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Abstract We call T ∈ B(H) consistent in Fredholm and index (briefly a CFI operator) if for

each B ∈ B(H), TB and BT are Fredholm together and the same index of B, or not Fredholm

together. Using a new spectrum defined in view of the CFI operator, we give the equivalence of

Weyl’s theorem and property (ω) for T and its conjugate operator T
∗. In addition, the property

(ω) for operator matrices is considered.
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1. Introduction

Throughout this note let B(H) (K(H)) denote the algebra of bounded linear operators

(compact operators) acting on a complex, infinite dimensional Hilbert space H . If T ∈ B(H),

write N(T ) and R(T ) for the null space and the range of T ; σ(T ) for the spectrum of T ;

π00(T ) = π0(T )∩ isoσ(T ), where π0(T ) = {λ ∈ C, 0 < dimN(T − λI) < ∞} are the eigenvalues

of finite multiplicity. An operator T ∈ B(H) is called upper semi-Fredholm if it has closed range

with finite dimensional null space and if R(T ) has finite co-dimension, T ∈ B(H) is called a

lower semi-Fredholm operator. We call T ∈ B(H) Fredholm if it has closed range with finite

dimensional null space and its range of finite co-dimension. For a semi-Fredholm operator, let

n(T ) = dimN(T ) and d(T ) = dimH/R(T ). The index of a semi-Fredholm operator T ∈ B(H)

is given by ind(T ) = dimN(T ) − dim H/R(T ) = n(T ) − d(T ). The ascent of T , asc(T ), is the

least non-negative integer n such that N(T n) = N(T n+1) and the descent, des(T ), is the least

non-negative integer n such that R(T n) = R(T n+1). An operator T ∈ B(H) is called Weyl if it is

Fredholm of index zero. And T ∈ B(H) is called Browder if it is Fredholm “of finite ascent and

descent”: equivalently [6, Theorem 7.9.3] if T is Fredholm and T −λI is invertible for sufficiently

small λ 6= 0 in C. The essential spectrum σe(T ), the Weyl spectrum σw(T ), the Browder spectrum

σb(T ), the upper (lower) semi-Fredholm spectrum σSF+
(T ) (σSF

−

(T )) of T ∈ B(H) are defined

Received December 24, 2009; Accepted May 28, 2010

Supported by Plan of the New Century Talented Person of the Ministry of Education of China (Grant No.NCET-

06-0870) and the Fundamental Research Funds for the Central Universities (Grant GK200901015).
* Corresponding author

E-mail address: zhaolingling@stu.snnu.edu.cn (L. L. ZHAO); xiaohongcao@snnu.edu.cn (X. H. CAO)



706 L. L. ZHAO, X. H. CAO and H. J. ZHANG

by ([6, 7]): σe(T ) = {λ ∈ C : T − λI is not Fredholm}, σw(T ) = {λ ∈ C : T − λI is not Weyl},

σb(T ) = {λ ∈ C : T − λI is not Browder}, σSF+
(T ) = {λ ∈ C : T − λI is not upper semi-

Fredholm}, σSF
−

(T ) = {λ ∈ C : T−λI is not lower semi-Fredholm}. The property of consistency

in Fredholm and index has been studied in [3]. Using a new spectrum defined in view of the

property of consistency in Fredholm and index, the main purpose of this paper is to give the

relation between the CFI property (see definition in Section 2) and Weyl type theorem. Also the

equivalence of Weyl’s theorem and property (ω) is studied.

2. CFI operator and Weyl type theorem

We begin with a definition [3]: we say T ∈ B(H) is consistent in Fredholm and index (abbrev.

a CFI operator) or T has CFI property, if for each B ∈ B(H), TB and BT are Fredholm together

and ind(TB) = ind(BT ) = ind(B) or not Fredholm together.

Let

ρ1(T ) = {λ ∈ C : T − λI is a CFI operator},

and let σ1(T ) = C\ρ1(T ). Clearly, λ0 ∈ σ1(T ) if and only if T − λ0I is semi-Fredholm but

T − λ0I is not Weyl. By perturbation theorem of semi-Fredholm operator, σ1(T ) is an open

set in the spectrum σ(T ) of operator T . Let H(T ) be the class of complex-valued functions

which are analytic in a neighborhood of σ(T ) and are not constant on any neighbourhood of any

component of σ(T ).

