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1. Introduction

In [1], the authors investigated the structure of finite groups whose non-trivial normal sub-

groups have the same order. In particular, they presented the following result.

Theorem 1.1 (A) Let G be a finite soluble group which has a unique non-trivial normal

subgroup. Then

(i) G is a cyclic p-group of order p2 for some prime p;

(ii) G = P :Q ∼= Zn
p :Zq, p 6= q, Zq acts irreducibly on Zn

p .

(B) Let G be a finite insoluble group which has a unique non-trivial normal subgroup K.

Then G/K is simple, and one of the following holds:

(i) K is soluble, G is perfect and G/K is a non-abelian simple group. Furthermore,

(a) K = Z(G) ∼= Zp, G is a covering group of G/K;

(b) K ∼= Zn
p with n > 1, G/K acts irreducibly on K.

(ii) K is insoluble and one of the following holds:

(a) K is simple and G is an almost simple group;

(b) K = T1 × · · · × Tn
∼= T n with Ti

∼= T simple, n > 1, G/K acts transitively on

{T1, T2, . . . , Tn}. Furthermore, G/K ∼= Zp with p = n, or G/K is a non-abelian simple subgroup

of Out(T ) ≀ Sn.

Remark (1) Zm denotes a cyclic group of order m. The symbol A:B means a splitting extension
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of a group A by a group B, A:B:C = A:(B:C). A covering group H of a simple group G is perfect

and a central extension of G (see [3, p.43, Sect.1.5]). A group G is called almost simple if there

is a non-abelian simple subgroup N such that N � G . Aut(N).

(2) For part (A)(ii) in Theorem 1.1, since Q ∼= Zq acts irreducibly on P ∼= Zn
p , by [2,

Theorems 2.3.2 and 2.3.3], Q . Z(pn
−1), and q does not divide pd − 1 for any d < n.

In this note, we continue the work of [1], and investigate the structure of the finite groups

whose nontrivial normal subgroups have order two. Some properties of this kind of groups are

obtained.

In the sequel, G always denotes a finite group whose nontrivial normal subgroups have order

two, and we use nn(G) = 2 to denote such a group G with this property. The letters p, q, r

always denote the primes, and Gp denotes a Sylow p-subgroup of G.

2. Main results and proofs

Recall here that a group G is said to be decomposable if it can be expressed as a direct

product of its two non-trivial normal subgroups; otherwise, G is called indecomposable. Let

1 � K1 � K2 � · · ·� Kl = G be a chief series of G. Then l is called the length of a chief series of

G, and we use l(G) to denote this integer.

Theorem 2.1 Let G be a finite group with nn(G) = 2. Then 2 ≤ l(G) ≤ 3. In particular,

l(G) = 2 if and only if G = N ×K, where N and K are two simple subgroups of different orders.

Proof Since nn(G) = 2, l(G) ≤ 3. If l(G) = 1, then G is simple, contrary to the hypothesis

that nn(G) = 2. Thus 2 ≤ l(G) ≤ 3.

Suppose l(G) = 2. Let 1 � N � G be a chief series of G. Since nn(G) = 2, there is another

minimal normal subgroup K of G. Then N × K is a normal subgroup of G. If |N | = |K|, since

nn(G) = 2, N × K is a proper normal subgroup of G. However, this is contrary to hypothesis

that l(G) = 2. Thus |N | 6= |K|. Again, by the hypothesis that nn(G) = 2, G = N × K, where

N and K are both simple. 2

Theorem 2.2 Let G be a finite group with nn(G) = 2. Then one of the following holds:

(A) G is decomposable, and G satisfies one of the following:

(i) G = A×B×C, |A| = |B| = |C|, A, B and C are non-abelian simple, or A ∼= B ∼= C ∼= Zp;

(ii) G = A × B, A is simple and B has a unique non-trivial normal subgroup B1 with

|A| = |B1|, the detailed structure of B is given in Theorem 1.1;

(iii) G = A × B, A and B are both simple with |A| 6= |B|.

(B) G is indecomposable, and G satisfies one of the following:

(i) G has a unique minimal normal subgroup;

(ii) G has at least two minimal normal subgroups.

