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Abstract In this paper, we show that the hyponormal Toeplitz operator Tϕ with trigonometric

polynomial symbol ϕ is either normal or completely non-normal. Moreover, if Tϕ is non-normal,

then Tϕ̄ has a dense set of cyclic vectors. Some general conditions are also considered.
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1. Introduction

Let T be the unit circle in the complex plane C, and L2(T) be the Banach space consisting of

the square integrable functions with respect to the normalized arc length measure on T, which

is denoted by dµ = dθ/2π. We write H2 for the classical Hardy space, L∞(T) for the space

consisting of the essentially bounded measurable functions on T, and H∞ for the space of the

bounded analytic functions on the unit disk.

Recall that given ϕ ∈ L∞(T), the Toeplitz operator on H2 with symbol ϕ is the operator Tϕ

defined by Tϕ(g) := P (ϕg), ∀g ∈ H2, where P is the orthogonal projection from L2(T) onto H2.

A Toeplitz operator Tϕ is said to be analytic if its symbol ϕ is in H∞. Many basic facts about

Toeplitz operators can be found in [7], [15] for example.

Let B(H) be the C∗-algebra of all the bounded linear operators acting on the complex Hilbert

space H . We say an operator T ∈ B(H) is normal, if T ∗T = TT ∗, and T is said to be hyponormal

if its self-commutator T ∗T −TT ∗ is positive. It is a basic and natural problem to describe these

algebra properties of Tϕ by the symbol ϕ.

In the early 1960s, Brown and Halmos [2] completely characterized the normal Toeplitz

operators by their symbols.

Theorem (BH) Given ϕ ∈ L∞(T), then the Toeplitz operator Tϕ is normal if and only if

ϕ = α+ βψ, where α and β are complex numbers and ψ is a real-valued function in L∞(T).

An operator T in B(H) is called completely non-normal (or c.n.n.), if T has no non-trivial

reducing subspace M such that the restriction of T to M is normal. Generally, that T is non-
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normal does not imply that T is c.n.n. However, Wu [14] proved that if ϕ is analytic, then the

properties of non-normal and completely non-normal are equivalent. Naturally, we are interested

in the following question:

Is every Toeplitz operator either normal or c.n.n.?

In fact, our study mainly concerns the restriction of the commutor Tϕ̄Tϕ−TϕTϕ̄ on some reducing

subspace of Tϕ. Although the research on the reducing space of analytic Toeplitz operator Tϕ

can be found in many papers (see [3], [12] for example), the study for the Toeplitz operator with

general symbol seems to be scarce from the literature. So there is much work to do to answer

the question completely.

In this paper, we give an affirmative answer to the question under some hypothesis.

Theorem 1.1 Let non-constant functions ϕ, k ∈ H∞(T) with ‖k‖∞ 6 1 such that ϕ = kϕ̄.

Then Tϕ is completely non-normal if and only if Tϕ is non-normal.

Theorem 1.2 Suppose that ϕ =
∑m

j=−n αjz
j with α−nαm 6= 0, then Tϕ is completely non-

normal if ϕ satisfies one of the following conditions:

(i) m 6= n;

(ii) m = n and |α−n| 6= |αm|.

In Section 3, we consider the problem for hyponormal Toeplitz operators. We show that the

properties of non-normal and completely non-normal are equivalent for the hyponormal Toeplitz

operators with trigonometric polynomial symbols. As an application, we prove that if this kind

of Toeplitz operator is non-normal, then it has a dense set of cyclic vectors.

2. The proof of theorems

We begin with some lemmas. Throughout this paper, denote by σp(T ) the point spectrum

of the operator T .

Lemma 2.1 ([5]) If ϕ is a function in L∞(T) not almost everywhere zero, then either KerTϕ =

{0} or KerT ∗
ϕ = {0}.

The proof of above lemma can also be found in chapter 7 of [7].

Lemma 2.2 Let ϕ ∈ L∞(T) be a non-constant function, and M be a non-zero reducing subspace

of Tϕ such that PMTϕ|M is normal. Then σp(PMTϕ|M ) = ∅. In particular, Tϕ(M) is a dense

subset of M .

