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Abstract In this paper, two kinds of skew derivations of a type of Nichols algebras are intro-
duced, and then the relationship between them is investigated. In particular they satisfy the
quantum Serre relations. Therefore, the algebra generated by these derivations and correspond-
ing automorphisms is a homomorphic image of the Drinfeld-Jimbo quantum enveloping algebra
Uq(g), which proves the Nichols algebra becomes a U, (g)-module algebra. But the Nichols alge-
bra considered here is exactly Z/l;L (g9), namely, the positive part of the Drinfeld-Jimbo quantum
enveloping algebra Uy (g), it turns out that U, (g) is a Uy (g)-module algebra.
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1. Introduction

In [1], skew derivations of so called twisted Hopf algebras were introduced, and the corre-
sponding skew differential operator algebras were studied, where the concept of a (K, ¢, I, x)-
twisted Hopf algebra with generators was improved to include some important examples such as
the free algebras, the polynomial algebras, Lusztig’s algebra in [2], Ringel composition algebra
% (A) and Ringel-Hall algebra 27 (A) in [3] and [4], Rosso’s quantum shuffle algebra T'(V) in [5].
In particular, the author focused on the algebra # (%' (A), ™), which is generated by the left
multiplication operators (6;); for i € 1", and the left skew derivations ;0 for i € I'™  where
0;, i € I, is a minimal system of generators of J#(A). It turns out that these skew derivations
satisfy the quantum Serre relations, and hence the algebra generated by these derivations is a
homomorphic image of % T associated to A.

In recent years, Nichols algebras are becoming very interesting objects to be studied. When
the braiding is just a trivial, or more generally a symmetric braiding, then the Nichols algebra
is nothing but a symmetric algebra, but when the braiding is not a symmetry, a Nichols algebra

could have a much richer structure. In general, the first part of classification problem of pointed
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Hopf algebras by the lifting method is to determine the structure of the corresponding Nichols
algebras [6]. From this point of view, Nichols algebras are the key to the structure of pointed
Hopf algebras [7, 8]. One of the important techniques to study the structure of Nichols algebras
is skew derivations, their extension could track back to [9].

In this paper, we pay attention to a Nichols algebra B(V'), which is a particular example
of a twisted Hopf algebra considered in [1]. For 1 < i < n, let o; be an automorphism of the
Nichols algebra, and the (id, 0;)-derivation D; discussed in [6,10] is also the particular case of
the derivation d; appearing in [1].
1,id)—derivation X;, and for 1 < i < n we prove that D;, X;, o;

In Section 2, we define (o}

satisfy the following relations

0i0j = 004, UiUi_l = Ui_le' =1, (1'1)
UiDjU;1 = q;aiij, Uin0;1 = q?inj, (12)
g1

X:D; — D;X; = 64— (1.3)

qi — q;

If we denote
ki = 0;15 € == _UZID’LH fZ = _X’L'O"L'; 1 S { S n,
then the relations (1.1), (1.2), (1.3) can be written as

kikj = kiki, kik; ' =k 'k =1, (1.4)
kiejkfl = q;lijej, klfjk;1 = qi_aijfj, (15)

ki — k!
eifj — fiei = 0ij——+. (1.6)

qi — q;

Denote by U the subalgebra of EndiB(V) generated by these generators k;, k; ', e;, fi,
1 <4 < n with relations (1.4)—(1.6), we prove that the Nichols algebra B(V) becomes a left
U-module algebra.

In Section 3, by a straightforward computation, we also prove that the derivations e;, f;

satisfy the quantum Serre relations, that is

17(11']‘
1—a;; Caii—s . .
Z (_1)5 |: aJ:| 63 Y ejef = 07 ¢ 7&]7
s Ja

s=0

1—(1»;]'

S

s=0

l—a;;—s s . .
fi [ifi =0, i# 3.

Therefore the skew differential operator algebra U with the quantum Serre relations is a ho-
momorphic image of the Drinfeld-Jimbo quantum enveloping algebra U,(g), which endows the
Nichols algebra a left U, (g)-module structure. Furthermore, the Nichols algebra we considered
here is exactly Z/{;’ (9), that is, the positive part of the Drinfeld-Jimbo quantum enveloping algebra
Uy (g)- Therefore, it follows that U, (g) is a Uy(g)-module algebra.
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Throughout this paper, the ground field k is C, the field of complex numbers. We refer to

[11-13] for the notation and basic properties of Hopf algebras and quantum groups.

