Minimality of Complex Exponential System

Feng YAN ${ }^{1, *}$, Guan Tie DENG ${ }^{2}$
1. Department of Mathematics, Handan College, Heibei 056005, P. R. China;
2. Schol of Mathematical Sciences and Key Laboratory of Mathematics and Complex System, Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China

Abstract

A sufficient condition is obtained for the minimality of the complex exponential system $E(\Lambda, M)=\left\{z^{l} e^{\lambda_{n} z}: l=0,1, \ldots, m_{n}-1 ; n=1,2, \ldots\right\}$ in the Banach space L_{α}^{p} consisting of all functions f such that $f^{-\alpha} \in L^{p}(\mathbb{R})$. Moreover, if the incompleteness holds, each function in the closure of the linear span of exponential system $E(\Lambda, M)$ can be extended to an analytic function represented by a Taylor-Dirichlet series.

Keywords minimality; complex exponential system; Taylor-Dirichlet series.
Document code A
MR(2010) Subject Classification 30E05; 41A30
Chinese Library Classification O174.5; O174.52

1. Introduction

Following Deng [1], a system $E=\left\{e_{n}: n=1,2, \ldots\right\}$ of elements of a Banach space X is called (i) incomplete in X if $\overline{\operatorname{span}} E \neq X$; (ii) minimal in X if for all $n=1,2, \ldots, e_{n} \notin \overline{\operatorname{span}}\left(E-\left\{e_{n}\right\}\right)$, where $\operatorname{span} E$ is the linear span of the system E and $\overline{\operatorname{span}} E$ is the closure of $\operatorname{span} E$ in X. The incompleteness of the system E in X is equivalent to the existence of a non-trivial functional f in the dual Banach space X^{*} of X which annihilates the system E, i.e., $f\left(e_{n}\right)=0, n=1,2, \ldots$ The minimality of the system E in X is equivalent to the existence of a system of conjugate functionals $\left\{f_{n}: n=1,2, \ldots\right\}$ in X^{*}, i.e., $f_{n}\left(e_{m}\right)=\delta_{n m}$ (Kronneker delta, i.e., $\delta_{n n}=1$, while $\delta_{n m}=0$ for $\left.n \neq m\right)$. The system $\left\{f_{n}\right\}$ is also called a biorthogonal system of the system E.

Let $\alpha(t)$ be a continuous function \mathbb{R} and satisfy

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\alpha(t)}{t}=\infty, \quad a_{0}=\limsup _{t \rightarrow-\infty} \frac{|\alpha(t)|}{|t|}<\infty \tag{1}
\end{equation*}
$$

Let

$$
L_{\alpha}^{p}=\left\{f:\|f\|_{\alpha}=\left(\int_{-\infty}^{\infty}\left|f(t) e^{-\alpha(t)}\right|^{p} \mathrm{~d} t\right)^{\frac{1}{p}}<\infty\right\}, \quad 1 \leq p<+\infty
$$

[^0]Then L_{α}^{p} is a Banach space. Let $\Lambda=\left\{\lambda_{n}: n=1,2, \ldots\right\}$ be a sequence of distinct complex numbers in the open right half plane $\mathbb{C}_{a_{0}}=\left\{z=x+i y: x>a_{0}\right\}$ and satisfy

$$
\begin{equation*}
a_{1}=\limsup _{n \rightarrow \infty}\left|\theta_{n}\right|<\frac{\pi}{2} . \tag{2}
\end{equation*}
$$

Let $M=\left(m_{n}: n=1,2, \ldots\right)$ be a sequence of positive integers and suppose that there exists an increasing positive function $q(r)$ on $[0, \infty)$ satisfying

$$
\begin{equation*}
a_{2}=\limsup _{r \rightarrow \infty} q(r) r^{-1} \log r<\infty \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
D(q)=\limsup _{r \rightarrow \infty} \frac{n(r+q(r))-n(r)}{q(r)}<\infty \tag{4}
\end{equation*}
$$

where $n(t)=\sum_{\left|\lambda_{n}\right| \leq t} m_{n}$ is the counting function of Λ and M. With these sequences Λ and M, we associate the system of complex exponentials

$$
E(\Lambda, M)=\left\{t^{k-1} e^{\lambda_{n} t}: k=1,2, \ldots, m_{n} ; n=1,2, \ldots\right\}
$$

The condition (1) guarantees that $E(\Lambda, M)$ is a subset of L_{α}^{p}. The author in [2] has obtained some results on completeness of $E(\Lambda, M)$ in L_{α}^{p}.

