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Abstract In this paper, two kinds of skew derivations of a type of Nichols algebras are intro-

duced, and then the relationship between them is investigated. In particular they satisfy the

quantum Serre relations. Therefore, the algebra generated by these derivations and correspond-

ing automorphisms is a homomorphic image of the Drinfeld-Jimbo quantum enveloping algebra

Uq(g), which proves the Nichols algebra becomes a Uq(g)-module algebra. But the Nichols alge-

bra considered here is exactly U
+
q (g), namely, the positive part of the Drinfeld-Jimbo quantum

enveloping algebra Uq(g), it turns out that U+
q (g) is a Uq(g)-module algebra.
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1. Introduction

In [1], skew derivations of so called twisted Hopf algebras were introduced, and the corre-

sponding skew differential operator algebras were studied, where the concept of a (K, c, I, χ)-

twisted Hopf algebra with generators was improved to include some important examples such as

the free algebras, the polynomial algebras, Lusztig’s algebra in [2], Ringel composition algebra

C (Λ) and Ringel-Hall algebra H (Λ) in [3] and [4], Rosso’s quantum shuffle algebra T (V ) in [5].

In particular, the author focused on the algebra W (C (Λ), Iim), which is generated by the left

multiplication operators (θi)l for i ∈ Ire, and the left skew derivations iδ for i ∈ Iim, where

θi, i ∈ I, is a minimal system of generators of H (Λ). It turns out that these skew derivations

satisfy the quantum Serre relations, and hence the algebra generated by these derivations is a

homomorphic image of U + associated to Λ.

In recent years, Nichols algebras are becoming very interesting objects to be studied. When

the braiding is just a trivial, or more generally a symmetric braiding, then the Nichols algebra

is nothing but a symmetric algebra, but when the braiding is not a symmetry, a Nichols algebra

could have a much richer structure. In general, the first part of classification problem of pointed
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Hopf algebras by the lifting method is to determine the structure of the corresponding Nichols

algebras [6]. From this point of view, Nichols algebras are the key to the structure of pointed

Hopf algebras [7, 8]. One of the important techniques to study the structure of Nichols algebras

is skew derivations, their extension could track back to [9].

In this paper, we pay attention to a Nichols algebra B(V ), which is a particular example

of a twisted Hopf algebra considered in [1]. For 1 ≤ i ≤ n, let σi be an automorphism of the

Nichols algebra, and the (id, σi)-derivation Di discussed in [6, 10] is also the particular case of

the derivation δi appearing in [1].

In Section 2, we define (σ−1
i , id)-derivation Xi, and for 1 ≤ i ≤ n we prove that Di, Xi, σi

satisfy the following relations

σiσj = σjσi, σiσ
−1
i = σ−1

i σi = 1, (1.1)

σiDjσ
−1
i = q

−aij

i Dj, σiXjσ
−1
i = q

aij

i Xj , (1.2)

XiDj − DjXi = δij

σi − σ−1
i

qi − q−1
i

. (1.3)

If we denote

ki := σ−1
i , ei := −σ−1

i Di, fi := −Xiσi, 1 ≤ i ≤ n,

then the relations (1.1), (1.2), (1.3) can be written as

kikj = kjki, kik
−1
i = k−1

i ki = 1, (1.4)

kiejk
−1
i = q

aij

i ej, kifjk
−1
i = q

−aij

i fj , (1.5)

eifj − fjei = δij

ki − k−1
i

qi − q−1
i

. (1.6)

Denote by U the subalgebra of EndkB(V ) generated by these generators ki, k−1
i , ei, fi,

1 ≤ i ≤ n with relations (1.4)–(1.6), we prove that the Nichols algebra B(V ) becomes a left

U -module algebra.

In Section 3, by a straightforward computation, we also prove that the derivations ei, fi

satisfy the quantum Serre relations, that is

1−aij∑

s=0

(−1)s

[
1 − aij

s

]

di

e
1−aij−s

i eje
s
i = 0, i 6= j,

1−aij∑

s=0

(−1)s

[
1 − aij

s

]

di

f
1−aij−s

i fjf
s
i = 0, i 6= j.