2. Skew derivations of a type of Nichols algebras

Let n € Z, d € N, ¢ € C and not algebraic over Q. As usual, we define
dn __ q—dn

e = . [nla! = [)aln — a--- [,

7' —q
and the Gauss binomial coefficients
[n} _ [nlaln—1a---[n—j+1]a
j d B [j]d!

,1<j<n,

where [g} =1, {7;} =0 if j > n (see [14]). In particular, we have the following two useful
d d
identities [13],

Z(_l)sqids(r—l) |:7°:| _ 07 r> 17 (21)
d

LU L LA L L, 22

Denote by A = (a;;) a Cartan matrix of a simple finite-dimensional Lie algebra, namely, (a;;)
is an n x n indecomposable matrix with integer entries such that a; = 2 and a;; <0, for i # j,
and (di,ds,...,dy) is a vector with relatively prime entries d; such that the matrix (d;a;;) is
symmetric and positive definite. Denote ¢; := ¢% and gij = q;l = giais

Let T be a group. We will write FyD for the category of Yetter-Drinfeld modules over kI,
and say that V € g)}D is a Yetter-Drinfeld module over I'. If V' € EyD, then the kI-module
V is just a I'-graded vector space V = @gcrVy, where V; = {v € V|§(v) = g ® v}. We define a
linear isomorphism c¢: V@V - V@V by c(z®y) =gy®@ux, forallz € V,, g €T, y € V. Then

(V,¢) is a braided vector space, that is, ¢ is a solution of the braided equation
(c®id)(id®c)(c®id) = (id ® ¢)(c ®id)(id ® ¢).

In the following, let I be an abelian group. Consider the braided vector space (V,c), where

V' is a Yetter-Drinfeld module over kI' with a basis x1, 9, ..., x, and the braiding c is given by
c(z; ® ;) = gi.xj @ x; i= ¢z, @ w5 (2.3)
Then the Nichols algebra B(V') associated to the braided vector space (V,c¢) is
B(V) = kizy,22,...,2,](adex;) "2y =0, i#7),
see e.g., [6], where (ad.x;)z; is the braided adjoint representation of z;, namely,
(adexs)zy = p(id — ¢)(x; @ xj),

where p is the multiplication and c is the braiding.
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Let o; be an automorphism of B(V) given by the action of g;. That is, 0;(z;) = gi.z; =
qdiis xj. For a € B(V), by induction on r, we get that

(adei)a = 3 (1)) H 0% (@)
d;

s
s=0
Therefore, (ad.z;)'~*7x; = 0 implies that

1—(1»;]'

> (=1 {1 _S‘”j] z) M et = 0. (2.4)
d

s=0

It follows that B(V) is U (g), the positive part of the Drinfeld-Jimbo quantum enveloping
algebra Uy(g) (see [6]).
Let X; be a linear map from B(V) to itself defined by

o; Y a)z; — zia

Xi(a) = G —q %

3

for all a € B(V). Recall that if 7, o are two automorphisms of an algebra R and the (7,0)-

derivation of R is a linear map from R to itself such that
D(ab) = 7(a)D(b) + D(a)o(b),
for all a,b € R.
Proposition 2.1 For all 1 <i <n, the map X, is a (ai_l,id)—derivation of B(V).

Proof Note that X;(1) =0, and for any a,b € B(V),

Xi(ab) = Ufl(ab)gﬁi__lxiab _ (07 (@) jliCiU«)b n Ui_l(a)(ai_l(bzifi — x;b)
ED % — 4 qi — 4,

= o'._l(a,)Xi(b) + Xl(a)b7

K2

which completes the proof. O

Proposition 2.2 For all 1 < i < n, there exists a uniquely determined (id, o;)-derivation
D, :B(V) — B(V) with D;(z;) = d;; (Kronecker ¢) for all 1 < j < n.
In fact, the Proposition 2.2 above has been stated, for example in [6, 10], and the derivations

of more general algebras have been considered in [1] with different approaches.
Proposition 2.3 For all 1 <i,j <n, we have
0iDjo; " =q; "V D;, 0;Xj07 ' =q;7 X;. (2.5)