Theorem $\mathbf{A}([2])$ Let $\alpha(t)$ be continuous on \mathbb{R}, convex on $\left[t_{0}, \infty\right)$ for some constant t_{0} and satisfy (1). Suppose that $\Lambda=\left\{\lambda_{n}: n=1,2, \ldots\right\}$ is a sequence of distinct complex numbers in $\mathbb{C}_{a_{0}}$ satisfying (2) and $M=\left(m_{n}: n=1,2, \ldots\right)$ is a sequence of positive integers. If there exists a positive and increasing function $q(r)$ on $[0, \infty)$ such that (3) and (4) hold, then $E(\Lambda, M)$ is incomplete in L_{α}^{p} if and only if there exists $a \in \mathbb{R}$ such that

$$
\begin{equation*}
J(a)=\int_{0}^{+\infty} \frac{\alpha(\lambda(t)+a)}{1+t^{2}} \mathrm{~d} t<\infty \tag{5}
\end{equation*}
$$

where

$$
\lambda(r)= \begin{cases}2 \sum_{\left|\lambda_{n}\right| \leq r} \frac{m_{n} \cos \theta_{n}}{\left|\lambda_{n}\right|}, & \text { if } r \geq\left|\lambda_{1}\right| \tag{6}\\ 0, & \text { otherwise }\end{cases}
$$

In this paper, we study the minimality of $E(\Lambda, M)$ in L_{α}^{p}, the main conclusions are as follows:
Theorem Let $\alpha(t)$ be continuous on \mathbb{R}, convex on $\left[t_{0}, \infty\right)$ for some constant t_{0} and satisfy (1). Suppose that $\Lambda=\left\{\lambda_{n}: n=1,2, \ldots\right\}$ is a sequence of distinct complex numbers in $\mathbb{C}_{a_{0}}$ such that (2) and

$$
\begin{equation*}
a_{3}=\liminf _{n \rightarrow \infty} \frac{\inf \left\{\log \left|\lambda_{k}-\lambda_{n}\right|: k \neq n\right\}}{\log \left|\lambda_{n}\right|}>-\infty \tag{7}
\end{equation*}
$$

hold. Suppose that $M=\left(m_{n}: n=1,2, \ldots\right)$ is a sequence of positive integers and there exists a positive and increasing function $q(r)$ on $[0, \infty)$ such that (3) and (4) hold. If $E(\Lambda, M)$ is incomplete in L_{α}^{p}, then $E(\Lambda, M)$ is minimal and each function $f \in \overline{\operatorname{span}} E(\Lambda, M)$ can be extended to an entire function $g(z)$ represented by a Taylor-Dirichlet series

$$
\begin{equation*}
g(z)=\sum_{n=1}^{\infty} \sum_{k=0}^{m_{n}-1} a_{n, k} z^{k} e^{\lambda_{n} z} \tag{8}
\end{equation*}
$$

Remark Some similar results were obtained in [3-5].

2. Proof of Theorem

In order to prove Theorem, we need the following technical lemma:
Lemma 1 ([1]) Suppose that $\Lambda=\left\{\lambda_{n}=\left|\lambda_{n}\right| e^{i \theta_{n}}: n=1,2, \ldots\right\}$ is a sequence of distinct complex numbers in $\mathbb{C}_{a_{0}}$ satisfying (2), and $M=\left(m_{n}: n=1,2, \ldots\right)$ is a sequence of positive integers. If there exists a positive and increasing function $q(r)$ on $[0, \infty)$ such that (3) and (4) hold, then for each $b>0$, the function

$$
\begin{equation*}
G_{b}(z)=Q_{b}(z) \prod_{\operatorname{Re} \lambda_{n}>b}\left(\frac{1-\frac{z}{\lambda_{n}}}{1+\frac{z}{\bar{\lambda}_{n}}}\right)^{m_{n}} \exp \left(\frac{2 z m_{n} \cos \theta_{n}}{\left|\lambda_{n}\right|}\right) \tag{9}
\end{equation*}
$$

is analytic in the half-plane $\mathbb{C}_{-b}=\{z=x+i y: x>-b\}$ with zeros of orders m_{n} at each point $\lambda_{n}(n=1,2, \ldots)$ and satisfies the following inequality:

$$
\begin{equation*}
\left|G_{b}(z)\right| \leq \exp \{|x| \lambda(2 r)+A|x|+A\}, \quad z \in \mathbb{C}_{-b} \tag{10}
\end{equation*}
$$

where

$$
Q_{b}(z)=\prod_{\left|\operatorname{Re} \lambda_{n}\right| \leq b}\left(\frac{z-\lambda_{n}}{z+b+1}\right)^{m_{n}}
$$

