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Abstract Let D = {{0}, K, L, M,X} be a strongly double triangle subspace lattice on a non-

zero complex reflexive Banach space X , which satisfies that one of three sums K +L, L+M and

M + K is closed. It is shown that local φ-derivations and φ-derivations at zero point on AlgD

are generalized φ-derivations.
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1. Introduction

Let A be a unital algebra. Recall that a derivation δ is a linear map from A into A such that

δ(AB) = δ(A)B+Aδ(B) for all A, B ∈ A. A generalized derivation δ is a linear map from A into

A such that δ(AB) = δ(A)B + Aδ(B)−Aδ(I)B for all A, B ∈ A. Let φ be an automorphism on

A. A φ-derivation η is a linear map from A into A such that η(AB) = η(A)B + φ(A)η(B) for

all A, B ∈ A. A generalized φ-derivation η is a linear map from A into A such that η(AB) =

η(A)B + φ(A)η(B) − φ(A)η(I)B for all A, B ∈ A. A local φ-derivation η is a linear map from

A into A if for each A ∈ A there is a φ-derivation δA from A into A, depending on A, such

that η(A) = δA(A). A φ-derivation at zero point η is a linear map from A into A such that

η(A)B + φ(A)η(B) = 0 for all A, B ∈ A with AB = 0.

Let X be a non-zero complex reflexive Banach space with topological dual X ∗. If T ∈ B(X ),

then R(T ) denotes the range of T . For a subset E of X , we denote by lin.span{E} the linear

span of E. If e∗ ∈ X ∗, f ∈ X , then e∗ ⊗ f denotes the rank one operator (e∗ ⊗ f)(x) = e∗(x)f ,
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for all x ∈ X . For any non-empty subset Y ⊆ X , Y ⊥ denotes its annihilator, that is, Y ⊥ = {f∗ ∈

X ∗ : f∗(y) = 0, ∀y ∈ Y }. For any non-empty subset Z ⊆ X ∗,⊥ Z denotes its pre-annihilator,

that is, ⊥Z = {x ∈ X : f∗(x) = 0, ∀f∗ ∈ Z}. Since X is reflexive, we have ⊥(Y ⊥) = Y and

(⊥Z)⊥ = Z for any closed subspaces Y ⊆ X and Z ⊆ X ∗.

A subspace lattice on X is a family L of subspaces of X which contains {0} and X , and is

closed under the intersection and closed linear span. That is, for any subfamily {Lγ}γ∈Γ of L,

we have ∩γ∈ΓLγ ∈ L and ∨γ∈ΓLγ ∈ L. For any subspace lattice L of X , we define AlgL by

AlgL = {T ∈ B(X ) : TL ⊆ L, ∀L ∈ L} and L⊥ = {L⊥ : L ∈ L}.

A double triangle subspace lattice on X is a set D = {{0}, K, L, M,X} of subspaces of X

satisfying K∩L = L∩M = M∩K = {0} and K∨L = L∨M = M∨K = X . If one of three sums

K +L, L+M and M +K is closed, we say that D is a strongly double triangle subspace lattice.

It is known in [1] that AlgD contains no rank one operators. AlgD may or may not contain

non-zero finite rank operators [2, Theorem 2.1]. Observe that D⊥ = {{0}, K⊥, L⊥, M⊥,X ∗} is

a double triangle subspace lattice on the reflexive Banach space X ∗. As Definition 2.1 in [2],

put K0 = K ∩ (L + M), L0 = L ∩ (M + K), M0 = M ∩ (K + L) and Kp = K⊥ ∩ (L⊥ + M⊥),

Lp = L⊥ ∩ (M⊥ + K⊥), Mp = M⊥ ∩ (K⊥ + L⊥), respectively. Note that Kp, Lp and Mp play

the same role for D⊥ as K0, L0 and M0 do for D. Each of K0, L0, M0 is an invariant linear

manifold of AlgD; each of Kp, Lp, Mp is an invariant linear manifold of AlgD⊥. By Lemma

2.2 in [2], dimensions of K0, L0 and M0 are the same, denoted by m, where m = ∞ indicates

that each of the K0, L0 and M0 are infinite-dimensional. Similarly, the dimension of Kp, Lp and

Mp are the same, denoted by n (Again n = ∞ indicates that each of the Kp, Lp and Mp are

infinite-dimensional).