Proof To prove o;D;0; ' = q; “ D;, note that B(V) is generated as an algebra by 1, g, ..., Ty,
therefore, it is enough to check that it holds for all monomials x;, ;, - - - ;,, in B(V). By induc-
tion on the length m, if m = 1, it is easy to check that D;o;(z;,) = gijo:D;(x;, ), since the two
sides are both equivalent to g;; if j1 = j, but 0 otherwise. Assume it holds for all monomials with

the length at most m. For the case m + 1, denote x; x;, - - - ;... , = ax;,, ., with the element a
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the length of m. On the one hand,

ngi (axjm+l ) = Dj (qijm+1 0i (a)xjm+1 )
= Qijmi 5jjm+1 05 (a) + Qijmi19jjms1 Dj 0 (a’)‘rjm+1 :

On the other hand, by assumption on m,

450D (0%, 1) = ¢ij0i(05j 10+ Dj(a) G541 Tjpnyr)
= 650311 06(@) + Qg1 G2 450 D5 (@) 5,14
= 01§05 11 0i(@) + Qi 1 Qi1 DOi(@) 5,
Therefore, Djo;(axj,,,,) = ¢ijoiDj(ax;j,, ). Thus by induction on m, we conclude that D;o; =
gijoiD; holds for all 1 <14, j < n.
Next we prove the equality o; X;0; ! = ¢ X}, for any a € B(V). In fact,

X0 (a) = oil(o o N@)z; — 250, (a) _ oy (a)oi(w;) — oi(wy)a

4 —q; " 4 —q"
—1
¢ij(0; (a)r; — zja)
= . — = i Xj(a).
q; — 4;

This completes the proof. O

Proposition 2.4 For all 1 <1, j <n, we have

X;D; — D;X; = b;; 7‘; - qil . (2.6)

Proof For any a € B(V) and by (2.5)
(XiDj — DjX;)(a) = Xi(Dj(a)) — D;(Xi(a))

= = T (D@ D(0) = Dy @) — i)
1
= (oa) - o7 @) = 0, P (a)
4 — ¢q; qi — q;
The proof is completed. O
Denote
k; = oi_l, e; = —oi_lDi, fi=—-X,0;, 1 <i<n.

It is easy to check that e; is a (k;,id)-derivation and f; is an (id, k; !)-derivation. It follows from
(2.5) and (2.6) that
kikj = kjki, kik] ' =k 'k = 1, (2.7)

kiejki b =gl ej, kifikit =g " f;, (2.8)
= k!

-1
F

k
eifj — fiei = 0ij (2.9)

4 —4q
Denote by U the subalgebra of EndiB(V) generated by all elements k;, k;l, e, fi, 1 <i<mn.
It is clear that the Nichols algebra B(V) is a left U-module.
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3. Module algebras

In this section, we denote by U the algebra generated by elements K, Ki_l, E,F,1<i<n

with the relations

K K; = K;K;, K,K; ' = K, 'K; =1, (3.1)
KlE]K;1 = q;lijEj, KiFjK;1 = q;aiij, (32)
K;— K !
qi —4q; -

It is known that U is a Hopf algebra, with comultiplication A, antipode S and counit € given by
AK)=K oK, AME)=E®l1+K FE, AF)=FeK '+1®F,
S(Ki) = K; ', S(E) = —K;'Ei, S(F) = ~FK;,

e(K;) =1, e(F;) =0, e(F;) =0.

Let
g 1—a
s — Q44 l—a;j—s s . .
’U,:; = Z(_l) [ s J:| Ei ! EjEiv Z#]v
s=0 d;
1—(1»;]' 1
- s — Gy l—a;j—s s . .
uyi= Y (1) { . ]] FUREY, i
s=0 d;
It is well-known that
A(u;;) :u;rj@)l—i—Kika” ®u;;-, (3.4)
-\ _ a;;i—1 —1 _
Alug) =uy; @ K7 K+ 1@ uy, (3.5)
see e.g., [13]. Therefore the ideal I generated by u?;-, u;; is a Hopf ideal, and the Hopf quotient

algebra U /I is exactly the Drinfeld-Jimbo quantum enveloping algebra U, (g).