Moreover, for each positive constant A_{0} and $\varepsilon_{0}>0$,

$$
\begin{equation*}
\left|G_{b}(z)\right| \geq \exp \{x \lambda(r)-A|x|-A\}, \quad z \in C\left(A_{0}, \varepsilon_{0}\right) \tag{11}
\end{equation*}
$$

where $C\left(A_{0}, \varepsilon_{0}\right)=\left\{z \in \mathbb{C}_{-b}:\left|z-\lambda_{n}\right| \geq \delta_{n}, n=1,2, \ldots\right\}, \delta_{n}=\varepsilon_{0}\left|\lambda_{n}\right|^{-A_{0}}, n=1,2, \ldots$.
Proof of Theorem By (7), there exist positive constants ε_{0} and A_{0} and disjoint open discs $D_{n}=\left\{z:\left|z-\lambda_{n}\right|<\delta_{n}\right\} \quad(n=1,2, \ldots)$, where $\delta_{n}=\frac{\varepsilon_{0}}{\left|\lambda_{n}\right|^{A_{0}}}: n=1,2, \ldots$. If $M(\Lambda, E)$ is incomplete in L_{α}^{p}, by Theorem A there exists a real number a such that (5) holds. If $J(a)<\infty$ for all a, where $J(a)$ is defined by (5) (for example, if $\lambda(r)$ is bounded, then $J(a)<\infty$ for all a), then there exists a sequence $\left\{r_{n}: n=1,2, \ldots\right\}$ with $r_{n+1}>1+2 r_{n}(n=1,2, \ldots)$ such that

$$
\int_{r_{n}}^{+\infty} \frac{\alpha(\lambda(t)+n)}{1+t^{2}} \mathrm{~d} t<\frac{1}{2^{n}}, \quad n=1,2, \ldots
$$

It follows that there exists a set $\widetilde{\Lambda}=\left\{\widetilde{\lambda}_{n}: n=1,2, \ldots\right\}$ such that the following conditions hold:
i) $\widetilde{\lambda}(r)$ is unbounded on $(0, \infty)$, where

$$
\tilde{\lambda}(r)=2 \sum_{\tilde{\lambda}_{n} \leq r} \frac{1}{\widetilde{\lambda}_{n}}\left(r \geq \widetilde{\lambda}_{1}\right), \text { and } \tilde{\lambda}(r)=0\left(r<\widetilde{\lambda}_{1}\right)
$$

ii) $\liminf \lim _{n \rightarrow \infty}\left(\widetilde{\lambda}_{n+1}-\widetilde{\lambda}_{n}\right)>0$;
iii) $\inf \left\{\left|\lambda_{m}-\widetilde{\lambda}_{n}\right|: m, n=1,2, \ldots\right\}>0$ and
iv) $\int_{0}^{+\infty} \frac{\alpha(\lambda(t)+\tilde{\lambda}(t))}{1+t^{2}} \mathrm{~d} t<\infty$.

So we can assume that $\lambda(r)$ is unbounded (if necessary, replace $\lambda(r)$ by $\lambda(r)+\widetilde{\lambda}(r))$, and (5) holds for $a=0$ in the following. Let $\varphi(t)$ be an even function such that $\varphi(t)=\alpha(\lambda(t))$ for $t \geq 0$.

Let $u(z)$ be the Poisson integral of $2 \varphi(t)$, i.e.,

$$
\begin{equation*}
u(z)=\frac{x}{\pi} \int_{-\infty}^{+\infty} \frac{2 \varphi(t)}{x^{2}+(y-t)^{2}} \mathrm{~d} t \tag{12}
\end{equation*}
$$

Then $u(x+i y)$ is harmonic in the half-plane $\mathbb{C}_{0}=\{z=x+i y: x>0\}$ satisfying

$$
u(z) \geq \frac{x}{\pi} \int_{|t| \geq|z|} \frac{2 \varphi(|z|)}{x^{2}+(y-t)^{2}} \mathrm{~d} t=\varphi(|z|), \quad x>0
$$