Derivations and local derivations from some reflexive subalgebras of B(X ) into B(X ) were

studied by several papers [3–9]. In [10], we studied φ-derivations on some CSL algebras. In

[11], we studied derivations and local derivations on strongly double triangle subspace lattice

algebras. In [12], authors studied σ-derivable mapping at zero point on nest algebras. In this

paper, we consider local φ-derivation and φ-derivation at zero point between strongly double

triangle subspace lattice algebras. We show that every local φ-derivation and φ-derivation at

zero point on AlgD are generalized φ-derivations. We next recall some results which are required

in Sections 2 and 3.

Lemma 1.1 ([2, Lemma 2.1]) Let D be a double triangle subspace lattice on X . Then the

following statements hold

(i) K0 ⊆ K ⊆⊥ Kp, L0 ⊆ L ⊆⊥ Lp and M0 ⊆ M ⊆⊥ Mp;

(ii) K0 ∩ L0 = L0 ∩ M0 = M0 ∩ K0 = {0};

(iii) Kp ∩ Lp = Lp ∩ Mp = Mp ∩ Kp = {0};

(iv) K0 + L0 = L0 + M0 = M0 + K0 = K0 + L0 + M0;

(v) Kp + Lp = Lp + Mp = Mp + Kp = Kp + Lp + Mp.

The presence or absence of finite rank operators is governed by the following theorem.
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Theorem 1.1 ([2, Theorem 2.1]) Let D be a double triangle subspace lattice on X .

(i) Every finite rank operator of AlgD has even rank (possibly zero);

(ii) If e, f ∈ X and e∗, f∗ ∈ X∗ are non-zero vectors satisfying e ∈ K0, f ∈ L0, e + f ∈ M0

and e∗ ∈ Kp, f∗ ∈ Lp, e∗ + f∗ ∈ Mp, then R = e∗ ⊗ f − f∗ ⊗ e is a rank two operator of AlgD.

Moreover, every rank two operator of AlgD has this form for some such vectors e, f , e∗, f∗;

(iii) AlgD contains a non-zero finite rank operator if and only if m 6= 0 and n 6= 0;

(iv) Every finite rank operator of AlgD (if there are any) is a finite sum of rank two operators

of AlgD.

Theorem 1.2 ([2, Theorem 2.3]) Let D = {{0}, K, L, M,X} be a strongly double triangle

subspace lattice on X . Then

(i) K0 + L0 + M0 is dense in X ;

(ii) Kp + Lp + Mp is dense in X ∗.

Lemma 1.2 ([2, Lemma 2.3]) If AlgD contains a rank two operator, then

(i) lin.span{R(R) : R ∈ AlgD and rankR = 2} = K0 + L0 + M0;

(ii) ∩{kerR : R ∈ AlgD and rankR = 2} =⊥ {Kp + Lp + Mp}.

2. Local φ-derivations on AlgD

Let D = {{0}, K, L, M,X} be a strongly double triangle subspace lattice on X . It is easy to

prove that m 6= 0 and n 6= 0. It follows from Theorem 1.1 that AlgD contains non-zero finite

rank operators . We may assume that X = K +L. Semi-simplicity follows from Theorem 4 [13].

So there exists a rank two operator in AlgD which is not nilpotent. Let φ be an isomorphism

and η a local φ-derivation on AlgD. In this section, we consider the local φ-derivations on AlgD.

By the same method in [10], we also prove the following lemmas.

Lemma 2.1 (1) η(E) = η(E)E + φ(E)η(E) for all idempotents E in AlgD;

(2) Let A, B, C ∈ AlgD. If AB = BC = 0, then φ(A)η(B)C = 0.

Lemma 2.2 Let E and F be idempotents in AlgD. For all A in AlgD, we have η(EAF ) =

η(EA)F + φ(E)η(AF ) − φ(E)η(A)F .

The following lemmas are important for us to prove our main results.

Lemma 2.3 Let R and S be rank two operators in AlgD. For all A in AlgD, we have η(RAS) =

η(RA)S + φ(R)η(AS) − φ(R)η(A)S.