Remark The detailed structural information of the groups in part(B) of Theorem 2.2 is given

in Theorems 2.3–2.6.
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Proof Let G be a decomposable group. Write G = A×B. Since nn(G) = 2, one of A and B is

a minimal normal subgroup of G, say A. If B = B1 × B2 for suitable non-trivial subgroups B1

and B2, since l(G) ≤ 3, G = A × B1 × B2. Since nn(G) = 2, |A| = |B1| = |B2|. Furthermore,

A, B1 and B2 are non-abelian simple subgroups, or A ∼= B1
∼= B2

∼= Zp for some prime p. Then

part(A)(i) holds.

Suppose that B is indecomposable. If B is not simple, then B has a unique normal subgroup

B1, and B1 is obviously normal in G. Since nn(G) = 2, |A| = |B1|, this is part(A)(ii). Finally,

if B is simple, then |A| 6= |B|, as in part(A)(iii).

Part(B) of the theorem is obvious. 2

Theorem 2.3 Let G be indecomposable with nn(G) = 2. Suppose that A and B are two

distinct minimal normal subgroups of G. Then |A| = |B|, G/(A × B) is simple, A × B is the

unique maximal normal subgroup of G, and one of the following holds:

(i) A and B are both non-abelian simple, {A, B, A × B} includes all the non-trivial normal

subgroups of G, CG(A) = B and CG(B) = A;

(ii) A×B = Z(G) ∼= Z2
p and G is a covering group of the non-abelian simple group G/(A×B),

or G ∼= Z2
p :Zq with q|(p − 1);

(iii) A ∼= B ∼= Zn
p with n > 1, G ∼= (Zn

p ×Zn
p ):Zq with q 6= p, or G/(A × B) is isomorphic to

a non-abelian simple subgroup of GL(n, p).

Remark Since G is indecomposable, by Theorem 2.1, l(G) = 3.

Proof Let A and B be two distinct minimal normal subgroups of G. Since G is indecomposable,

A × B is a proper normal subgroup of G. Then G/(A × B) is simple since l(G) = 3. Since

nn(G) = 2, A and B have the same order, and each minimal normal subgroup of G is contained

in A×B. Let K be a non-trivial normal subgroup G which does not contain A×B. If K 6≤ A×B,

since G/(A × B) is simple, G = K(A×B). Let K1 be a minimal normal subgroup of G contained

in K. Then |K1| = |A| = |B| since nn(G) = 2. Clearly, K1 ≤ A×B. Without loss of generality,

we may suppose A × B = K1 × B. Then G = K(A × B) = K(K1 × B) = K × B, which means

G is decomposable, a contradiction. This implies that any normal subgroup of G is contained in

A × B, and so A × B is the unique maximal normal subgroup of G.

Suppose that A is non-abelian. Then B is also non-abelian since |A| = |B|. Then, by [4,

Chap.I, Theorem 9.12], {A, B, A×B} includes all the non-trivial normal subgroups of G. Since

CG(A) � G and A is non-abelian, CG(A) = B. Similarly, CG(B) = A. This is part(i) of the

theorem.

Suppose that A is an abelian subgroup. Then A ∼= B ∼= Zn
p for some prime p.

Suppose that A ∼= B ∼= Zp. Since G/(A × B) is simple, G/(A × B) is non-abelian simple

or of prime order. If G/(A × B) is non-abelian simple, since G/CG(A) . Aut(A) ∼= Z(p−1),

A ≤ Z(G), and so A × B = Z(G). In this case, if Z(G) 6≤ Φ(G), without loss of generality, we

suppose A 6≤ Φ(G). Then there exists a maximal subgroup M of G such that G = A:M = A×M ,

G is decomposable, a contradiction. Thus, Φ(G) = Z(G), and G/Z(G) is non-abelian simple. It
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follows that G is perfect and G is a covering group of G/Z(G), this is part(ii). Let G/(A × B)

be of prime order. Then G/(A × B) ∼= Zq for some prime q. If p = q, then G is a p-group of

order p3. Furthermore, if G is abelian, G is cyclic since G is indecomposable. However, this is

also a contradiction since any cyclic group has a unique minimal normal subgroup. On the other

hand, if G is non-abelian, then G is isomorphic to one of {Q8, D8, Zp2 :Zp, Z
2
p :Zp}, and the latter

two groups in the set are extra-special groups of order p3 with p odd. This is impossible since

each of the above four groups has a unique minimal normal subgroup which is the center. These

contradictions imply that p 6= q. Then G ∼= Z2
p :Zq. By hypothesis, Zq acts reducibly on Z2

p .