Considering the relations (2.7), (2.8) and (2.9) above, we have an epimorphism from U to
U given by: K; — ki, E; — e;, F; — f;. Therefore B(V) is also a left (7-module7 with the
module structure induced by K;.a = ki(a), E;.a = e;(a), F;.a = f;(a). In particular, we have

the following result
Proposition 3.1 The Nichols algebra B(V') is a left U-module algebra.

Proof The conclusion can be verified directly by using the definition of module algebra, since
e; is a (ki id)-derivation and f; is an (id, k; *)-derivation. O

We hope that the Nichols algebra B(V) is also a left U,(g)-module algebra. To prove this, it
suffices to prove that u;rj_a =0 and u;; a =0, for all a € B(V).

As the classical case, we denote

1—(1»;]'

1—ay; 1—a;;— .
v;; = Z(_l)s{ s U]d € “ Sejefv Z#]’

s=0

7
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1—aij

S [ e

Lemma 3.2 We have v;;(:zrh) =0, v;;(zp) =0, for 1 <h <n.

Proof It is obvious that UT"- (zp) =0, for 1 <h <mn.
Now we prove that v; (xh) =0, for 1 < h < n. Firstly, by induction on r, we conclude that
for any a € B(V),

In particular,

Therefore,

a; g —f— stan)—k | 1 —aj; — s S
R TEAEED DD B e v e I H

t=0 k=0
sa;j k l—a;j—t—k t+k s—k l—a;;—s—t
(q; ]q]hac xjxixpe; —x; gl Pra Y ),
where «;; = — — —
U (qi—a DM (- )
Note that

1—a;;—s s B
AR

ift>1—a;; —sor k> s, sowe can express filfaijfsfjff(xh) as the form

1—a;;

1—a;;— i —t— k -k | 1 —ai; —s s
R S e Al e I
t+k=0 di di
(" qjnat J:Jxkxhxl aij—t=k x?kxhxf*kxjx;_a”_s_t).
We have
1—a;; 1
_ — ayj l—as;—
o = 3 0[] )
s=0 d;

1—(11']' 1—(1»;]'

=Wy 1 stl—a;—t—k (t+k)(s+ain)—k 1-— Qi 1— ai; — $ s
— (=1) q; s t k .
=0 50 d; d; d;
l1—a;;—t—k B 1oay—s—t
(" ajnatzjafane; — e R,

It suffices to sum over all s with k¥ < s <1 — a;; — ¢, otherwise,

L
§ d; ¢ d; k d;

So we get

Vi (zn)
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1—(1»;]' l—aij—t

stl—a;; —t— k)(s+a;n)—k 1_ai’ 1_ai’_3
cay 3Y (cayrie ko) { ) J:| [ 4 } :
d d;

t+k=0 s=k g

S sa k l—a;;j—t—k t+k s—k l—a;;—s—t
[k] (g;™" qjhaj TjT;TRT; —x; NrpxlT Yy )
d;

l—a;j 1—a;;—

i —ttu (k) (utktag)—k | 1 — @ l—ay;—u—k
cop LSy o] -
t+k=0  u=0 utk di ! di

u+k k)a; 1—az;—t—Fk 1—a;;—u—k—t
[ k :| (q5u+ Jass djhT; :ijkxh;v i - $t+k$hx TjT; i )
d;

l1—a;; 1—a;;—t—k

—ap—ttu (R (utktai)—k | 1 —ai —t —k 1—a;;—t
D I S e R b
t+k=0  u=0 di di

1—a:: j— Ty U RT
[ taw} (@9 gt g ol TR gt g g1 (0 (9.9)
d;

1*(1.;]- 17(17;]'7771 m
— . 1)1—aij—ttu m(ut+m—tta;p)—m+t 1 - Qg —m 1- ij — 1
=ay >, Y D (D 4 " mot ),
m=0 u=0 t=0 d; d

