Finite Groups Whose Nontrivial Normal Subgroups Have Order Two

Shou Hong QIAO*, Da Chang GUO

School of Applied Mathematics, Guangdong University of Technology, Guangdong 510006, P. R. China

Abstract

In this paper, we investigate the structure of the groups whose nontrivial normal subgroups have order two. Some properties of this kind of groups are obtained. Keywords finite groups; normal subgroups; soluble groups; insoluble groups; simple groups. Document code A MR(2010) Subject Classification 20D05; 20D10 Chinese Library Classification O152

1. Introduction

In [1], the authors investigated the structure of finite groups whose non-trivial normal subgroups have the same order. In particular, they presented the following result.

Theorem 1.1 (A) Let G be a finite soluble group which has a unique non-trivial normal subgroup. Then
(i) G is a cyclic p-group of order p^{2} for some prime p;
(ii) $G=P: Q \cong Z_{p}^{n}: Z_{q}, p \neq q, Z_{q}$ acts irreducibly on Z_{p}^{n}.
(B) Let G be a finite insoluble group which has a unique non-trivial normal subgroup K. Then G / K is simple, and one of the following holds:
(i) K is soluble, G is perfect and G / K is a non-abelian simple group. Furthermore,
(a) $K=Z(G) \cong Z_{p}, G$ is a covering group of G / K;
(b) $K \cong Z_{p}^{n}$ with $n>1, G / K$ acts irreducibly on K.
(ii) K is insoluble and one of the following holds:
(a) K is simple and G is an almost simple group;
(b) $K=T_{1} \times \cdots \times T_{n} \cong T^{n}$ with $T_{i} \cong T$ simple, $n>1, G / K$ acts transitively on $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$. Furthermore, $G / K \cong Z_{p}$ with $p=n$, or G / K is a non-abelian simple subgroup of $\operatorname{Out}(T)$? S_{n}.

Remark (1) Z_{m} denotes a cyclic group of order m. The symbol $A: B$ means a splitting extension

[^0]of a group A by a group $B, A: B: C=A:(B: C)$. A covering group H of a simple group G is perfect and a central extension of G (see [3, p.43, Sect.1.5]). A group G is called almost simple if there is a non-abelian simple subgroup N such that $N \unlhd G \lesssim \operatorname{Aut}(N)$.
(2) For part (A)(ii) in Theorem 1.1, since $Q \cong Z_{q}$ acts irreducibly on $P \cong Z_{p}^{n}$, by [2, Theorems 2.3.2 and 2.3.3], $Q \lesssim Z_{\left(p^{n}-1\right)}$, and q does not divide $p^{d}-1$ for any $d<n$.

In this note, we continue the work of [1], and investigate the structure of the finite groups whose nontrivial normal subgroups have order two. Some properties of this kind of groups are obtained.

In the sequel, G always denotes a finite group whose nontrivial normal subgroups have order two, and we use $n n(G)=2$ to denote such a group G with this property. The letters p, q, r always denote the primes, and G_{p} denotes a Sylow p-subgroup of G.

2. Main results and proofs

Recall here that a group G is said to be decomposable if it can be expressed as a direct product of its two non-trivial normal subgroups; otherwise, G is called indecomposable. Let $1 \unlhd K_{1} \unlhd K_{2} \unlhd \cdots \unlhd K_{l}=G$ be a chief series of G. Then l is called the length of a chief series of G, and we use $l(G)$ to denote this integer.

Theorem 2.1 Let G be a finite group with $n n(G)=2$. Then $2 \leq l(G) \leq 3$. In particular, $l(G)=2$ if and only if $G=N \times K$, where N and K are two simple subgroups of different orders.

Proof Since $n n(G)=2, l(G) \leq 3$. If $l(G)=1$, then G is simple, contrary to the hypothesis that $n n(G)=2$. Thus $2 \leq l(G) \leq 3$.

Suppose $l(G)=2$. Let $1 \unlhd N \unlhd G$ be a chief series of G. Since $n n(G)=2$, there is another minimal normal subgroup K of G. Then $N \times K$ is a normal subgroup of G. If $|N|=|K|$, since $n n(G)=2, N \times K$ is a proper normal subgroup of G. However, this is contrary to hypothesis that $l(G)=2$. Thus $|N| \neq|K|$. Again, by the hypothesis that $n n(G)=2, G=N \times K$, where N and K are both simple.