Therefore the skew differential operator algebra U with the quantum Serre relations is a ho-

momorphic image of the Drinfeld-Jimbo quantum enveloping algebra Uq(g), which endows the

Nichols algebra a left Uq(g)-module structure. Furthermore, the Nichols algebra we considered

here is exactly U+
q (g), that is, the positive part of the Drinfeld-Jimbo quantum enveloping algebra

Uq(g). Therefore, it follows that U+
q (g) is a Uq(g)-module algebra.
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Throughout this paper, the ground field k is C, the field of complex numbers. We refer to

[11–13] for the notation and basic properties of Hopf algebras and quantum groups.

2. Skew derivations of a type of Nichols algebras

Let n ∈ Z, d ∈ N, q ∈ C and not algebraic over Q. As usual, we define

[n]d =
qdn − q−dn

qd − q−d
, [n]d! = [n]d[n − 1]d · · · [1]d,

and the Gauss binomial coefficients
[

n

j

]

d

=
[n]d[n − 1]d · · · [n − j + 1]d

[j]d!
, 1 ≤ j ≤ n,

where

[
n

0

]

d

= 1,

[
n

j

]

d

= 0 if j > n (see [14]). In particular, we have the following two useful

identities [13],
r∑

s=0

(−1)sq±ds(r−1)

[
r

s

]

d

= 0, r ≥ 1, (2.1)

[
r

j

]

d

[
r − j

m

]

d

[
j

k

]

d

=

[
r − m − k

j − k

]

d

[
r − m

k

]

d

[
r

m

]

d

. (2.2)

Denote by A = (aij) a Cartan matrix of a simple finite-dimensional Lie algebra, namely, (aij)

is an n × n indecomposable matrix with integer entries such that aii = 2 and aij ≤ 0, for i 6= j,

and (d1, d2, . . . , dn) is a vector with relatively prime entries di such that the matrix (diaij) is

symmetric and positive definite. Denote qi := qdi and qij := q
aij

i = qdiaij .

Let Γ be a group. We will write Γ
ΓYD for the category of Yetter-Drinfeld modules over kΓ,

and say that V ∈ Γ
ΓYD is a Yetter-Drinfeld module over Γ. If V ∈ Γ

ΓYD, then the kΓ-module

V is just a Γ-graded vector space V = ⊕g∈ΓVg, where Vg = {v ∈ V |δ(v) = g ⊗ v}. We define a

linear isomorphism c : V ⊗ V → V ⊗V by c(x⊗ y) = g·y ⊗ x, for all x ∈ Vg, g ∈ Γ, y ∈ V. Then

(V, c) is a braided vector space, that is, c is a solution of the braided equation

(c ⊗ id)(id ⊗ c)(c ⊗ id) = (id ⊗ c)(c ⊗ id)(id ⊗ c).

In the following, let Γ be an abelian group. Consider the braided vector space (V, c), where

V is a Yetter-Drinfeld module over kΓ with a basis x1, x2, . . . , xn and the braiding c is given by

c(xi ⊗ xj) = gi·xj ⊗ xi := qdiaij xj ⊗ xi. (2.3)

Then the Nichols algebra B(V ) associated to the braided vector space (V, c) is

B(V ) = k〈x1, x2, . . . , xn|(adcxi)
1−aij xj = 0, i 6= j〉,

see e.g., [6], where (adcxi)xj is the braided adjoint representation of xi, namely,

(adcxi)xj = µ(id − c)(xi ⊗ xj),

where µ is the multiplication and c is the braiding.
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Let σi be an automorphism of B(V ) given by the action of gi. That is, σi(xj) = gi·xj =

qdiaij xj . For a ∈ B(V ), by induction on r, we get that

(adcxi)
ra =

r∑

s=0

(−1)sq
s(r−1)
i

[
r

s

]

di

xr−s
i σs

i (a)xs
i .

Therefore, (adcxi)
1−aij xj = 0 implies that

1−aij∑

s=0

(−1)s

[
1 − aij

s

]

di

x
1−aij−s

i xjx
s
i = 0. (2.4)

It follows that B(V ) is U+
q (g), the positive part of the Drinfeld-Jimbo quantum enveloping

algebra Uq(g) (see [6]).

Let Xi be a linear map from B(V ) to itself defined by

Xi(a) =
σ−1

i (a)xi − xia

qi − q−1
i

,

for all a ∈ B(V ). Recall that if τ, σ are two automorphisms of an algebra R and the (τ, σ)-

derivation of R is a linear map from R to itself such that

D(ab) = τ(a)D(b) + D(a)σ(b),

for all a, b ∈ R.