Weyl [13] examined the spectra of all compact perturbations of a hermitian operator on

Hilbert space and found in 1909 that their intersection consisted precisely of those points of the

spectrum which were not isolated eigenvalues of finite multiplicity. This “Weyl’s theorem” has

been extended to hyponormal and to Toeplitz operators [5], to seminormal and other operators

[2, 4] and to Banach spaces operators [9, 10]. Variants have been discussed by Harte and Lee [8]

and Rakočevic̀ [11].

We say that the Weyl’s theorem holds for T ∈ B(H) if there is equality

σ(T )\σw(T ) = π00(T ).

Harte and Lee [8] have discussed a variant of the Weyl’s theorem: “the Browder’s theorem” holds

for T if

σ(T ) = σw(T ) ∪ π00(T ).

What is missing is the disjointness between the Weyl spectrum and the isolated eigenvalues of

finite multiplicity: equivalently

σw(T ) = σb(T ).

Rakočevic̀ [12] has looked at variants of “Weyl’s theorem” and “Browder’s theorem” in which

the spectrum is replaced by the approximate point spectrum: “the a-Weyl’s theorem” holds for

T if

σa(T )\σea(T ) = πa
00(T ),
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where we write σa(T ) for the approximate point spectrum of T , πa
00(T ) = π0(T )∩ iso σa(T ) and

σea(T ) =
⋂

{σa(T +K) : K ∈ K(H)}. It is well known that σea(T ) coincides with σea(T ) = {λ ∈

C : T −λI /∈ SF−

+ (H)}, where SF−

+ (H) = {T ∈ B(H), T is upper semi-Fredholm of ind(T ) ≤ 0}.

“The a-Browder’s theorem” holds for T if

σea(T ) = σab(T ),

where σab(T ) =
⋂

{σa(T + K) : K ∈ K(H) ∩ comm(T )}. We know that λ /∈ σab(T ) if and only

if T − λI is upper semi-Fredholm and T − λI has finite ascent. We call σea(T ) and σab(T ) the

essential approximate point spectrum and the Browder essential approximate point spectrum,

respectively. T ∈ B(H) is said [1] to satisfy property (ω) if

σa(T )\σea(T ) = π00(T ).

Property (ω) implies Weyl’s theorem, a-Browder’s theorem, Browder’s theorem [1].

Let ρ2(T ) = {λ ∈ C: there exists ǫ > 0 such that T − µI is semi-Fredholm and

N(T − µI) ⊆
∞
⋂

n=1

R[(T − µI)n] if 0 < |µ − λ| < ǫ}

and let σ2(T ) = C\ρ2(T ), σG(T ) = {λ ∈ C : R(T − λI) is not closed}.

Theorem 2.1 Weyl’s theorem holds for T ∈ B(H),

⇐⇒ σb(T ) = σ1(T ) ∪ σ2(T ) ∪ {λ ∈ σ(T ) : n(T − λI) = 0} ∪ {λ ∈ C : n(T − λI) = ∞}

⇐⇒ σb(T ) = σ1(T ) ∪ {λ ∈ σ(T ) : n(T − λI) = 0} ∪ {λ ∈ C : n(T − λI) = ∞} ∪

[accσ(T )
⋂

σG(T )].

