k} & a_{1}^{k} & a_{2}^{k} & a_{3}^{k} & \ldots & a_{k}^{k}
\end{array}\right)\left(\begin{array}{c}
I \\
A \\
A_{2} \\
\vdots \\
A_{k}
\end{array}\right)
$$

where $C:=\left(a_{i}^{l}\right)$ is a lower triangular matrix. Since $a_{i}^{i}>0$ for any $0 \leq i \leq k$, the matrix C is non-singular and its inverse C^{-1} is also a lower triangular matrix. Hence A_{i} is a polynomial, say, q_{i} of degree of i in A for any $0 \leq i \leq k$:

$$
\begin{equation*}
A_{i}=q_{i}(A)=\alpha_{0}^{i} I+\alpha_{1}^{i} A+\alpha_{2}^{i} A^{2}+\cdots+\alpha_{k}^{i} A^{k}, \quad 0 \leq i \leq k \tag{10}
\end{equation*}
$$

where $\alpha_{i}^{i} \neq 0$. These polynomials are orthogonal with respect to the scalar product since

$$
\left\langle q_{i}, q_{j}\right\rangle=\frac{1}{n} \operatorname{tr}\left(q_{i}(A) q_{j}(A)^{*}\right)=\frac{1}{n} \operatorname{tr}\left(A_{i} A_{j}^{T}\right)=0, \quad i \neq j .
$$

Moreover, notice that $A_{i} \mathbf{j}=q_{i}(A) \mathbf{j}=q_{i}\left(\lambda_{0}\right) \mathbf{j}$ since \mathbf{j} is an eigenvector of λ_{0}, it is easy to see the number of vertices at distance $i, 0 \leq i \leq k$, from a given vertex u is a constant through all the digraph: $n_{i}=\left|\Gamma_{i}^{+}(u)\right|=q_{i}\left(\lambda_{0}\right)$ for every $u \in V$. Thus

$$
\left\|q_{i}\right\|^{2}=\left\langle q_{i}, q_{i}\right\rangle=\frac{1}{n} \operatorname{tr}\left(q_{i}(A) q_{i}(A)^{*}\right)=\frac{1}{n} \operatorname{tr}\left(A_{i} A_{i}^{\mathrm{T}}\right)=q_{i}\left(\lambda_{0}\right) .
$$

Therefore, the obtained polynomials are, in fact, the (pre)distance polynomials $q_{i}=p_{i}, 0 \leq i \leq k$, for the uniqueness of the predistance polynomials.

From the result above it is immediate to have
Proposition 3 Let Γ be a k-walk-regular digraph and a strongly connected normal digraph. Then the number of vertices at distance k from any given vertex is equal to $p_{k}\left(\lambda_{0}\right)$, for each $k=0,1, \ldots, t$.

Proof By the Proposition 2 we have that $A_{i}=p_{i}(A), i=0,1, \ldots, k$ and Γ is a λ_{0}-regular digraph. Thus we have that $\mathbf{j}=(1,1, \ldots, 1)^{\mathrm{T}}$ is an eigenvector of A corresponding to the eigenvalue λ_{0}. Consequently, $A_{k} \mathbf{j}=p_{k}(A) \mathbf{j}=p_{k}\left(\lambda_{0}\right) \mathbf{j}$, which implies that $n_{k}=p_{k}\left(\lambda_{0}\right), k=0,1, \ldots, t$.

Theorem 3 Let Γ be a strongly connected normal digraph with predistance polynomials $p_{0}, p_{1}, \ldots, p_{d}$. Then the following two statements are equivalent:
(i) Γ is k-walk-regular;
(ii) $\left(p_{j}(A)\right)_{u v}=0$, for $k+1 \leq j \leq d, \partial(u, v)=i \leq k$.