Proof Let T0 = PMTϕ|M , and assume σp(T0) 6= ∅. Then there exists λ ∈ σp(PMTϕ|M )

such that Ker(λ − T0) = Ker(λ − T0)
∗ 6= {0}. So Ker(λ − Tϕ) ⊇ Ker(λ − T0) 6= {0} and

Ker(λ − Tϕ)∗ ⊇ Ker(λ − T0)
∗ 6= {0}. On the other hand, since λ − ϕ is not almost everywhere

zero, Lemma 2.1 shows that either Ker Tλ−ϕ = {0} or KerT ∗
λ−ϕ = {0}, which is a contradiction.

Hence the proof is completed. 2
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Lemma 2.3 Let E = {g ∈ H2; k̄ng ∈ H2, ∀n ≥ 1}, where k ∈ H2 is non-constant. Then

E = {0}.

Proof Suppose E 6= {0}. Since k̄nTzg = k̄n(zg) = zk̄ng ∈ H2 (∀g ∈ E) and 1 /∈ E, then E

is a non-trivial invariant subspace of Tz. By Beurling theorem [1], there is an inner function

ψ ∈ H∞, such that E = ψH2. Note that ψ · 1 ∈ ψH2, then k̄ψ ∈ E by the definition of E. So

there is a function ρ ∈ H2 such that k̄ψ = ψρ ∈ H2, that is, k̄ = ρ ∈ H2, which contradicts the

fact that k is non-constant. Thus E = {0}. 2

Given a function ψ ∈ L∞(T), let Sψ be the operator defined by

Sψh = (I − P )(ψ(I − P )(h)), ∀h ∈ L2(T).

Now, we are ready to prove our results.

Proof of Theorem 1.1 We only need to prove the sufficiency. Assume M is a non-trivial

reducing subspace of Tϕ such that PMTϕ|M is normal. Then we have

M ⊆
∞
⋂

r=1

∞
⋂

s=1

Ker(T ∗
ϕ
rT sϕ − T sϕT

∗
ϕ
r).

Write ϕ = f + ḡ where f, g ∈ H2 and g(0) = 0. Without loss of generality, assume f is not

a constant, or else we consider Tϕ̄ instead. In the following, we prove the theorem in two cases.

(i) If M ⊆ KerHf̄ , then f̄h ∈ H2 and Tϕ̄h = P ((f̄ + g)h) = ϕ̄h ∈M , ∀h ∈M . Replacing h

by ϕ̄h, we get

ϕ̄2h = (f̄2 + 2f̄g + g2)h ∈ H2.

Therefore, f̄2h ∈ H2. By induction we can get h ∈ {g ∈ H2; f̄ng ∈ H2, ∀n ≥ 1}. Hence,

M = {0} follows from Lemma 2.3.

(ii) Assume that there exists a function h0 ∈ M such that Hf̄h0 6= 0. Since ϕ = kϕ̄,

(I − P )(ḡ − kf̄) = 0, that is, there exists a function α ∈ H2 such that ḡ = kf̄ + α. In view of

the equality Hkf̄ = SkHf̄ , it is easy to check that

TϕTϕ − TϕTϕ = H∗
f̄Hf̄ −H∗

ḡHḡ = H∗
f̄Hf̄ −H∗

kf̄Hkf̄ = H∗
f̄ (I − Sk̄Sk)Hf̄ . (1)

Since I − Sk̄Sk > 0, we get

‖(I − Sk̄Sk)
1/2Hf̄h‖

2 = 〈H∗
f̄ (I − Sk̄Sk)Hf̄h, h〉 = 0, ∀h ∈M.

So (I − Sk̄Sk)Hf̄h = 0, or equivalently,

Hf̄h = k̄Hkf̄h. (2)

It follows that,

Hkf̄h = SkHf̄h = Sk(k̄Hkf̄h) = S|k|2Hkf̄h.