Proposition 2.1 For all 1 ≤ i ≤ n, the map Xi is a (σ−1
i , id)-derivation of B(V ).

Proof Note that Xi(1) = 0, and for any a, b ∈ B(V ),

Xi(ab) =
σ−1

i (ab)xi − xiab

qi − q−1
i

=
(σ−1

i (a)xi − xia)b

qi − q−1
i

+
σ−1

i (a)(σ−1
i (b)xi − xib)

qi − q−1
i

= σ−1
i (a)Xi(b) + Xi(a)b,

which completes the proof. 2

Proposition 2.2 For all 1 ≤ i ≤ n, there exists a uniquely determined (id, σi)-derivation

Di : B(V ) → B(V ) with Di(xj) = δij (Kronecker δ) for all 1 ≤ j ≤ n.

In fact, the Proposition 2.2 above has been stated, for example in [6, 10], and the derivations

of more general algebras have been considered in [1] with different approaches.

Proposition 2.3 For all 1 ≤ i, j ≤ n, we have

σiDjσ
−1
i = q

−aij

i Dj, σiXjσ
−1
i = q

aij

i Xj . (2.5)

Proof To prove σiDjσ
−1
i = q

−aij

i Dj , note that B(V ) is generated as an algebra by x1, x2, . . . , xn,

therefore, it is enough to check that it holds for all monomials xj1xj2 · · ·xjm
in B(V ). By induc-

tion on the length m, if m = 1, it is easy to check that Djσi(xj1 ) = qijσiDj(xj1 ), since the two

sides are both equivalent to qij if j1 = j, but 0 otherwise. Assume it holds for all monomials with

the length at most m. For the case m + 1, denote xj1xj2 · · ·xjm+1
= axjm+1

with the element a
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the length of m. On the one hand,

Djσi(axjm+1
) = Dj(qijm+1

σi(a)xjm+1
)

= qijm+1
δjjm+1

σi(a) + qijm+1
qjjm+1

Djσi(a)xjm+1
.

On the other hand, by assumption on m,

qijσiDj(axjm+1
) = qijσi(δjjm+1

a + Dj(a)qjjm+1
xjm+1

)

= qijδjjm+1
σi(a) + qijm+1

qjjm+1
qijσiDj(a)xjm+1

= qijδjjm+1
σi(a) + qijm+1

qjjm+1
Djσi(a)xjm+1

.

Therefore, Djσi(axjm+1
) = qijσiDj(axjm+1

). Thus by induction on m, we conclude that Djσi =

qijσiDj holds for all 1 ≤ i, j ≤ n.

Next we prove the equality σiXjσ
−1
i = q

aij

i Xj , for any a ∈ B(V ). In fact,

σiXjσ
−1
i (a) =

σi((σ
−1
j σ−1

i )(a)xj − xjσ
−1
i (a))

qj − q−1
j

=
σ−1

j (a)σi(xj) − σi(xj)a

qj − q−1
j

=
qij(σ

−1
j (a)xj − xja)

qj − q−1
j

= qijXj(a).

This completes the proof. 2

Proposition 2.4 For all 1 ≤ i, j ≤ n, we have

XiDj − DjXi = δij

σi − σ−1
i

qi − q−1
i

. (2.6)

Proof For any a ∈ B(V ) and by (2.5)

(XiDj − DjXi)(a) = Xi(Dj(a)) − Dj(Xi(a))

=
1

qi − q−1
i

(σ−1
i (Dj(a))xi − xiDj(a) − Dj(σ

−1
i (a)xi − xia))

=
δij

qi − q−1
i

(σi(a) − σ−1
i (a)) = δij

σi − σ−1
i

qi − q−1
i

(a).

The proof is completed. 2

Denote

ki := σ−1
i , ei := −σ−1

i Di, fi := −Xiσi, 1 ≤ i ≤ n.

It is easy to check that ei is a (ki, id)-derivation and fi is an (id, k−1
i )-derivation. It follows from

(2.5) and (2.6) that

kikj = kjki, kik
−1
i = k−1

i ki = 1, (2.7)

kiejk
−1
i = q

aij

i ej, kifjk
−1
i = q

−aij

i fj , (2.8)

eifj − fjei = δij

ki − k−1
i

qi − q−1
i .

(2.9)

Denote by U the subalgebra of EndkB(V ) generated by all elements ki, k−1
i , ei, fi, 1 ≤ i ≤ n.