Theorem 2.2 Let G be a finite group with $n n(G)=2$. Then one of the following holds:
(A) G is decomposable, and G satisfies one of the following:
(i) $G=A \times B \times C,|A|=|B|=|C|, A, B$ and C are non-abelian simple, or $A \cong B \cong C \cong Z_{p}$;
(ii) $G=A \times B, A$ is simple and B has a unique non-trivial normal subgroup B_{1} with $|A|=\left|B_{1}\right|$, the detailed structure of B is given in Theorem 1.1;
(iii) $G=A \times B, A$ and B are both simple with $|A| \neq|B|$.
(B) G is indecomposable, and G satisfies one of the following:
(i) G has a unique minimal normal subgroup;
(ii) G has at least two minimal normal subgroups.

Remark The detailed structural information of the groups in part(B) of Theorem 2.2 is given in Theorems 2.3-2.6.

Proof Let G be a decomposable group. Write $G=A \times B$. Since $n n(G)=2$, one of A and B is a minimal normal subgroup of G, say A. If $B=B_{1} \times B_{2}$ for suitable non-trivial subgroups B_{1} and B_{2}, since $l(G) \leq 3, G=A \times B_{1} \times B_{2}$. Since $n n(G)=2,|A|=\left|B_{1}\right|=\left|B_{2}\right|$. Furthermore, A, B_{1} and B_{2} are non-abelian simple subgroups, or $A \cong B_{1} \cong B_{2} \cong Z_{p}$ for some prime p. Then part(A)(i) holds.

Suppose that B is indecomposable. If B is not simple, then B has a unique normal subgroup B_{1}, and B_{1} is obviously normal in G. Since $n n(G)=2,|A|=\left|B_{1}\right|$, this is part(A)(ii). Finally, if B is simple, then $|A| \neq|B|$, as in part(A)(iii).

Part(B) of the theorem is obvious.
Theorem 2.3 Let G be indecomposable with $n n(G)=2$. Suppose that A and B are two distinct minimal normal subgroups of G. Then $|A|=|B|, G /(A \times B)$ is simple, $A \times B$ is the unique maximal normal subgroup of G, and one of the following holds:
(i) A and B are both non-abelian simple, $\{A, B, A \times B\}$ includes all the non-trivial normal subgroups of $G, C_{G}(A)=B$ and $C_{G}(B)=A$;
(ii) $A \times B=Z(G) \cong Z_{p}^{2}$ and G is a covering group of the non-abelian simple group $G /(A \times B)$, or $G \cong Z_{p}^{2}: Z_{q}$ with $q \mid(p-1)$;
(iii) $A \cong B \cong Z_{p}^{n}$ with $n>1, G \cong\left(Z_{p}^{n} \times Z_{p}^{n}\right): Z_{q}$ with $q \neq p$, or $G /(A \times B)$ is isomorphic to a non-abelian simple subgroup of $\mathrm{GL}(n, p)$.

Remark Since G is indecomposable, by Theorem 2.1, $l(G)=3$.
Proof Let A and B be two distinct minimal normal subgroups of G. Since G is indecomposable, $A \times B$ is a proper normal subgroup of G. Then $G /(A \times B)$ is simple since $l(G)=3$. Since $n n(G)=2, A$ and B have the same order, and each minimal normal subgroup of G is contained in $A \times B$. Let K be a non-trivial normal subgroup G which does not contain $A \times B$. If $K \not 又 A \times B$, since $G /(A \times B)$ is simple, $G=K(A \times B)$. Let K_{1} be a minimal normal subgroup of G contained in K. Then $\left|K_{1}\right|=|A|=|B|$ since $n n(G)=2$. Clearly, $K_{1} \leq A \times B$. Without loss of generality, we may suppose $A \times B=K_{1} \times B$. Then $G=K(A \times B)=K\left(K_{1} \times B\right)=K \times B$, which means G is decomposable, a contradiction. This implies that any normal subgroup of G is contained in $A \times B$, and so $A \times B$ is the unique maximal normal subgroup of G.

Suppose that A is non-abelian. Then B is also non-abelian since $|A|=|B|$. Then, by [4, Chap.I, Theorem 9.12], $\{A, B, A \times B\}$ includes all the non-trivial normal subgroups of G. Since $C_{G}(A) \unlhd G$ and A is non-abelian, $C_{G}(A)=B$. Similarly, $C_{G}(B)=A$. This is part(i) of the theorem.