Therefore, there exists an analytic function $g(z)$ on \mathbb{C}_{0} such that $\operatorname{Re} g(z)=u(z) \geq \varphi(|z|)(x>0)$ and

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{-1} \max \left\{\operatorname{Re} g\left(b+r e^{i \theta}\right):|\theta| \leq \frac{\pi}{2}-\varepsilon\right\}=0 \tag{13}
\end{equation*}
$$

for each $b>0$ and $\varepsilon \in\left(0, \frac{\pi}{2}\right)$. Let $b>a_{0}+2$ and let

$$
\begin{equation*}
\varphi_{b}(z)=\frac{G_{b}(z)}{(1+z+b)^{b}} \exp \{-g(z+b)\} \tag{14}
\end{equation*}
$$

where $G_{b}(z)$ is defined by (9). Then $\varphi_{b}(z)$ is analytic in $\mathbb{C}_{-b}=\{z=x+i y: x>-b\}$. Since $\varphi(r) \geq(x-1)(\lambda(r)-a)-\alpha^{*}(x-1)$ for $r=|z|$ with $\lambda(r)+a>t_{0}$ (if $\lambda(r)$ is bounded, we can take a real number a such that $\lambda(r)+a>t_{0}$), by (14), there exists a positive constant A_{2} such that

$$
\begin{equation*}
\left|\varphi_{b}(z)\right| \leq \frac{1}{1+|z|^{2}} \exp \left\{\alpha^{*}(x-1)+A_{2} x\right\}, \quad x>-b \tag{15}
\end{equation*}
$$

holds, where α^{*} is the Legendre transform of α (see [6]). Let $A_{n, j}$ be the coefficient of the principal part of the Laurent series for the function $\frac{e^{A_{2} z}}{\varphi_{b}(z)}$ in $D_{n}-\left\{\lambda_{n}\right\}$, i.e.,

$$
\begin{equation*}
\frac{e^{A_{2} z}}{\varphi_{b}(z)}=\sum_{j=1}^{m_{n}} \frac{A_{n, j}}{\left(z-\lambda_{n}\right)^{j}}+\widetilde{\varphi}_{n}(z) \tag{16}
\end{equation*}
$$

where $\widetilde{\varphi}_{n}(z)$ is analytic in D_{n}. Then by Cauchy's formula,

$$
\begin{equation*}
A_{n, j}=\frac{1}{2 \pi i} \int_{\left|z-\lambda_{n}\right|=\delta_{n}} \frac{e^{A_{2} z}}{\varphi_{b}(z)}\left(z-\lambda_{n}\right)^{j-1} \mathrm{~d} z \tag{17}
\end{equation*}
$$

According to (11) and (13),

$$
\begin{equation*}
\max \left\{\left|A_{n, j}\right|: 1 \leq j \leq m_{n}\right\} \leq \exp \left\{-\operatorname{Re} \lambda_{n} \lambda\left(\left|\lambda_{n}\right|\right)+A \operatorname{Re} \lambda_{n}+A\right\} \tag{18}
\end{equation*}
$$

Note that A is independent of x and λ_{n}. Now consider the analytic functions in \mathbb{C}_{-b}

$$
\begin{equation*}
H_{n, k}(z)=\varphi_{b}(z) \exp \left\{-A_{2} z\right\} \sum_{l=1}^{m_{n}-k} \frac{A_{n, k+l}}{k!\left(z-\lambda_{n}\right)^{l}}, \quad k=0,1, \ldots, m_{n}-1 ; n=1,2, \ldots \tag{19}
\end{equation*}
$$

By (15) and (18), we have, for $x>-b$,

$$
\begin{equation*}
\left|H_{n, k}(z)\right| \leq \frac{A}{1+|z|^{2}} \exp \left\{\alpha^{*}(x-1)-\operatorname{Re} \lambda_{n} \lambda\left(\left|\lambda_{n}\right|\right)+A \operatorname{Re} \lambda_{n}\right\} \tag{20}
\end{equation*}
$$

Let

$$
h_{n, k}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} H_{n, k}(i y) e^{-i y t} \mathrm{~d} y
$$

Then $h_{n, k}(t)$ is bounded and continuous on \mathbb{R}. By Cauchy's formula,

$$
h_{n, k}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} H_{n, k}(x+i y) e^{-(x+i y) t} \mathrm{~d} y, \quad x>-b
$$