Proof Suppose Weyl’s theorem holds for T . Clearly σ1(T ) ∪ σ2(T ) ∪ {λ ∈ σ(T ) : n(T − λI) =

0}∪{λ ∈ C : n(T−λI) = ∞} ⊆ σb(T ), we only need prove σ1(T )∪σ2(T )∪{λ ∈ σ(T ) : n(T−λI) =

0} ∪ {λ ∈ C : n(T − λI) = ∞} ⊇ σb(T ). Let λ0 /∈ σ1(T ) ∪ σ2(T ) ∪ {λ ∈ σ(T ) : n(T − λI) =

0} ∪ {λ ∈ C : n(T − λI) = ∞}. Then 0 < n(T − λ0I) < ∞, λ0 /∈ σ1(T ), and there exists ǫ > 0

such that T −λI is semi-Fredholm, and N(T −λI) ⊆
⋂∞

n=1
R[(T −λI)n] if 0 < |λ0 −λ| < ǫ since

λ0 /∈ σ2(T ). Since λ0 /∈ σ1(T ), it follows that T − λI is CFI if ǫ is small enough. The fact that

T − λI is semi-Fredholm tells us that T − λI is Weyl [3, Theorem 3.2]. Then T − λI is Browder

since Weyl’s theorem holds for T . Thus N(T − λI) = N(T − λI) ⊆
⋂

∞

n=1
R[(T − λI)n] = {0}

(see [12, Theorem 3.4]), which means that T − λI is invertible if 0 < |λ − λ0| is small enough.

That is λ0 ∈ isoσ(T ). This shows that λ0 ∈ π00(T ) since 0 < n(T − λI) < ∞. Since Weyl’s

theorem holds for T , it follows that T − λ0I is Browder. Now we prove λ0 /∈ σb(T ).

For the converse, let λ0 ∈ σ(T )\σw(T ). Then λ0 /∈ σ1(T ) ∪ σ2(T ) ∪ {λ ∈ σ(T ) : n(T − λI) =

0} ∪ {λ ∈ C : n(T − λI) = ∞}, that is λ0 /∈ σb(T ). This means that σ(T )\σw(T ) ⊆ π00(T ).

Let λ0 ∈ π00(T ). It is easy to see that λ0 /∈ σ1(T ) ∪ σ2(T ) ∪ {λ ∈ σ(T ) : n(T − λI) =

0}
⋃

{λ ∈ C : n(T − λI) = ∞}. Then λ0 /∈ σb(T ), which means that λ0 ∈ σ(T )\σw(T ). That is

π00(T ) ⊆ σ(T )\σw(T ).

Hence, π00(T ) = σ(T )\σw(T ).

In the same way, we can prove that Weyl’s theorem holds for T if and only if σb(T ) =

σ1(T ) ∪ {λ ∈ σ(T ) : n(T − λI) = 0} ∪ {λ ∈ C : n(T − λI) = ∞} ∪ [accσ(T )
⋂

σG(T )]. 2
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Remark 2.1 “T (T ∗) satisfies Weyl’s theorem” cannot imply “Weyl’s theorem holds for T ∗

(T )”.

For example, let T ∈ B(ℓ2) be defined by: T (x1, x2, x3, . . .) = (0, x1,
1

2
x2,

1

3
x3, . . .). Then

σ(T ) = σw(T ) = {0} and π00(T ) = ∅, that is, σ(T ) \ σw(T ) = π00(T ), which means that

Wely’s theorem holds for T . But since σ(T ∗) = σw(T ∗) = {0}, while π00(T
∗) = {0}, that is,

σ(T ) \ σw(T ) 6= π00(T ), which shows that Wely’s theorem fails for T ∗.

It is well known that T is called isoloid if isoσ(T ) ⊆ {λ ∈ C : n(T − λI) > 0}.

Theorem 2.2 Suppose that both T and T ∗ are isoloid and satisfy Weyl’s theorem,

⇐⇒ σb(T ) = σ1(T ) ∪ σ2(T ) ∪ {λ ∈ C : n(T − λI) = n(T ∗ − λI) = ∞}.

⇐⇒ σb(T ) = σ1(T ) ∪ {λ ∈ C : n(T − λI) = n(T ∗ − λI) = ∞} ∪ [accσ(T )
⋂

σG(T )].