Suppose that A is an abelian subgroup. Then $A \cong B \cong Z_{p}^{n}$ for some prime p.
Suppose that $A \cong B \cong Z_{p}$. Since $G /(A \times B)$ is simple, $G /(A \times B)$ is non-abelian simple or of prime order. If $G /(A \times B)$ is non-abelian simple, since $G / C_{G}(A) \lesssim A u t(A) \cong Z_{(p-1)}$, $A \leq Z(G)$, and so $A \times B=Z(G)$. In this case, if $Z(G) \nsubseteq \Phi(G)$, without loss of generality, we suppose $A \not \leq \Phi(G)$. Then there exists a maximal subgroup M of G such that $G=A: M=A \times M$, G is decomposable, a contradiction. Thus, $\Phi(G)=Z(G)$, and $G / Z(G)$ is non-abelian simple. It
follows that G is perfect and G is a covering group of $G / Z(G)$, this is part(ii). Let $G /(A \times B)$ be of prime order. Then $G /(A \times B) \cong Z_{q}$ for some prime q. If $p=q$, then G is a p-group of order p^{3}. Furthermore, if G is abelian, G is cyclic since G is indecomposable. However, this is also a contradiction since any cyclic group has a unique minimal normal subgroup. On the other hand, if G is non-abelian, then G is isomorphic to one of $\left\{Q_{8}, D_{8}, Z_{p^{2}}: Z_{p}, Z_{p}^{2}: Z_{p}\right\}$, and the latter two groups in the set are extra-special groups of order p^{3} with p odd. This is impossible since each of the above four groups has a unique minimal normal subgroup which is the center. These contradictions imply that $p \neq q$. Then $G \cong Z_{p}^{2}: Z_{q}$. By hypothesis, Z_{q} acts reducibly on Z_{p}^{2}. Since G is indecomposable, $q \mid(p-1)$. Then we have part(ii).

Suppose that $A \cong B \cong Z_{p}^{n}, n>1$. Then $G /(A \times B) \cong G / C_{G}(A) \lesssim A u t(A) \cong \mathrm{GL}(n, p)$. Since $G /(A \times B)$ acts irreducibly on A, if $G /(A \times B)$ is cyclic, then $|G /(A \times B)|=q$ with $q \neq p(p=q$ will lead to a contradiction that the length of chief series of G is more than 5, contrary to Theorem 2.1). Then $G \cong\left(Z_{p}^{n} \times Z_{p}^{n}\right): Z_{q}$, by [2, Theorems 2.3.2 and 2.3.3], $Z_{q} \lesssim Z_{\left(p^{n}-1\right)}$, and q does not divide $p^{d}-1$ for any $d<n$. On the other hand, if $G /(A \times B)$ is not abelian, then $G /(A \times B)$ is isomorphic to an irreducible non-abelian simple subgroup of $\mathrm{GL}(n, p)$, and part(iii) holds. The proof is completed.

According to the classification of the groups of order p^{3} (see [5, p. 64 and p.65]), the following result regarding nilpotent groups is obvious.

Theorem 2.4 Let G be a finite nilpotent group with $n n(G)=2$, and let G be indecomposable. Then G is a p-group of order p^{3}, where p is a prime. Then one of the following holds:
(i) $G \cong Z_{p^{3}}$;
(ii) $p=2, G \cong D_{8}$ or Q_{8};
(iii) $p>2, G \cong Z_{p}^{2}: Z_{p}$ or $Z_{p^{2}}: Z_{p}$, two extra-special groups of order p^{3}.

In the following, we will deal with the groups which are indecomposable and have a unique minimal normal subgroup.