7

1-— Q4 — —a;i— _
j (u+m—t)a;; m—t l1—aij—m l1—aij—u—m
[ ; (g; ginaizialtapa, — xR, ).
d;
Denote
17(11']‘ 17ai]~7m m ( ) ( )
L Z Z j : l—a;;—t+ m(u+m—t+a;p)—m+t+(ut+m—t)a;;
@ .—q]h (_1) Aij ’u.qZ ih J .
m=0 u= t=0
1—a;; —m l—a;; —1 1—ayy - 1—a;;—
) () ¥} xlzfx]xm thth- Qi j m,
u m—t t t t
d; d; d;
and

l—aij l—aij -m m

=3RS gt
%
m=0 u=0 t=0

1-— aij —m 1-— aij —t 1-— aij xmxhxyxj‘r]j—aij—u—m'
U m—t t ’ ' ¢

In this case, we see that v;;(x;) has the form v;(zp) = @;;(® — Q). In the following, we prove
that ® = 0 and © = 0 both hold.

Now consider ®. Take m = 1 — a;; in the expression of ®, and hence u = 0. We have

1—a;; 1
1—a; . — ajj 1—a;;—t
qﬂqu( aij)ain E 1 a;;—t |: . 1J:| ,’Et(EJLL' Aij— Th
t= i
_ (1- aw)al "((ad _)1*aij Jan =0
= 4jn4q; adcT; xj)xp = 0.

Therefore, ® is reduced to the form

—Qij l—aij —-m m

<I>:qjhz Z Z(_l)l—aij—t+uqm(u+m—t+aih)—m+t+(u+m—t)aij_
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1—a;; —m 1—a;;—t 1—a;; — 1—ai;—
|: i z]t . 1] ,Tf.’IIJ.’IIZn txhxi Aij—m
(A m —
di di di

- — 1—as;—t  m(m—t+ap)+(m—t)(ai;—1) [ 1 —az; —1 1 —ayj
wE e ) [,

m—t
m=0 t=0

1—(11']' -—m

alwsel ey T (—1)“qz‘<aij+m’[1“’;’j‘m} )= 0. (by (2.1))
u=0 d;

To deal with €2, we take m = 0 in the expression of (2 and get ¢ = 0. Therefore

1—(11']'

g 1—ayy —aii—u as
(—1)1%12(—1)“[ u} w0 = an((adews) ) = 0,
u=0 d

and then 2 is just of the form

17aij 17aij —m m

Q= (_1)17(17;‘]'7t+uq;n(u+m7t+aih’)7m+t.

1-— aij —m 1-— aij —t 1-— aij x;"xhx;-‘xjx;_a”_u_m.
U 4 m—t & t d

i

It is easy to check that

1—aij—t 1—aij - 1—@1']‘ m
m—t |, t g 0N P I

Together with this equivalence, we have

17aij 17aij —m m

Q= (_1)17(17;‘]'7t+uq;n(u+m7t+aih’)7m+t.

1—a;: —m 1—a;; m 1—a;; —u—
|: ij ij ; I;nIhZEyIjIZ- a;j—u—m
u di LLLE di

17aij 17aij —m

_ S (1)l gt man) —m {1 — aij = m] {1 - %'] .
u=0 ' u d; d;

m
m=1

l—a;j—u—m
m u . %)
Ty ThT; i, (

NE

7] =0 v )

Il
=]

Consequently, we complete the proof. O

Theorem 3.3 We have u;rj.a =0, u;; a =0, for all a € B(V), therefore B(V') is a left Uy(g)-
module algebra.

Proof By Lemma 3.2, u;;ach = ’U;;(.’L'h) =0, and u;; xp, = v;(zp) =0, for 1 <h < n. Note that

the Nichols algebra B(V) is a left U-module algebra, therefore for a,b € B(V), by (3.4) and (3.5)
u;rj.(ab) = (u;;-_a)b + (Kilfaij,a)(u;;-.b),

ug; (ab) = (uj; a) (K"~ K70 b) + alug; b).

Therefore by induction on the length of monomials in B(V), it can be concluded that all the
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+

monomials are zero under the action of u —, and hence u;;

170 170
a € B(V). It follows that B(V) is also a left U,(g)-module algebra. O
Note that the Nichols algebra B(V') we consider here is exactly Z/I;’ (9), it follows from Theorem

3.3 that U (g) is a left U, (g)-module algebra.

resp. u a =0, u; a=0 for all
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