Put w̄0 = Hkf̄h0 = kHf̄h0, then 0 6= w0 ∈ zH2 and S|k|2w̄0 = w̄0. Notice that

z̄w0 = Tz̄w0 = Tz̄((I − P )(w̄0)) = Tz̄((I − P )(|k|2w̄0))

= Tz̄T|k|2(w0) = T|k|2z̄w0 = T|k|2(z̄w0).
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The second and fifth equalities follow from that Tz̄P (x̄) = Tz̄((I − P )(x)), ∀x ∈ L2(T); the last

equality follows from z̄w0 ∈ H2. So we have

z̄w0 ∈ kerT|k|2−1

⋂

kerT ∗
|k|2−1. (3)

Since w0 6= 0, Lemma 2.1 and (3) show that |k| ≡ 1 and then (2) implies that

Tf̄kh = kTf̄h, ∀h ∈M.

It follows that Tϕ|M = kTϕ̄|M , i.e., k̄Tϕ|M = Tϕ̄|M ∈ H2. Lemma 2.2 implies that Tϕ(M) is a

dense subset of M , we get M ⊆ {ψ ∈ H2; k̄nψ ∈ H2, ∀n ≥ 1}. Hence Lemma 2.3 shows that

M = 0, a contradiction. 2

Similarly, we can prove the following corollary.

Corollary 2.4 Let f ∈ H∞ and ϕ = f + λf, λ ∈ C. Then the following statements hold.

(i) If |λ| = 1, then Tϕ is normal;

(ii) If |λ| 6= 1, then the following statements are equivalent:

(a) f is not a constant function;

(b) Tϕ is not a normal operator;

(c) Tϕ is completely non-normal.

Proof (i) If |λ| = 1, there exists l ∈ [−π
2 ,

π
2 ] such that λ = e2il. So ϕ = f + λf = eil(e−ilf +

eilf) = eil(e−ilf + e−ilf). Thus Tϕ is normal by Theorem (BH).

(ii) (a)⇒(c). Let M be defined as in above theorem. Since

〈(T ∗
ϕTϕ − TϕT

∗
ϕ)h, h〉 = 〈(1 − |λ|2)(T ∗

f Tf − TfT
∗
f )h, h〉

= (1 − |λ|2)(||Tfh||
2 − ||T ∗

f h||
2), ∀h ∈ H2,

for every h ∈M , we have ‖Tf̄h‖ = ‖P (f̄h)‖ = ‖Tfh‖ = ‖fh‖, which implies that fh ∈ H2. It is

easy to check that T ∗
ϕh = ϕh ∈M, and Tϕh = ϕh ∈M. Therefore (λTϕ− T ∗

ϕ)h = (|λ|2 − 1)fh ∈

M , i.e., fh ∈M . Considering condition (a) and Lemma 2.3, we have M ⊆ {ψ ∈ H2; f̄nψ ∈ H2,

∀n ≥ 1} = {0}. Hence (c) holds.

The rest of the proof is obvious. 2

Proof of Theorem 1.2 Suppose (i) holds. Without loss of generality, assume α0 = 0 since

λ − Tϕ and Tϕ have the same reducing subspaces. We also assume m > n. If m < n, we shall

consider T ∗
ϕ instead.

Let k = [ n
m−n ]+1, where [ n

m−n ] is the maximum integer which is less than n
m−n . Then k ≥ 1

and km ≥ (k + 1)n. Suppose M is a non-trivial reducing subspace of Tϕ such that PMTϕ|M is

normal, then we claim that

(zlH2) ∩M ⊆ (zl+1H2) ∩M, ∀l ≥ km.

For every f ∈ zlH2∩M , we can write f = zlf1, with f1 ∈ H2. Denote h1 = α1z+· · ·+αmzm,

h2 = α−1z + · · · + α−nz
n, g1 = h1z

m and g2 = h2z
n. Then we have

ϕjf = (h1 + h2)
jf = [z̄m(g1 + zmh2)]

jzlf1 = zl−jm(g1 + zmh2)
jf1, (4)
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and

ϕif = (h1 + h2)
if = [z̄n(g2 + znh1)]

izlf1 = zl−in(g2 + znh1)
if1. (5)

Since l ≥ km, there exist integers k1 ≥ 0 and 0 ≤ k2 < m such that l = (k + k1)m + k2. Then

l ≥ (k + k1)m ≥ (k + k1 + 1)n and the following statements hold:

(iii) ϕjf ∈ H2, for 0 ≤ j ≤ k + k1;

(iv) ϕif ∈ H2, for 0 ≤ i ≤ (k + k1) + 1.