By (20) and the formula of the Legendre transform $\left(\alpha^{*}\right)^{*}=\alpha$, for $x>-b$, we obtain

$$
\begin{equation*}
\left|h_{n, k}(t) e^{\alpha(t)}\right| \leq \exp \left\{A+A \operatorname{Re} \lambda_{n}-\operatorname{Re} \lambda_{n} \lambda\left(\left|\lambda_{n}\right|\right)-|t|\right\} \tag{21}
\end{equation*}
$$

The function $h_{n, k}(t) e^{x t}$ can be regarded as the Fourier transform of $H_{n, k}(x+i y)$. Consequently,

$$
H_{n, k}(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} h_{n, k}(t) e^{t z} \mathrm{~d} t, \quad \operatorname{Re} z>-b
$$

Next we will prove that

$$
\begin{equation*}
H_{n, k}^{(l)}\left(\lambda_{j}\right)=\delta_{n j} \delta_{k l}, \quad \text { i.e., } \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{\lambda_{j} t} t^{l} h_{n, k}(t) \mathrm{d} t=\delta_{n j} \delta_{k l} \tag{22}
\end{equation*}
$$

where $l \in\left\{0,1, \ldots, m_{j}-1\right\}, k \in\left\{0,1, \ldots, m_{n}-1\right\}, n, j \in \mathbb{N}$. It is obvious that if $j \neq n$, then $H_{n, k}^{(l)}\left(\lambda_{j}\right)=0\left(l=0,1, \ldots, m_{j}-1\right)$. If $j=n$, then by (18), for $z \in D_{n}$,

$$
\begin{aligned}
H_{n, k}(z) & =\varphi_{b}(z) e^{-A_{2} z} \sum_{l=k+1}^{m_{n}} \frac{A_{n, l}}{k!\left(z-\lambda_{n}\right)^{l}} \\
& =\varphi_{b}(z) e^{-A_{2} z} \frac{\left(z-\lambda_{n}\right)^{k}}{k!}\left(\frac{e^{A_{2} z}}{\varphi_{b}(z)}-\sum_{l=1}^{k} \frac{A_{n, l}}{\left(z-\lambda_{n}\right)^{l}}-\varphi_{n}(z)\right) \\
& =\frac{\left(z-\lambda_{n}\right)^{k}}{k!}+\sum_{l=m_{n}}^{+\infty} B_{n, l}\left(z-\lambda_{n}\right)^{l}
\end{aligned}
$$

where $k=0,1, \ldots, m_{n}-1 ; n=1,2, \ldots$. This proves (22). Define a linear functional $T_{n, k}$ on $\operatorname{span} E(\Lambda, M)$ by

$$
T_{n, k}(P)=a_{n, k}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \sum a_{j, l} h_{n, k}(t) t^{l} e^{\lambda_{j} t} \mathrm{~d} t
$$

for each exponential polynomial $P(t)=\sum_{j, l} a_{j, l} t^{l} e^{\lambda_{j} t} \in \operatorname{span} E(\Lambda, M)$. By (21),

$$
\left|T_{n, k}(P)\right| \leq 2\|P\|_{\alpha} \exp \left\{A+A \operatorname{Re} \lambda_{n}-\operatorname{Re} \lambda_{n} \lambda\left(\left|\lambda_{n}\right|\right)\right\}
$$

Hence $T_{n, k}$ is a bounded linear functional on $E(\Lambda, M)$, so by Hahn-Banach theorem $T_{n, k}$ can be extended to a bounded linear functional (denoted by $\bar{T}_{n, k}$) on L_{α}^{p} and

$$
\begin{equation*}
\left\|\bar{T}_{n, k}\right\|=\left\|T_{n, k}\right\| \leq C_{n}=2 \exp \left\{A+A \operatorname{Re} \lambda_{n}-\operatorname{Re} \lambda_{n} \lambda\left(\left|\lambda_{n}\right|\right)\right\} \tag{23}
\end{equation*}
$$