Proof Suppose that T and T ∗ are isoloid and both of them satisfy Weyl’s theorem. It is clear that

σ1(T )∪σ2(T )∪{λ ∈ C : n(T −λI) = n(T ∗ −λI) = ∞} ⊆ σb(T ). Let λ0 /∈ σ1(T )∪ σ2(T )∪{λ ∈

C : n(T −λI) = n(T ∗−λI) = ∞}. Then n(T −λ0I) < ∞ or n(T ∗−λ0I) < ∞, also λ0 /∈ σ1(T ),

and there exists ǫ > 0 such that T − λI is semi-Fredholm, and N(T − λI) ⊆
⋂∞

n=1
R[(T − λI)n]

if 0 < |λ0 − λ| < ǫ. Let ǫ be sufficiently small. Then T − λI is Weyl [3, Theorem 3.2]. Since

Weyl’s theorem holds for T , we have that T − λI is Browder. Then N(T − λI) = N(T − λI) ⊆
⋂∞

n=1
R[(T − λI)n] = {0} (see [12, Theorem 3.4]), which means that T − λI is invertible. That

is λ0 ∈ isoσ(T ). It is easy to see that λ0 ∈ π00(T ) or λ0 ∈ π00(T
∗) since both T and T ∗ are

isoloid. Using the fact that Weyl’s theorem holds for T and T ∗, we have that λ0 /∈ σb(T ).

Conversely, suppose that σb(T ) = σ1(T ) ∪ σ2(T ) ∪ {λ ∈ C : n(T − λI) = n(T ∗ − λI) = ∞}.

Let λ0 ∈ σ(T )\σw(T ). Then λ0 /∈ σ1(T )∪ σ2(T ) ∪ {λ ∈ C : n(T − λI) = n(T ∗ − λI) = ∞}, thus

λ0 /∈ σb(T ). It implies that λ0 ∈ π00(T ), that is, σ(T )\σw(T ) ⊆ π00(T ). For the converse, let

λ0 ∈ π00(T ). Then λ0 /∈ σ1(T )∪σ2(T )∪{λ ∈ C : n(T −λI) = n(T ∗−λI) = ∞}, thus λ0 /∈ σb(T ).

This shows that λ0 ∈ σ(T )\σw(T ), and we get π00(T ) ⊆ σ(T )\σw(T ). Hence, Weyl’s theorem

holds for T .

We will prove that T is isoloid. Suppose λ0 ∈ isoσ(T ), but n(T − λ0I) = 0. It implies

λ0 /∈ σ1(T ) ∪ σ2(T ) ∪ {λ ∈ C : n(T − λI) = n(T ∗ − λI) = ∞}. Then λ0 /∈ σb(T ). Since

n(T − λ0I) = 0, we know T − λ0I is invertible. It is in contradiction to the fact λ0 ∈ isoσ(T ).

Similarly to the above proof, it can be proved that Weyl’s theorem holds for T ∗ and T ∗ is

isoloid.

In the same way, we can prove that T and T ∗ are isoloid and satisfy Weyl’s theorem if and

only if σb(T ) = σ1(T ) ∪ {λ ∈ C : n(T − λI) = n(T ∗ − λI) = ∞} ∪ [accσ(T )
⋂

σG(T )]. 2

Remark 2.2 “Weyl’s theorem holds for T (T ∗)” does not imply “Property (ω) holds for T

(T ∗)”. For example, let A, B ∈ B(ℓ2) be defined by: A(x1, x2, x3, . . .) = (0, x1, x2, x3, . . .);

B(x1, x2, x3, . . .) = (x1, 0, x3, x4, . . .), and let T =

(

A 0

0 B

)

.

Then σ(T ) = σw(T ) = {λ ∈ C : |λ| ≤ 1}, π00(T ) = ∅, σa(T ) = {0} ∪ {λ ∈ C : |λ| = 1}, and

σea(T ) = {λ ∈ C : |λ| = 1}. Clearly, Weyl’s theorem holds for T but Property (ω) fails for T .

In the following we explore when Property (ω) holds for T .
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Theorem 2.3 Property (ω) holds for T and T ∗ if and only if Weyl’s theorem holds for T and T ∗

and σb(T ) = ∂σ1(T )∪σ2(T )∪{λ ∈ C : n(T −λI) = n(T ∗−λI) = ∞}∪{λ ∈ σ(T ) : n(T −λI) =

0} ∪ {λ ∈ σ(T ) : n(T ∗ − λI) = 0}.