Since G is indecomposable, q|(p − 1). Then we have part(ii).

Suppose that A ∼= B ∼= Zn
p , n > 1. Then G/(A × B) ∼= G/CG(A) . Aut(A) ∼= GL(n, p).

Since G/(A × B) acts irreducibly on A, if G/(A × B) is cyclic, then |G/(A × B)| = q with

q 6= p (p = q will lead to a contradiction that the length of chief series of G is more than

5, contrary to Theorem 2.1). Then G ∼= (Zn
p × Zn

p ):Zq, by [2, Theorems 2.3.2 and 2.3.3],

Zq . Z(pn
−1), and q does not divide pd − 1 for any d < n. On the other hand, if G/(A × B)

is not abelian, then G/(A × B) is isomorphic to an irreducible non-abelian simple subgroup of

GL(n, p), and part(iii) holds. The proof is completed. 2

According to the classification of the groups of order p3 (see [5, p.64 and p.65]), the following

result regarding nilpotent groups is obvious.

Theorem 2.4 Let G be a finite nilpotent group with nn(G) = 2, and let G be indecomposable.

Then G is a p-group of order p3, where p is a prime. Then one of the following holds:

(i) G ∼= Zp3 ;

(ii) p = 2, G ∼= D8 or Q8;

(iii) p > 2, G ∼= Z2
p :Zp or Zp2 :Zp, two extra-special groups of order p3.

In the following, we will deal with the groups which are indecomposable and have a unique

minimal normal subgroup.

Theorem 2.5 Let G be a finite soluble group with nn(G) = 2, not nilpotent. Suppose that G

is indecomposable and has a unique minimal normal subgroup. Then one of the following holds:

(A) Φ(G) = 1, G satisfies one of the following:

(i) G ∼= Zn
p :Zq2 , Zq2 acts irreducibly on Zn

p ;

(ii) G ∼= Zn
p :Zm

q :Zr, Zn
p is minimal normal in Zn

p :Zm
q :Zr, Zr acts irreducibly on Zm

q , p, q and

r are primes with p 6= q and q 6= r.

(B) Φ(G) ∼= Zn
p 6= 1, G = Gp:Gq with p 6= q, Gq

∼= Zq, Φ(G) = Φ(Gp) is minimal normal in

G, 1 � Φ(G) � Gp � G is the unique chief series of G. Furthermore, one of the following holds:

(i) Φ(G) = Z(G) ∼= Zp, G/Φ(G) ∼= Zm
p :Zq, Zq acts irreducibly on Zm

p ;

(ii) Φ(G) ≤ Z(Gp), Z(G) = 1, G/Φ(G) ∼= Zm
p :Zq, Zq acts irreducibly on Zm

p ;

(iii) CG(Φ(G)) = Φ(G), G ∼= Zp2 :Zq and G/Φ(G) acts primitively on Φ(G), or G/Φ(G) ∼=

Zm
p :Zq and G/Φ(G) acts imprimitively on Φ(G).

Proof Let N be the unique minimal normal subgroup of G. Then N ∼= Zn
p for some prime p.



Finite groups whose nontrivial normal subgroups have order two 679

Since G is soluble, G/K is cyclic of prime order for any maximal normal subgroup K.

(A) Suppose that Φ(G) = 1. Then there is a maximal subgroup M of G such that G = N :M .

Let T be a minimal normal subgroup of M . Then T ∼= Zm
q for some prime q. Since l(G) = 3,

M/T ∼= Zr for some prime r. If p = q, then r 6= p since G is not nilpotent, G = Gp:Gr. Since

Φ(G) = 1 and Gp �G, Φ(Gp) = 1 and Gp = N ×T is an elementary abelian subgroup. It follows

that G has at least two minimal normal subgroups N and T , contrary to our hypothesis. Thus,

p 6= q. If M is abelian, since nn(G) = 2, it follows that q = r, and M ∼= Zq2 . Then G ∼= Zn
p :Zq2 .