Proof If Γ is k-walk-regular, then

$$
\left(p_{i}(A) E_{h}\right)_{u u}=p_{i}\left(\lambda_{h}\right)\left(E_{h}\right)_{u u}=p_{i}\left(\lambda_{h}\right) m_{u u}\left(\lambda_{h}\right)=p_{i}\left(\lambda_{h}\right) \cdot m_{0 h}
$$

for any h with $0 \leq h \leq d$. But if $\partial(u, v)=i \leq k$, we have already known that $p_{i}(A)=A_{i}$ and then

$$
\begin{aligned}
\left(p_{i}(A) E_{h}\right)_{u u} & =\left(A_{i} E_{h}\right)_{u u}=\sum_{v \in V}\left(A_{i}\right)_{u v}\left(E_{h}\right)_{v u}=\sum_{v \in V}\left(A_{i}\right)_{u v}\left(\overline{E_{h}}\right)_{u v} \\
& =\sum_{v \in V}\left(A_{i}\right)_{u v}\left(\overline{\left.E_{h}\right)_{u v}}=\sum_{v \in \Gamma_{i}^{+}(u)} \overline{m_{u v}\left(\lambda_{h}\right)}=n_{i} \overline{m_{i h}}\right.
\end{aligned}
$$

where we have used the invariance of the crossed local multiplicities $m_{u v}\left(\lambda_{h}\right)=m_{i h}$, and the
number of vertices at distance i from any given vertex $n_{i}=p_{i}\left(\lambda_{0}\right)$. So

$$
m_{i h}=\frac{m_{h} \overline{p_{i}\left(\lambda_{h}\right)}}{n p_{i}\left(\lambda_{0}\right)}, \quad 0 \leq i \leq k, 0 \leq h \leq d
$$

Therefore,

$$
\begin{aligned}
\left(p_{j}(A)\right)_{u v} & =\sum_{h=o}^{d} p_{j}\left(\lambda_{h}\right)\left(E_{h}\right)_{u v}=\sum_{h=o}^{d} p_{j}\left(\lambda_{h}\right) m_{i h}=\frac{1}{n p_{i}\left(\lambda_{0}\right)} \sum_{h=0}^{d} m_{h} p_{j}\left(\lambda_{h}\right) \overline{p_{i}\left(\lambda_{h}\right)} \\
& =\frac{1}{n p_{i}\left(\lambda_{0}\right)}\left\langle p_{j}, p_{i}\right\rangle=0, \quad i \leq k<j
\end{aligned}
$$

Conversly, assume that (ii) holds and for every $h, 0 \leq h \leq d$. Now we consider the expression of $P_{h}=\sum_{j=0}^{d} \beta_{h j} p_{j}$, where $\beta_{h j}$ is the coefficient of P_{h} in terms of p_{j}. If $\partial(u, v)=i \leq k$,

$$
\begin{aligned}
m_{u v}\left(\lambda_{h}\right) & =\left(E_{h}\right)_{u v}=\left(P_{h}(A)\right)_{u v}=\sum_{j=0}^{d} \beta_{h j}\left(p_{j}(A)\right)_{u v} \\
& =\sum_{j=0}^{k} \beta_{h j}\left(A_{j}\right)_{u v}+\sum_{j=k+1}^{d} \beta_{h j}\left(p_{j}(A)\right)_{u v}=\beta_{h i}
\end{aligned}
$$

Thus, the crossed multiplicities, $m_{u v}\left(\lambda_{h}\right)=\beta_{h i}$, only depend on the distance from u to v.

References

[1] GODSIL C, ROYLE G. Algebraic Graph Theory, Sringer Verlag [M]. New York, Berlin, Heidelberg, 2004.
[2] COMELLAS F, FIOL M A, GIMBERT J, et al. Weakly distance-regular digraphs [J]. J. Combin. Theory Ser. B, 2004, 90(2): 233-255.
[3] FIOL M A, GARRIGA E. Spectral and geometric properties of k-walk-regular graph [J]. Elec. Notes in Discrete Math., 2007, 29: 333-337.
[4] DAMERELL R M. Distance-transitive and distance-regular digraphs [J]. J. Combin. Theory Ser. B, 1981, 31(1): 46-53.
[5] LIU Wen, LIN Jing. Walk regular digraphs [J]. Ars Combin., 2010, 95: 97-102.

[^0]: Received January 5, 2010; Accepted May 28, 2010
 Supported by the National Natural Science Foundation of China (Grant Nos. 10771051; 10971052), the National Natural Foundation of Hebei Province (Grant No. A2008000128), Educational Committee of Hebei Province (Grant No. 2009134) and Youth Science Foundation of Hebei Normal University (Grant No. L2008Q01).

 * Corresponding author

 E-mail address: liuwen1975@126.com (W. LIU)