Proof Suppose that Property (ω) holds for T and T ∗. We only need to prove σb(T ) = ∂σ1(T )∪

σ2(T ) ∪ {λ ∈ C : n(T − λI) = n(T ∗ − λI) = ∞} ∪ {λ ∈ σ(T ) : n(T − λI) = 0} ∪ {λ ∈ σ(T ) :

n(T ∗−λI) = 0}. Clearly we have ∂σ1(T )∪σ2(T )∪{λ ∈ C : n(T −λI) = n(T ∗−λI) = ∞}∪{λ ∈

σ(T ) : n(T −λI) = 0}∪{λ ∈ σ(T ) : n(T ∗−λI) = 0} ⊆ σb(T ). Let λ0 /∈ ∂σ1(T )∪σ2(T )∪{λ ∈ C :

n(T −λI) = n(T ∗ −λI) = ∞}∪{λ ∈ σ(T ) : n(T − λI) = 0}∪ {λ ∈ σ(T ) : n(T ∗ − λI) = 0}. We

claim that λ0 /∈ σ1(T ). Otherwise, we have λ0 ∈ σ1(T ), then ind(T−λ0I) > 0 or ind(T−λ0I) < 0.

Thus λ0 ∈ σa(T ) \ σea(T ) or λ0 ∈ σa(T ∗) \ σea(T ∗). Since Property (ω) holds for T and T ∗,

we know that T − λ0I is Browder. It is in contradiction to the fact that ind(T − λ0I) > 0 or

ind(T − λ0I) < 0. By λ0 /∈ σ2(T ), there exists ǫ > 0 such that T − λI is semi-Fredholm, and

N(T −λI) ⊆
⋂∞

n=1
R[(T −λI)n] if 0 < |λ0−λ| < ǫ. Let ǫ > 0 be small enough. Since λ /∈ σ1(T ),

it follows that T − λI is Browder. Then N(T − λI) = N(T − λI) ⊆
⋂∞

n=1
R[(T − λI)n] = {0},

which means that T − λI is invertible. This shows that λ0 ∈ iso σ(T ). Then λ0 ∈ π00(T ) or

λ0 ∈ π00(T
∗) since n(T −λ0I) < ∞ or n(T ∗−λ0I) < ∞. Using the condition that Property (ω)

holds for T and T ∗, we know T − λ0I is Browder. Thus λ0 /∈ σb(T ).

Conversely, suppose Weyl’s theorem holds for T and T ∗ and σb(T ) = ∂σ1(T )∪σ2(T )∪{λ ∈ C :

n(T−λI) = n(T ∗−λI) = ∞}∪{λ ∈ σ(T ) : n(T−λI) = 0}∪{λ ∈ σ(T ) : n(T ∗−λI) = 0}. We have

that π00(T ) = σ(T )\σw(T ) ⊆ σa(T )\σea(T ) and π00(T
∗) = σ(T ∗)\σw(T ∗) ⊆ σa(T ∗)\σea(T ∗).

We only need to prove σa(T ) \ σea(T ) ⊆ π00(T ) and σa(T ∗) \ σea(T ∗) ⊆ π00(T
∗). Let λ0 ∈

σa(T ) \ σea(T ). It is easy to see that n(T ∗ − λI) 6= 0, then λ0 /∈ ∂σ1(T ) ∪ σ2(T ) ∪ {λ ∈ C :

n(T − λI) = n(T ∗ − λI) = ∞} ∪ {λ ∈ σ(T ) : n(T − λI) = 0} ∪ {λ ∈ σ(T ) : n(T ∗ − λI) = 0}.

This shows that λ0 /∈ σb(T ), then λ0 ∈ π00(T ), that is σa(T ) \ σea(T ) ⊆ π00(T ). Also we can

prove that σa(T ∗) \ σea(T ∗) ⊆ π00(T
∗). 2

Theorem 2.4 Property (ω) holds for T if and only if σb(T ) = ∂σ1(T ) ∪ σ2(T ) ∪ {λ ∈ σ(T ) :

n(T − λI) = 0} ∪ {λ ∈ C : n(T − λI) = ∞} ∪ {λ ∈ C : n(T − λI) > d(T − λI)}.