Observe that M ⊆ Ker(T ∗
ϕ

(k+k1)+1T
(k+k1)+1
ϕ − T

(k+k1)+1
ϕ T ∗

ϕ
(k+k1)+1),

‖T (k+k1)+1
ϕ f‖ = ‖T ∗

ϕ
(k+k1)+1f‖ ≤ ‖ϕ(k+k1)+1f‖

= ‖ϕ(k+k1)+1f‖ = ‖Tϕ
(k+k1)+1f‖.

Therefore,

‖T ∗
ϕ

(k+k1)+1f‖ = ‖ϕ(k+k1)+1f‖,

which implies that ϕ(k+k1)+1f ∈ H2. So the statement (iii) can be replaced by

(iii)′ ϕjf ∈ H2, for 0 ≤ j ≤ k + k1 + 1.

Furthermore, a straightforward computation shows that

ϕm+1f =(h1 + h2)
m+1f = h

m+1

1 f + C1
m+1h

m

1 h2f + C2
m+1h

m−1

1 h2
2f + · · ·+

h2
m+1f, ∀m ∈ Z

+. (6)

Combining with (iii)′, we have h
j

1f ∈ H2 for 0 ≤ j ≤ k + k1 + 1. Thus zk2−mgk+k1+1
1 f1 =

zl−(k+k1+1)mgk+k1+1
1 f1 = z̄(k+k1+1)mgk+k1+1

1 f = h
k+k1+1

1 f ∈ H2. Since k2 − m ≤ −1 and

gk+k1+1
1 (0) = αk+k1+1

m 6= 0, we have z̄f1 ∈ H2, i.e., f ∈ zl+1H2. So we complete the proof of the

claim.

Therefore, (zkmH2)∩M ⊆ (
⋂∞
l=0 z

km+lH2) = {0}. It follows that dimM ≤ dim(H2/zkmH2) =

km < +∞. Hence σp(Tϕ|M ) = σ(Tϕ|M ) 6= ∅. However, Lemma 2.2 shows that σp(Tϕ|M ) = ∅,

which induces a contradiction.

It remains to prove that if condition (ii) holds, then Tϕ is completely non-normal. Let

λ = α
−n

αn
and ψ = ϕ− λϕ =

∑n
k=−n+1(αk − λα−k)z

k. For this suppose, it is easy to see that if

M is a reducing subspace of Tϕ such that PMTϕ|M is normal, then also is PMTψ|M . However,

by (i) we have Tψ is c.n.n. Hence M = {0} as desired. 2

Remark The corollary 1.5 in [8] shows that if ϕ =
∑m
k=−n αkz

k, then Tϕ is normal if and only

if m = n, |α−n| = |αn|, and

αn





















α−1

α−2

...

...

α−n
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α1

α2
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αn





















.

It means that there exists ϕ =
∑m

k=−n αkz
k with m = n and |α−n| = |αn| such that Tϕ is not

normal. However, it is not clear whether Tϕ is c.n.n.
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3. Cyclicity of hyponormal Toeplitz operators

In this section, denote by σap(T ), σl(T ), σle(T ), σre(T ) and σlre(T ) the approximate point

spectrum, the left spectrum, the right spectrum, the left essential spectrum, the right essential

spectrum and the Wolf spectrum of T respectively. And let m(·) be the planar Lebesgue measure.

The research on operator’s cyclicity is also an important part of operator theory. It has been

investigated by a number of authors. In 1976, Deddens considered the problem of determining

which subnormal operator has a cyclic adjoint. In 1998, Feldman [10] gave a complete answer

to the question of Deddens. In [13], Wogen also considered the same problem for hyponormal

operators. The following result was partly obtained by Clancey and Rogers in [4]. This problem

still remains open.

Theorem (CR) If T is a completely non-normal cohyponormal operator, such that m(σr(T )) =

0, then T has a dense set of cyclic vectors.