It is clear that the Nichols algebra B(V ) is a left U -module.
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3. Module algebras

In this section, we denote by Ũ the algebra generated by elements Ki, K−1
i , Ei, Fi, 1 ≤ i ≤ n

with the relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1, (3.1)

KiEjK
−1
i = q

aij

i Ej , KiFjK
−1
i = q

−aij

i Fj , (3.2)

EiFj − FjEi = δij

Ki − K−1
i

qi − q−1
i .

(3.3)

It is known that Ũ is a Hopf algebra, with comultiplication △, antipode S and counit ε given by

△(Ki) = Ki ⊗ Ki, △(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, △(Fi) = Fi ⊗ K−1
i + 1 ⊗ Fi,

S(Ki) = K−1
i , S(Ei) = −K−1

i Ei, S(Fi) = −FiKi,

ε(Ki) = 1, ε(Ei) = 0, ε(Fi) = 0.

Let

u+
ij :=

1−aij∑

s=0

(−1)s

[
1 − aij

s

]

di

E
1−aij−s

i EjE
s
i , i 6= j,

u−

ij :=

1−aij∑

s=0

(−1)s

[
1 − aij

s

]

di

F
1−aij−s

i FjF
s
i , i 6= j.

It is well-known that

△(u+
ij) = u+

ij ⊗ 1 + K
1−aij

i ⊗ u+
ij , (3.4)

△(u−

ij) = u−

ij ⊗ K
aij−1
i K−1

j + 1 ⊗ u−

ij , (3.5)

see e.g., [13]. Therefore the ideal I generated by u+
ij , u

−

ij is a Hopf ideal, and the Hopf quotient

algebra Ũ/I is exactly the Drinfeld-Jimbo quantum enveloping algebra Uq(g).

Considering the relations (2.7), (2.8) and (2.9) above, we have an epimorphism from Ũ to

U given by: Ki 7→ ki, Ei 7→ ei, Fi 7→ fi. Therefore B(V ) is also a left Ũ -module, with the

module structure induced by Ki·a = ki(a), Ei·a = ei(a), Fi·a = fi(a). In particular, we have

the following result

Proposition 3.1 The Nichols algebra B(V ) is a left Ũ -module algebra.

Proof The conclusion can be verified directly by using the definition of module algebra, since

ei is a (ki, id)-derivation and fi is an (id, k−1
i )-derivation. 2

We hope that the Nichols algebra B(V ) is also a left Uq(g)-module algebra. To prove this, it

suffices to prove that u+
ij ·

a = 0 and u−

ij ·
a = 0, for all a ∈ B(V ).

As the classical case, we denote

v+
ij :=

1−aij∑

s=0

(−1)s

[
1 − aij

s

]

di

e
1−aij−s

i eje
s
i , i 6= j,
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v−ij :=

1−aij∑

s=0

(−1)s

[
1 − aij

s

]

di

f
1−aij−s

i fjf
s
i , i 6= j.

Lemma 3.2 We have v+
ij(xh) = 0, v−ij(xh) = 0, for 1 ≤ h ≤ n.

Proof It is obvious that v+
ij(xh) = 0, for 1 ≤ h ≤ n.

Now we prove that v−ij(xh) = 0, for 1 ≤ h ≤ n. Firstly, by induction on r, we conclude that

for any a ∈ B(V ),

f r
i (a) =

1

(qi − q−1
i )r

r∑

s=0

(−1)r−sq
s(r−1)
i

[
r

s

]

di

xs
i σ

s
i (a)xr−s

i .

In particular,

f
1−aij

i (xj) =
1

(qi − q−1
i )1−aij

(adcxi)
1−aij xj = 0, i 6= j.

Therefore,

f
1−aij−s

i fjf
s
i (xh) =αij

1−aij−s∑

t=0

s∑

k=0

(−1)1−aij−t−kq
(t+k)(s+aih)−k

i

[
1 − aij − s

t

]

di

[
s

k

]

di

·

(q
saij

i qjhxt
ixjx

k
i xhx

1−aij−t−k

i − xt+k
i xhxs−k

i xjx
1−aij−s−t

i ),

where αij = 1
(qi−q

−1

i
)1−aij (qj−q

−1

j
)
.