Proof Suppose Property (ω) holds for T . The inclusion ∂σ1(T )∪σ2(T )∪{λ ∈ σ(T ) : n(T−λI) =

0} ∪ {λ ∈ C : n(T − λI) = ∞} ∪ {λ ∈ C : n(T − λI) > d(T − λI)} ⊆ σb(T ) is clear. For the

converse inclusion, let λ0 /∈ ∂σ1(T )∪σ2(T )∪ {λ ∈ σ(T ) : n(T −λI) = 0}∪ {λ ∈ C : n(T −λI) =

∞}∪{λ ∈ C : n(T −λI) > d(T −λI)}. Then 0 < n(T −λ0I) < ∞, n(T −λ0I) ≤ d(T −λ0I), and

λ0 /∈ ∂σ1(T ). We assert that λ0 /∈ σ1(T ). Otherwise, we get λ0 ∈ σ1(T ), then λ0 ∈ σa(T )\σea(T ).

Thus T −λ0I is Browder since Property (ω) holds for T , it is in contradiction to ind(T −λ0I) < 0.

Then λ0 ∈ int ρ1(T ). Using the fact that λ0 /∈ σ2(T ), we can prove that λ0 ∈ isoσ(T ). Then

λ0 ∈ π00(T ) since 0 < n(T − λ0I) < ∞. Since property (ω) holds for T and T ∗, T − λ0I is

Browder, that is, λ0 /∈ σb(T ).

Conversely, suppose σb(T ) = ∂σ1(T ) ∪ σ2(T ) ∪ {λ ∈ σ(T ) : n(T − λI) = 0} ∪ {λ ∈ C :

n(T −λI) = ∞}∪{λ ∈ C : n(T −λI) > d(T −λI). Let λ0 ∈ σa(T )\σea(T ). Then λ0 /∈ ∂σ1(T )∪

σ2(T )∪{λ ∈ σ(T ) : n(T −λI) = 0}∪{λ ∈ C : n(T −λI) = ∞}∪{λ ∈ C : n(T −λI) > d(T −λI),
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which implies that λ0 /∈ σb(T ). We get λ0 ∈ π00(T ), that is, σa(T ) \ σea(T ) ⊆ π00(T ). For the

converse inclusion, let λ0 ∈ π00(T ). Then n(T −λ0I) ≤ d(T −λ0I). Thus λ0 /∈ ∂σ1(T )∪σ2(T )∪

{λ ∈ σ(T ) : n(T − λI) = 0} ∪ {λ ∈ C : n(T − λI) = ∞} ∪ {λ ∈ C : n(T − λI) > d(T − λI)}. It

follows that λ0 /∈ σb(T ), then λ0 ∈ σa(T ) \ σea(T ), that is, π00(T ) ⊆ σa(T ) \ σea(T ). Therefore,

property (ω) holds for T . 2

Remark 2.3 “Property (ω) holds for T (T ∗)” does not imply “Property (ω) holds for T ∗ (T )”.

For example let T ∈ B(ℓ2) be defined as in Remark 2.2. We know that σa(T ) = σea(T ) = {0}

and π00(T ) = ∅, which means that Property (ω) holds for T . But since π00(T
∗) = {0} and

σa(T ∗) = σea(T ∗) = {0}, we know that that Property (ω) fails for T ∗.

Let ρa(T ) = C\σa(T )(ρs(T ) = C\σs(T )). Similarly to the proof of Theorem 2.3, we can

prove the following

Theorem 2.5 T and T ∗ are isoloid and satisfy property (ω) if and only if σb(T ) = ∂σ1(T ) ∪

σ2(T ) ∪ {λ ∈ C : n(T − λI) = n(T ∗ − λI) = ∞} ∪ {[ρa(T ) ∪ ρs(T )] ∩ σ(T )}.