Theorem 2.5 Let G be a finite soluble group with $n n(G)=2$, not nilpotent. Suppose that G is indecomposable and has a unique minimal normal subgroup. Then one of the following holds:
(A) $\Phi(G)=1, G$ satisfies one of the following:
(i) $G \cong Z_{p}^{n}: Z_{q^{2}}, Z_{q^{2}}$ acts irreducibly on Z_{p}^{n};
(ii) $G \cong Z_{p}^{n}: Z_{q}^{m}: Z_{r}, Z_{p}^{n}$ is minimal normal in $Z_{p}^{n}: Z_{q}^{m}: Z_{r}, Z_{r}$ acts irreducibly on Z_{q}^{m}, p, q and r are primes with $p \neq q$ and $q \neq r$.
(B) $\Phi(G) \cong Z_{p}^{n} \neq 1, G=G_{p}: G_{q}$ with $p \neq q, G_{q} \cong Z_{q}, \Phi(G)=\Phi\left(G_{p}\right)$ is minimal normal in $G, 1 \triangleleft \Phi(G) \triangleleft G_{p} \triangleleft G$ is the unique chief series of G. Furthermore, one of the following holds:
(i) $\Phi(G)=Z(G) \cong Z_{p}, G / \Phi(G) \cong Z_{p}^{m}: Z_{q}, Z_{q}$ acts irreducibly on Z_{p}^{m};
(ii) $\Phi(G) \leq Z\left(G_{p}\right), Z(G)=1, G / \Phi(G) \cong Z_{p}^{m}: Z_{q}, Z_{q}$ acts irreducibly on Z_{p}^{m};
(iii) $C_{G}(\Phi(G))=\Phi(G), G \cong Z_{p^{2}}: Z_{q}$ and $G / \Phi(G)$ acts primitively on $\Phi(G)$, or $G / \Phi(G) \cong$ $Z_{p}^{m}: Z_{q}$ and $G / \Phi(G)$ acts imprimitively on $\Phi(G)$.

Proof Let N be the unique minimal normal subgroup of G. Then $N \cong Z_{p}^{n}$ for some prime p.

Since G is soluble, G / K is cyclic of prime order for any maximal normal subgroup K.
(A) Suppose that $\Phi(G)=1$. Then there is a maximal subgroup M of G such that $G=N: M$. Let T be a minimal normal subgroup of M. Then $T \cong Z_{q}^{m}$ for some prime q. Since $l(G)=3$, $M / T \cong Z_{r}$ for some prime r. If $p=q$, then $r \neq p$ since G is not nilpotent, $G=G_{p}: G_{r}$. Since $\Phi(G)=1$ and $G_{p} \unlhd G, \Phi\left(G_{p}\right)=1$ and $G_{p}=N \times T$ is an elementary abelian subgroup. It follows that G has at least two minimal normal subgroups N and T, contrary to our hypothesis. Thus, $p \neq q$. If M is abelian, since $n n(G)=2$, it follows that $q=r$, and $M \cong Z_{q^{2}}$. Then $G \cong Z_{p}^{n}: Z_{q^{2}}$. By [2, Theorems 2.3.2 and 2.3.3], $q^{2} \mid\left(p^{n}-1\right)$, but q^{2} does not divide $p^{d}-1$ for any $d<n$, therefore part(A)(i) holds. If M is not abelian, $M \cong Z_{q}^{m}: Z_{r}$ with $q \neq r$, and $G \cong Z_{p}^{n}: Z_{q}^{m}: Z_{r}$, part(A)(ii) holds.
(B) Suppose that $\Phi(G) \neq 1$. Since $\Phi(G)$ contains no Sylow subgroup of G and $n n(G)=2$, $|G|$ is divisible by at most two primes. Since G is not nilpotent, $|G|$, thus $|G / \Phi(G)|$, has exactly two prime divisors.

Suppose that $\Phi(G)$ is not minimal normal in G. Since $G / \Phi(G)$ has exactly two different prime divisors, it follows that the length of a chief series of G is at least four. This is contrary to Theorem 2.1. Thus, $\Phi(G) \cong Z_{p}^{n}$ which is minimal normal in G, where p is a prime. We know $l(G)=3$. Let $1 \unlhd \Phi(G) \unlhd K \unlhd G$ be a chief series of G. Since G is soluble, $K / \Phi(G)$ is abelian, and so K is nilpotent. It follows that $K:=G_{p}$ is a p-group since G has a unique minimal normal subgroup. Then $G=G_{p}: G_{q}$ for some prime $q \neq p, 1 \triangleleft \Phi(G) \triangleleft G_{p} \triangleleft G$ is the unique chief series of G. Furthermore, $G_{q} \cong Z_{q}$ since $l(G)=3$. If $\Phi\left(G_{p}\right)=1$, since $\Phi(G)$ is normalized by G_{q}, by Maschke's Theorem ([5,VIII,Theorem 2.2]), G has at least two minimal normal subgroups which are both contained in G_{p}, a contradiction. Thus $\Phi\left(G_{p}\right)=\Phi(G)$.