So $\left\{\bar{T}_{n, k} ; 1 \leq k \leq m_{n}, n=1,2, \ldots\right\}$ is a biorthogonal system of $E(\Lambda, M)$ in $\left(L_{\alpha}^{p}\right)^{*}$ and $E(\Lambda, M)$ is minimal in L_{α}^{p}. If $f \in \overline{\operatorname{span}} E(\Lambda, M)$, there exists a sequence of exponential polynomials

$$
P_{j}(t)=\sum_{n=1}^{j} \sum_{k=0}^{m_{n}-1} a_{n, k}^{j} t^{k} e^{\lambda_{n} t} \in \operatorname{span} E(\Lambda, M)
$$

such that

$$
\begin{equation*}
\lim _{j \longrightarrow \infty}\left\|f-P_{j}\right\|_{\alpha}=0 \tag{24}
\end{equation*}
$$

where $a_{n, k}=\bar{T}_{n, k}(f)$. Since $\left|\bar{T}_{n, k}(f)\right| \leq\left\|\bar{T}_{n, k}\right\|\|f\|_{\alpha}$ and $\lambda(r)$ is unbounded on $(0, \infty)$, by (21), the function $g(z)$ defined by (8) is an entire function. Note that

$$
\left|a_{n, k}-a_{n, k}^{j}\right|=\left|\bar{T}_{n, k}(f)-\bar{T}_{n, k}\left(P_{j}\right)\right| \leq C_{n}\left\|f-P_{j}\right\|_{\alpha}, \quad n=1,2, \ldots
$$

For any real numbers $a, b(a<b)$, we have

$$
\begin{aligned}
& \left(\int_{a}^{b}\left|(f(t)-g(t)) e^{-\alpha(t)}\right|^{p} \mathrm{~d} t\right)^{\frac{1}{p}} \leq\left\|f-P_{j}\right\|_{\alpha}+\left\|P_{j}-g\right\|_{\alpha} \\
& \quad \leq\left\|f-P_{j}\right\|_{\alpha}+\sum_{n=1}^{j} \sum_{k=0}^{m_{n}-1}\left|a_{n, k}-a_{n, k}^{j}\right|\left(\int_{a}^{b} e^{R e \lambda_{n} t-p \alpha(t)} t^{k p} \mathrm{~d} t\right)^{\frac{1}{p}}+ \\
& \quad \sum_{n=j+1}^{+\infty} \sum_{k=0}^{m_{n}-1}\left|a_{n, k}\right|\left(\int_{a}^{b} e^{\operatorname{Re} \lambda_{n} t-p \alpha(t)} t^{k p} \mathrm{~d} t\right)^{\frac{1}{p}} \\
& \quad \leq\left\|f-P_{j}\right\|_{\alpha}\left[1+\sum_{n=1}^{j} \sum_{k=0}^{m_{n}-1}\left\|\bar{T}_{n, k}\right\| e^{\operatorname{Re} \lambda_{n} b}(1+|a|+|b|)^{k}\left(\int_{-\infty}^{+\infty} e^{-p \alpha(t)} \mathrm{d} t\right)^{\frac{1}{p}}\right]+ \\
& \quad\|f\|_{\alpha} \sum_{n=j+1}^{+\infty} \sum_{k=0}^{m_{n}-1}\left\|\bar{T}_{n, k}\right\| e^{\operatorname{Re} \lambda_{n} b}(1+|a|+|b|)^{k}\left(\int_{-\infty}^{+\infty} e^{-p \alpha(t)} \mathrm{d} t\right)^{\frac{1}{p}}
\end{aligned}
$$

Letting $j \rightarrow \infty$, by (21) and (24), we obtain that $f(x)=g(x)$ for each $x \in \mathbb{R}$. This completes the proof of Theorem.

References

[1] DENG Guantie. Incompleteness and minimality of complex exponential system [J]. Sci. China Ser. A, 2007, 50(10): 1467-1476.
[2] FAN Xiequan. Three topics on the completeness of three function systems [D]. Master thesis of Beijing Normal University, 2009.
[3] DENG Guantie. Weighted exponential polynomial approximation [J]. Sci. China Ser. A, 2003, 46(2): 280-287.
[4] DENG Guantie. On weighted polynomial approximation with gaps [J]. Nagoya Math. J., 2005, 178: 55-61.
[5] GAO Zhiqiang, DENG Guantie. On weighted approximation by lacunary polynomials on the rays emerging from the origin [J]. Studia Sci. Math. Hungar., 2008, 45(2): 197-205.
[6] ROCKAFELLAR R. Convex Analysis [M]. Princeton Univ. Press, Princeton, 1970.

[^0]: Received November 3, 2009; Accepted April 27, 2010
 Supported by the National Natural Science Foundation of China (Grant No. 10671022) and the Research Foundation for Doctor Programme (Grant No. 20060027023).

 * Corresponding author

 E-mail address: yan_tian310@126.com (F. YAN); denggt@bnu.edu.cn (G. T. DENG)