3. Weyl type theorem for operator matrices

The study of upper triangular operator matrices arises naturally from the following fact: if

A is a Hilbert space operator and M is an invariant subspace for A, then A has the following

2 × 2 upper triangular operator matrix representation:

A =

(

∗ ∗

0 ∗

)

: M ⊕ M⊥ −→ M ⊕ M⊥,

and one way to study operator is to see them as entries of simpler operators. The upper triangular

operator matrices have been studied by many authors [14, 15]. When A ∈ B(H) and B ∈ B(K)

are given, we denote by MC an operator acting on H ⊕K of the form MC =

(

A C

0 B

)

, where

C ∈ B(K, H). If C = 0, let M0 =

(

A 0

0 B

)

.

Wely’s theorem (property (ω)) may not hold for a direct sum of operators for which Weyl’s

theorem (property (ω)) holds. In this section, using the new spectrum set σ1(T ) and σ2(T ), we

explore the Weyl’s type theorem (property (ω)) for 2× 2 operator matrices. We begin with [16,

Lemma 3.1].

Lemma 3.1 For a given pair (A, B) of operators, if both A and B have finite ascent, then for

every C ∈ B(K, H), MC has finite ascent.

Theorem 3.1 Let A ∈ B(H) be such that ∂σ1(A) ∪ σ2(A) = σw(A) and let B ∈ B(K).

(1) If Weyl’s theorem holds for MC0
for some C0 ∈ B(K, H), then it holds for MC for every

C ∈ B(K, H);

(2) If property (ω) holds for MC0
for some C0 ∈ B(K, H), then it holds for MC for every

C ∈ B(K, H).
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Proof (1) For any C ∈ B(K, H), suppose MC − λ0I is Weyl but not invertible. From

MC − λ0I =

(

I 0

0 B − λ0I

)(

I C

0 I

)(

A − λ0I C

0 I

)

we know A − λ0I is upper semi-Fredholm, B − λ0I is lower semi-Fredholm and A − λ0I is

Fredholm if and only if B − λ0I is Fredholm. Since A − λ0I is upper semi-Fredholm, there is

λ0 /∈ ∂σ1(A)∪σ2(A). It follows that λ0 /∈ σw(A), which means that A−λ0I is Weyl. Then B−λ0I

is Fredholm and hence ind(MC0
−λ0I) = ind(A−λ0I)+ind(B−λ0I) = ind(MC −λ0I) = 0. This

shows that MC0
−λ0I is Weyl. But since Weyl’s theorem holds for MC0

, it follows that MC0
−λ0I

is Browder, that is asc(A − λ0I) < ∞ and des(B − λ0I) < ∞. Thus A − λ0I is Browder since

A−λ0I is Weyl. The fact that both MC0
−λ0I and A−λ0I are Browder tells us that B−λ0I is

Browder. This proves that MC −λ0I is Browder. Now we get that σ(MC)\σw(MC) ⊆ π00(MC).

For the reverse inclusion, first suppose λ0 ∈ π00(MC). Then 0 < n(MC − λ0I) < ∞ and

there exists ǫ > 0 such that MC − λ0I is invertible if 0 < |λ − λ0| < ǫ. It follows that A − λI

is bounded from below and B − λI is surjective if 0 < |λ − λ0| < ǫ. Then λ /∈ ∂σ1(A) ∪ σ2(A).

Thus A−λI is Weyl and hence A−λI is invertible. This implies B−λI is invertible too. Hence

λ0 ∈ isoσ(MC0
). We will show that 0 < n(MC0

− λ0I) < ∞. First of all observe that there is a

general inclusion

N(MC − λ0I) ⊆ (A − λ0I)−1[CN(B − λ0I)] ⊕ N(B − λ0I),

which forces N(A−λ0I)⊕N(B−λ0I) to be nontrivial because otherwise N(MC −λ0I) would be

trivial, a contradiction. Now we must show that N(A−λ0I)⊕N(B −λ0I) is finite-dimensional.