Note that [
1 − aij − s

t

]

di

[
s

k

]

di

= 0

if t > 1 − aij − s or k > s, so we can express f
1−aij−s

i fjf
s
i (xh) as the form

f
1−aij−s

i fjf
s
i (xh) =αij

1−aij∑

t+k=0

(−1)1−aij−t−kq
(t+k)(s+aih)−k

i

[
1 − aij − s

t

]

di

[
s

k

]

di

·

(q
saij

i qjhxt
ixjx

k
i xhx

1−aij−t−k

i − xt+k
i xhxs−k

i xjx
1−aij−s−t

i ).

We have

v−ij(xh) =

1−aij∑

s=0

(−1)s

[
1 − aij

s

]

di

f
1−aij−s

i fjf
s
i (xh)

=αij

1−aij∑

t+k=0

1−aij∑

s=0

(−1)s+1−aij−t−kq
(t+k)(s+aih)−k

i

[
1 − aij

s

]

di

[
1 − aij − s

t

]

di

[
s

k

]

di

·

(q
saij

i qjhxt
ixjx

k
i xhx

1−aij−t−k

i − xt+k
i xhxs−k

i xjx
1−aij−s−t

i ).

It suffices to sum over all s with k ≤ s ≤ 1 − aij − t, otherwise,
[

1 − aij

s

]

di

[
1 − aij − s

t

]

di

[
s

k

]

di

= 0.

So we get

v−ij(xh)
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= αij

1−aij∑

t+k=0

1−aij−t∑

s=k

(−1)s+1−aij−t−kq
(t+k)(s+aih)−k

i

[
1 − aij

s

]

di

[
1 − aij − s

t

]

di

·

[
s

k

]

di

(q
saij

i qjhxt
ixjx

k
i xhx

1−aij−t−k

i − xt+k
i xhxs−k

i xjx
1−aij−s−t

i )

= αij

1−aij∑

t+k=0

1−aij−t−k∑

u=0

(−1)1−aij−t+uq
(t+k)(u+k+aih)−k

i

[
1 − aij

u + k

]

di

[
1 − aij − u − k

t

]

di

·

[
u + k

k

]

di

(q
(u+k)aij

i qjhxt
ixjx

k
i xhx

1−aij−t−k

i − xt+k
i xhxu

i xjx
1−aij−u−k−t

i )

= αij

1−aij∑

t+k=0

1−aij−t−k∑

u=0

(−1)1−aij−t+uq
(t+k)(u+k+aih)−k

i

[
1 − aij − t − k

u

]

di

[
1 − aij − t

k

]

di

·

[
1 − aij

t

]

di

(q
(u+k)aij

i qjhxt
ixjx

k
i xhx

1−aij−t−k

i − xt+k
i xhxu

i xjx
1−aij−u−k−t

i ) (by (2.2))

= αij

1−aij∑

m=0

1−aij−m∑

u=0

m∑

t=0

(−1)1−aij−t+uq
m(u+m−t+aih)−m+t

i

[
1 − aij − m

u

]

di

[
1 − aij − t

m − t

]

di

·

[
1 − aij

t

]

di

(q
(u+m−t)aij

i qjhxt
ixjx

m−t
i xhx

1−aij−m

i − xm
i xhxu

i xjx
1−aij−u−m

i ).

Denote

Φ :=qjh

1−aij∑

m=0

1−aij−m∑

u=0

m∑

t=0

(−1)1−aij−t+uq
m(u+m−t+aih)−m+t+(u+m−t)aij

i ·

[
1 − aij − m

u

]

di

[
1 − aij − t

m − t

]

di

[
1 − aij

t

]

di

xt
ixjx

m−t
i xhx

1−aij−m

i ,

and

Ω :=

1−aij∑

m=0

1−aij−m∑

u=0

m∑

t=0

(−1)1−aij−t+uq
m(u+m−t+aih)−m+t

i ·

[
1 − aij − m

u

]

di

[
1 − aij − t

m − t

]

di

[
1 − aij

t

]

di

xm
i xhxu

i xjx
1−aij−u−m

i .

In this case, we see that v−ij(xh) has the form v−ij(xh) = αij(Φ − Ω). In the following, we prove

that Φ = 0 and Ω = 0 both hold.

Now consider Φ. Take m = 1 − aij in the expression of Φ, and hence u = 0. We have

qjhq
(1−aij)aih

i

1−aij∑

t=0

(−1)1−aij−t

[
1 − aij

t

]

di

xt
ixjx

1−aij−t

i xh

= qjhq
(1−aij)aih

i ((adcxi)
1−aij xj)xh = 0.