Suppose firstly that $C_{G}(\Phi(G))=G$. Then $\Phi(G) \leq Z(G)$ and $\Phi(G) \cong Z_{p}$ since $\Phi(G)$ is minimal normal in G. If $\Phi(G)<Z(G), Z(G) \cong Z_{p^{2}}$ since G has a unique minimal normal subgroup and $n n(G)=2$. It follows that $G / Z(G)$ is simple, and thus $G / Z(G)$ is cyclic and G is abelian, contrary to our hypothesis. Thus $\Phi(G)=Z(G) \cong Z_{p} . G / \Phi(G)=G / Z(G) \cong Z_{p}^{m}: Z_{q}$, Z_{q} acts irreducibly on Z_{p}^{m}, m is some suitable positive integer. This is part(B)(i).

Suppose secondly that $\Phi(G)<C_{G}(\Phi(G))<G$. It is easy to see that $Z(G)=1$, and $1 \triangleleft \Phi(G) \triangleleft C_{G}(\Phi(G)) \triangleleft G$ is a chief series of G since $l(G)=3$. Thus $C_{G}(\Phi(G))=G_{p}$, that is, $\Phi(G) \leq Z\left(G_{p}\right)$. Also, we have $G / \Phi(G) \cong Z_{p}^{m}: Z_{q}$ for some positive integer m. Since $l(G)=3$, Z_{q} acts irreducibly on Z_{p}^{m}. This is part(B)(ii).

Suppose finally that $C_{G}(\Phi(G))=\Phi(G)$. Let $1 \unlhd \Phi(G) \unlhd K \unlhd G$ be a chief series of G. Then $K=G_{p}$. If $G / \Phi(G)$ acts primitively on $\Phi(G)$, by [2, Theorem 2.5.10], $K / \Phi(G) \cong Z_{p}$. Thus, $G / \Phi(G) \cong Z_{p}: Z_{q}$ which is not nilpotent, $q \mid(p-1)$. Since $\Phi(G)=\Phi\left(G_{p}\right)$ and $n n(G)=2, G_{p}$ is cyclic, and thus $G_{p} \cong Z_{p^{2}}$, that is, $G \cong Z_{p^{2}}: Z_{q}$. If $G / \Phi(G)$ acts imprimitively on $\Phi(G)$, it is easy to see $G / \Phi(G) \cong Z_{p}^{m}: Z_{q}$. This proves part(B)(iii).

Theorem 2.6 Let G be a finite insoluble group with $n n(G)=2$. Suppose that G has a unique minimal normal subgroup N. Then one of the following holds:
(i) G / N has a unique normal subgroup, G / N is as the group in Theorem 1.1;
(ii) G / N is a direct product of two simple subgroups of the same order.

Proof Since $n n(G)=2$, if G / N has a unique minimal normal subgroup, G / N is as the group in Theorem 1.1. Otherwise, if G / N has at least two minimal normal subgroups, say, K_{1} / N and K_{2} / N, again by the hypothesis that $n n(G)=2, G / N=K_{1} / N \times K_{2} / N$ with property that $\left|K_{1} / N\right|=\left|K_{2} / N\right|$. Clearly, in this case, K_{1} / N and K_{2} / N are both simple. The proof is completed.

References

[1] ZHANG Qinhai, CAO Jianji. Finite groups whose nontrivial normal subgroups have the same order [J]. J. Math. Res. Exposition, 2008, 28(4): 807-812.
[2] SHORT M W. Primitive Soluble Permutation Groups of Degree Less Than 256 [M]. Springer-Verlag, Berlin, 1992.
[3] GORENSTEIN D. Finite Simple Groups: An Introduction to Their Classification [M]. Plenum Publishing Corp., New York, 1982.
[4] HUPPERT B. Endliche Gruppen (I) [M]. Springer-Verlag, Berlin-New York, 1967. (in German)
[5] XU Mingyao, et al. An Introduction to Finite Groups [M]. Science Press, Beijing, 2001. (in Chinese)

[^0]: Received November 6, 2009; Accepted January 12, 2011
 Project supported in part by the National Natural Science Foundation of China (Grant No. 10871210) and Foundation of Guangdong University of Technology (Grant No. 093057).

 * Corresponding author

 E-mail address: qshqsh513@163.com (S. H. QIAO); dchguo@126.com (D. C. GUO)