But since N(A−λ0I)⊕{0} ⊆ N(MC −λ0I), it follows that n(A−λ0I) < ∞. Thus we only need

to prove that n(B−λ0I) < ∞. If n(B−λ0I) = ∞, without loss of generality, suppose λ0 ∈ σ(A),

then λ0 ∈ isoσ(A), which implies that λ0 /∈ ∂σ1(A) ∪ σ2(A). Thus A − λ0I is Browder. Now

there are two cases to consider.

Suppose that CN(B − λ0I) is finite-dimensional. Then N(C) must contain an orthonormal

sequence {yi} in N(B − λ0I). But then
(

0

yi

)

∈ N(MC − λ0I), which means that N(MC − λ0I)

is infinite-dimensional, a contradiction.

Suppose that CN(B − λ0I) is infinite-dimensional. Since A − λ0I is Browder, R(A − λ0I)⊥

must be finite-dimensional. Therefore CN(B − λ0I) ∩ R(A − λ0I) is infinite-dimensional. Now

we can find an orthonormal sequence {yi} in N(B − λ0I) for which there exists a sequence{xi}

in H such that (A − λ0I)xi = Cyi for each i = 1, 2, . . . . Then
(

xi

−yi

)

∈ N(MC − λ0I), which

implies that N(MC − λ0I) is infinite-dimensional, a contradiction again.

From the preceding proof, we know that 0 < dim[N(A − λ0I) ⊕ N(B − λ0I)] < ∞. The

fact that N(MC − λ0I) ⊆ (A− λ0I)−1[CN(B − λ0I)]⊕N(B − λ0I) implies n(MC − λ0I) < ∞.

If N(MC − λ0I) = {0}, then N(A − λ0I) = {0}, which means that A − λ0I is invertible.

Thus 0 < n(B − λ0I) < ∞. Let y0 ∈ N(B − λ0I) and y0 6= 0. There exists x0 ∈ H such

that (A − λ0I)x0 = C0y0, because R(A − λ0I) is surjective. Then
(

xi

−yi

)

∈ N(MC − λ0I),

a contradiction. Hence λ0 ∈ π00(MC0
). Since Weyl’s theorem holds for MC0

, it follows that

MC0
− λ0I is Browder. We can prove that A− λ0I is Browder, so is B − λ0I. Hence MC − λ0I
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is Browder. Thus λ0 ∈ σ(MC)\σw(MC). Now we prove that Weyl’s theorem holds for MC for

each C ∈ B(K, H).

(2) For any C ∈ B(K, H), suppose λ0 ∈ σa(MC)\σea(MC). Then A − λ0I is upper semi-

Fredholm. We assert that A − λ0I is Weyl and B − λ0I is upper semi-Fredholm, this is an

immediate consequence of ∂σ1(A) ∪ σ2(A) = σw(A). It follows that ind(MC0
− λ0I) = ind(A −

λ0I) + ind(B − λ0I) = ind(MC − λ0I) ≤ 0. From the general inclusion N(MC − λ0I) ⊆

(A− λ0I)−1[CN(B − λ0I)]⊕N(B − λ0I) and the condition that n(MC − λ0I) > 0, we get that

0 < dim[N(A − λ0I) ⊕ N(B − λ0I)] < ∞. We claim that n(MC0
− λ0I) > 0. Otherwise, let

N(MC0
−λ0I) = {0}. Then A−λ0I is invertible. This shows that 0 < dimN(B−λ0I) < ∞. Let

y0 ∈ N(B − λ0I) and y0 6= 0. Using the fact that R(A − λ0I) is surjective, we know that there

is x0 ∈ H such that (A − λ0I)x0 = C0x0. Then
(

x0

−y0

)

∈ N(MC0
− λ0I), it is in contradiction

to the assumption that N(MC0
− λ0I) = {0}. Then n(MC0

− λ0I) > 0, which means that λ0 ∈

σa(MC0
)\σea(MC0

). Since property (ω) holds for MC0
, MC0

− λ0I is Browder. Similarly to the

proof (1), we get that MC −λ0I is Browder. Now we have proved σa(MC)\σea(MC) ⊆ π00(MC).

Conversely, similarly to the proof (1), we can prove that π00(MC) ⊆ σ(MC)\σw(MC).

From the above proof, property (ω) holds for MC . 2
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