Therefore, Φ is reduced to the form

Φ =qjh

−aij∑

m=0

1−aij−m∑

u=0

m∑

t=0

(−1)1−aij−t+uq
m(u+m−t+aih)−m+t+(u+m−t)aij

i ·
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[
1 − aij − m

u

]

di

[
1 − aij − t

m − t

]

di

[
1 − aij

t

]

di

xt
ixjx

m−t
i xhx

1−aij−m

i

=qjh

−aij∑

m=0

m∑

t=0

(−1)1−aij−tq
m(m−t+aih)+(m−t)(aij−1)
i

[
1 − aij − t

m − t

]

di

[
1 − aij

t

]

di

·

xt
ixjx

m−t
i xhx

1−aij−m

i (

1−aij−m∑

u=0

(−1)uq
u(aij+m)
i

[
1 − aij − m

u

]

di

) = 0. (by (2.1))

To deal with Ω, we take m = 0 in the expression of Ω and get t = 0. Therefore

(−1)1−aij xh

1−aij∑

u=0

(−1)u

[
1 − aij

u

]

di

xu
i xjx

1−aij−u

i = xh((adcxi)
1−aij xj) = 0,

and then Ω is just of the form

Ω =

1−aij∑

m=1

1−aij−m∑

u=0

m∑

t=0

(−1)1−aij−t+uq
m(u+m−t+aih)−m+t

i ·

[
1 − aij − m

u

]

di

[
1 − aij − t

m − t

]

di

[
1 − aij

t

]

di

xm
i xhxu

i xjx
1−aij−u−m

i .

It is easy to check that
[

1 − aij − t

m − t

]

di

[
1 − aij

t

]

di

=

[
1 − aij

m

]

di

[
m

t

]

di

.

Together with this equivalence, we have

Ω =

1−aij∑

m=1

1−aij−m∑

u=0

m∑

t=0

(−1)1−aij−t+uq
m(u+m−t+aih)−m+t

i ·

[
1 − aij − m

u

]

di

[
1 − aij

m

]

di

[
m

t

]

di

xm
i xhxu

i xjx
1−aij−u−m

i

=

1−aij∑

m=1

1−aij−m∑

u=0

(−1)1−aij+uq
m(u+m+aih)−m

i

[
1 − aij − m

u

]

di

[
1 − aij

m

]

di

·

xm
i xhxu

i xjx
1−aij−u−m

i (

m∑

t=0

(−1)tq
t(1−m)
i

[
m

t

]

di

) = 0. (by (2.1))

Consequently, we complete the proof. 2

Theorem 3.3 We have u+
ij ·

a = 0, u−

ij ·
a = 0, for all a ∈ B(V ), therefore B(V ) is a left Uq(g)-

module algebra.

Proof By Lemma 3.2, u+
ij ·

xh = v+
ij(xh) = 0, and u−

ij ·
xh = v−ij(xh) = 0, for 1 ≤ h ≤ n. Note that

the Nichols algebra B(V ) is a left Ũ -module algebra, therefore for a, b ∈ B(V ), by (3.4) and (3.5)

u+
ij ·

(ab) = (u+
ij ·

a)b + (K
1−aij

i ·
a)(u+

ij ·
b),

u−

ij ·
(ab) = (u−

ij ·
a)(Ki

aij−1Kj
−1

·
b) + a(u−

ij ·
b).

Therefore by induction on the length of monomials in B(V ), it can be concluded that all the
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monomials are zero under the action of u+
ij , resp. u−

ij , and hence u+
ij ·

a = 0, u−

ij ·
a = 0 for all

a ∈ B(V ). It follows that B(V ) is also a left Uq(g)-module algebra. 2

Note that the Nichols algebra B(V ) we consider here is exactly U+
q (g), it follows from Theorem

3.3 that U+
q (g) is a left Uq(g)-module algebra.
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[3] RINGEL C M. Hall algebras and quantum groups [J]. Invent. Math., 1990, 101(3): 583–591.
[4] RINGEL C M. Hall Algebras Revisited [M]. Bar-Ilan Univ., Ramat Gan, 1993.

[5] ROSSO M. Quantum groups and quantum shuffles [J]. Invent. Math., 1998, 133(2): 399–416.
[6] ANDRUSKIEWITSCH N, SCHNEIDER H J. Pointed Hopf Algebras [M]. Cambridge Univ. Press, Cam-

bridge, 2002.
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