Proof Let R be an idempotent in AlgD. For rank two operator S, by Theorem 1.1, we assume

that S = u∗⊗ v− v∗⊗u, where u ∈ L0, v ∈ M0, u+ v = β ∈ K0 and u∗ ∈ Lp, v
∗ ∈ Mp, u

∗ + v∗ =

β∗ ∈ Kp. It follows from Lemma 3.2 in [2] that S2 = −u∗(v)S.

Case 1 If u∗(v) 6= 0, then −1
u∗(v)S is an idempotent in AlgD. The consequence follows from

Lemma 2.2 and linearity of η.
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Case 2 If u∗(v) = 0, then there exists a vector v1 ∈ M0 such that u∗(v1) 6= 0. Thus, by

Lemma 1.1 there exist unique vectors u1 ∈ L0 and β1 ∈ K0 such that u1 + v1 = β1. Let

S0 = u∗ ⊗ v1 − v∗ ⊗ u1 and S1 = u∗ ⊗ (v + v1)− v∗ ⊗ (u + u1). It follows from Theorem 1.1 that

we have S1, S0 ∈ AlgD and S = S1 − S0. For operators S1, S0, by the result of Case 1 we have

η(RAS) =η(RAS1) − η(RAS0)

=(η(RA)S1 + φ(R)η(AS1) − φ(R)η(A)S1)−

(η(RA)S0 + φ(R)η(AS0) − φ(R)η(A)S0)

=η(RA)S + φ(R)η(AS) − φ(R)η(A)S.

By the same method, we have η(RAS) = η(RA)S + φ(R)η(AS) − φ(R)η(A)S for all rank

two operators R in AlgD.

Now we prove our main result.

Theorem 2.1 Let D be a strongly double triangle subspace lattice on a Banach space X and

φ be an isomorphism on AlgD. Suppose that η is a local φ-derivation of AlgD. Then η is a

generalized φ-derivation; particularly, if η(I) = 0, then η is a φ-derivation.

Proof Let S and R be rank two operators in AlgD. It follows from Proposition 3.1 in [14] that

there is a rank two operator T in AlgD such that φ(T ) = R. Let A, B be in AlgD. Then TA

and BS are either rank two operators or zero in AlgD. It follows from Lemma 2.3 that we have

η(TABS) = η((TA)BS) = η(TAB)S + φ(TA)η(BS) − φ(TA)η(B)S,

η(TABS) = η(T (AB)S) = η(TAB)S + φ(T )η(ABS) − φ(T )η(AB)S.

It follows from φ(T ) = R that Rη(ABS) = R[η(AB)S+φ(A)η(BS)−φ(A)η(B)S]. By Lemma

2.1 in [14], we get η(ABS) = η(AB)S+φ(A)η(BS)−φ(A)η(B)S. Let C be in AlgD. Replacing B

by C and S by BS, respectively, we have η(ACBS) = η(AC)BS +φ(A)η(CBS)−φ(A)η(C)BS.

Taking C = I, we have η(ABS) = η(A)BS + φ(A)η(BS) − φ(A)η(I)BS. Combining above two

equations, we have η(AB)S = [η(A)B + φ(A)η(B) − φ(A)η(I)B]S. It follows from Lemma 2.1

in [14] that we have η(AB) = η(A)B + φ(A)η(B) − φ(A)η(I)B.

3. φ-derivations at zero point on AlgD

Let η be a φ-derivation at zero point on AlgD. In this section, we consider the φ-derivations

at zero point on AlgD. Let E⊥ be I − E for every idempotent E in AlgD.

Lemma 3.1 φ(E)η(I) = η(I)E for all idempotents E in AlgD.

Proof Since EE⊥ = 0 = E⊥E, we obtain that η(E)E⊥ + φ(E)η(E⊥) = 0 and η(E⊥)E +

φ(E⊥)η(E) = 0. It follows from the linearity of η and φ that η(E) − η(E)E + φ(E)η(I) −

φ(E)η(E) = 0. Therefore we have

φ(E)η(I) = η(E)E + φ(E)η(E) − η(E)
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= η(E)E + η(E⊥)E + φ(E)η(E) + φ(E⊥)η(E) − η(E)

= η(E + E⊥)E + φ(E + E⊥)η(E) − η(E)

= η(I)E + φ(I)η(E) − η(E) = η(I)E.