By [2, Theorems 2.3.2 and 2.3.3], q2|(pn − 1), but q2 does not divide pd − 1 for any d < n,

therefore part(A)(i) holds. If M is not abelian, M ∼= Zm
q :Zr with q 6= r, and G ∼= Zn

p :Zm
q :Zr,

part(A)(ii) holds.

(B) Suppose that Φ(G) 6= 1. Since Φ(G) contains no Sylow subgroup of G and nn(G) = 2,

|G| is divisible by at most two primes. Since G is not nilpotent, |G|, thus |G/Φ(G)|, has exactly

two prime divisors.

Suppose that Φ(G) is not minimal normal in G. Since G/Φ(G) has exactly two different

prime divisors, it follows that the length of a chief series of G is at least four. This is contrary

to Theorem 2.1. Thus, Φ(G) ∼= Zn
p which is minimal normal in G, where p is a prime. We know

l(G) = 3. Let 1 � Φ(G) � K � G be a chief series of G. Since G is soluble, K/Φ(G) is abelian,

and so K is nilpotent. It follows that K := Gp is a p-group since G has a unique minimal normal

subgroup. Then G = Gp:Gq for some prime q 6= p, 1 � Φ(G) � Gp � G is the unique chief series

of G. Furthermore, Gq
∼= Zq since l(G) = 3. If Φ(Gp) = 1, since Φ(G) is normalized by Gq, by

Maschke’s Theorem ([5,VIII,Theorem 2.2]), G has at least two minimal normal subgroups which

are both contained in Gp, a contradiction. Thus Φ(Gp) = Φ(G).

Suppose firstly that CG(Φ(G)) = G. Then Φ(G) ≤ Z(G) and Φ(G) ∼= Zp since Φ(G) is

minimal normal in G. If Φ(G) < Z(G), Z(G) ∼= Zp2 since G has a unique minimal normal

subgroup and nn(G) = 2. It follows that G/Z(G) is simple, and thus G/Z(G) is cyclic and G

is abelian, contrary to our hypothesis. Thus Φ(G) = Z(G) ∼= Zp. G/Φ(G) = G/Z(G) ∼= Zm
p :Zq,

Zq acts irreducibly on Zm
p , m is some suitable positive integer. This is part(B)(i).

Suppose secondly that Φ(G) < CG(Φ(G)) < G. It is easy to see that Z(G) = 1, and

1 � Φ(G) � CG(Φ(G)) � G is a chief series of G since l(G) = 3. Thus CG(Φ(G)) = Gp, that is,

Φ(G) ≤ Z(Gp). Also, we have G/Φ(G) ∼= Zm
p :Zq for some positive integer m. Since l(G) = 3,

Zq acts irreducibly on Zm
p . This is part(B)(ii).

Suppose finally that CG(Φ(G)) = Φ(G). Let 1 � Φ(G) � K � G be a chief series of G. Then

K = Gp. If G/Φ(G) acts primitively on Φ(G), by [2, Theorem 2.5.10], K/Φ(G) ∼= Zp. Thus,

G/Φ(G) ∼= Zp:Zq which is not nilpotent, q|(p − 1). Since Φ(G) = Φ(Gp) and nn(G) = 2, Gp is

cyclic, and thus Gp
∼= Zp2 , that is, G ∼= Zp2 :Zq. If G/Φ(G) acts imprimitively on Φ(G), it is

easy to see G/Φ(G) ∼= Zm
p :Zq. This proves part(B)(iii). 2

Theorem 2.6 Let G be a finite insoluble group with nn(G) = 2. Suppose that G has a unique

minimal normal subgroup N . Then one of the following holds:

(i) G/N has a unique normal subgroup, G/N is as the group in Theorem 1.1;
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(ii) G/N is a direct product of two simple subgroups of the same order.

Proof Since nn(G) = 2, if G/N has a unique minimal normal subgroup, G/N is as the group

in Theorem 1.1. Otherwise, if G/N has at least two minimal normal subgroups, say, K1/N

and K2/N , again by the hypothesis that nn(G) = 2, G/N = K1/N × K2/N with property

that |K1/N | = |K2/N |. Clearly, in this case, K1/N and K2/N are both simple. The proof is

completed. 2
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