Lemma 3.2 η(AE) = η(A)E + φ(A)η(E) − φ(A)η(I)E for all A, E ∈ AlgD, where E is an

idempotent.

Proof It follows from AEE⊥ = 0 = AE⊥E that we have η(AE)E⊥ + φ(AE)η(E⊥) = 0

and η(AE⊥)E + φ(AE⊥)η(E) = 0. By the linearity of η and φ, we have η(AE) − η(AE)E +

φ(AE)η(I) − φ(AE)η(E) = 0 and η(A)E − η(AE)E + φ(A)η(E) − φ(AE)η(E) = 0.

Note that φ(AE) = φ(A)φ(E). Combining above two equations, we get η(AE) = η(A)E +

φ(A)η(E) − φ(A)φ(E)η(I). By Lemma 3.1, we have η(AE) = η(A)E + φ(A)η(E) − φ(A)η(I)E.

Now we prove our main result.

Theorem 3.1 Let D be a strongly double triangle subspace lattice on a Banach space X and

φ be an isomorphism on AlgD. Suppose that η is a φ-derivation at zero point on AlgD. Then η

is a generalized φ-derivation; particularly, if η(I) = 0, then η is a φ-derivation.

Proof We complete the proof by the following several steps.

Claim 1 η(ABR) = η(AB)R+φ(AB)η(R)−φ(AB)η(I)R for any rank two operator R ∈ AlgD

and any operator A, B ∈ AlgD. We assume that R = u∗ ⊗ v − v∗ ⊗ u, where u ∈ L0, v ∈ M0,

u + v = β ∈ K0 and u∗ ∈ Lp, v∗ ∈ Mp, u∗ + v∗ = β∗ ∈ Kp. It follows from Lemma 3.2 in [2]

that we have R2 = −u∗(v)R.

Case 1 If u∗(v) 6= 0, then −1
u∗(v)R is an idempotent in AlgD. The consequence follows from

Lemma 3.2 and linearity of η.

Case 2 If u∗(v) = 0, then there exists a vector v1 ∈ M0 such that u∗(v1) 6= 0. Hence

there exist unique vectors u1 ∈ L0 and β1 ∈ K0 such that u1 + v1 = β1 by Lemma 1.1. Let

R0 = u∗ ⊗ v1 − v∗ ⊗ u1 and R1 = u∗ ⊗ (v + v1) − v∗ ⊗ (u + u1). It follows from Theorem 1.1

that we have R = R1 − R0 and R1, R0 ∈ AlgD. For operators R1, R0, by the result of Case 1

we have

η(ABR) =η(ABR1) − η(ABR0)

=(η(AB)R1 + φ(AB)η(R1) − φ(AB)η(I)R1)−

(η(AB)R0 + φ(AB)η(R0) − φ(AB)η(I)R0)

=η(AB)R + φ(AB)η(R) − φ(AB)η(I)R.

Claim 2 η(AB) = η(A)B + φ(A)η(B) − φ(A)η(I)B for all operators A, B in AlgD.

Let R be a rank two operator in AlgD. Then BR is rank two operator or zero operator. It

follows from the result of Case 1 that we have

η(ABR) = η((AB)R) = η(AB)R + φ(AB)η(R) − φ(AB)η(I)R,
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η(ABR) = η(A(BR)) = η(A)BR + φ(A)η(BR) − φ(A)η(I)BR,

η(BR) = η(B)R + φ(B)η(R) − φ(B)η(I)R.

By an elementary calculation, we have

η(AB)R =η(ABR) − (φ(AB)η(R) − φ(AB)η(I)R)

=η(A)BR + φ(A)η(BR) − φ(A)η(I)BR − φ(AB)η(R) + φ(AB)η(I)R

=η(A)BR + φ(A)η(B)R + φ(A)φ(B)η(R) − φ(A)φ(B)η(I)R−

φ(A)η(I)BR − φ(AB)η(R) + φ(AB)η(I)R

=η(A)BR + φ(A)η(B)R − φ(A)η(I)BR

=(η(A)B + φ(A)η(B) − φ(A)η(I)B)R.

By Lemma 2.1 in [14], we have η(AB) = η(A)B + φ(A)η(B) − φ(A)η(I)B.
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