In 1988, Cowen [6] proved that if f , g ∈ H2 with ϕ = f+g ∈ L∞(T), then Tϕ is hyponormal if

and only if there exist a constant c and a function k ∈ H∞ with ‖k‖∞ ≤ 1 such that g = Tk̄f+c.

Later the hyponormality of the Toeplitz operator has been widely discussed, see [8, 9, 11] for

example. So it is not difficult to give some cohyponormal operators which are cyclic. Here we

need some lemmas about the spectrum of completely non-normal hyponormal operators.

Lemma 3.1 If T ∈ B(H) is a completely non-normal hyponormal operator, then σl(T ) =

σlre(T ) = σle(T ).

Proof Assume T is hyponormal and c.n.n., then λ − T is hyponormal for every λ ∈ C since

(λ− T )∗(λ− T )− (λ− T )(λ− T )∗ = T ∗T − TT ∗. Let M = Ker(λ− T ). Then M is a reducing

subspace of λ − T and PMT |M = λPMI|M is normal. By the assumption, we get M = {0},

which implies that σp(T ) = ∅, i.e., σap(T ) ⊆ σlre(T ). On the other hand, it is obvious that

σlre(T ) ⊆ σle(T ) ⊆ σl(T ) = σap(T ). Hence the proof is completed. 2

Corollary 3.2 Let ϕ ∈  L∞(T) be as in Theorem 1.1 and m(ϕ(T)) = 0. Then Tϕ̄ has a dense

set of cyclic vectors.

Proof From Cowen’s Theorem and the proof of Theorem 1.1, we see that Tϕ is hyponormal.

By Lemma 3.1 and Corollary 7.14 in [7], we have σl(Tϕ) = σle(Tϕ) ⊆ ϕ(T) and m(σr(Tϕ)) =

m(σl(Tϕ)∗) = 0, where σl(Tϕ)∗ = {λ; λ̄ ∈ σl(Tϕ)}. The desired result is obvious by combining

Theorem 1.1 with Theorem (CR). 2

In the following, we concern about the Toeplitz operators with trigonometric polynomial

symbols. Although the following lemma may be well known, we show the detail for readers’

convenience.

Lemma 3.3 If ϕ =
∑m

k=−N αkz
k with α−Nαm 6= 0, then m(ϕ(T)) = 0.

In order to prove above lemma, we define a map Γ from the space of complex-valued functions
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on C to the space of 2 × 2 matrix-valued functions as follows:

Γ : f 7→

(

u −v

v u

)

,

where f(z) = u(x, y)+ iv(x, y), z = x+ iy, and u(x, y), v(x, y) are real-valued functions. The

map Γ has the following properties.

1) Γ(f̄) =

(

u v

−v u

)

.

2) For every a, b ∈ R,

(i) Γ(af + bg) = aΓ(f) + bΓ(g);

(ii) Γ((a+ bi)fg) =

(

a −b

b a

)

Γ(f)Γ(g) = Γ(a+ bi)Γ(f)Γ(g);

(iii) Γ(f)Γ(g) = Γ(g)Γ(f).

3) |Γ(f)(x, y)| = |f(x, y)|2, (x, y) ∈ R2.

4) If f = u+ vi is analytic on some region, then

Γ(
∂f

∂z
) = Γ(

∂f

∂x
) =

(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

, Γ(
∂f̄

∂z̄
) =

(

∂u
∂x −∂u

∂y

− ∂v
∂x

∂v
∂y

)

.

Proof of Lemma 3.3 Let ϕ = f + ḡ where f =
∑m

k=0 αkz
k, g =

∑N
k=0 ᾱ−kz

k are polynomials.

Write f = u1 + iv1 and g = u2 + iv2 where ui, vi are real-valued harmonic functions. Let Jϕ be

the Jacobian of ϕ. A computation shows that

|Jϕ| =

∣

∣

∣

∣

∣

(

∂
∂x(u1 + u2)

∂
∂y (u1 + u2)

∂
∂x(v1 − v2)

∂
∂y (v1 − v2)

)∣

∣

∣

∣

∣

= (
∂u1

∂x
)2 + (

∂u1

∂y
)2 − (

∂u2

∂x
)2 − (

∂u2

∂y
)2

= |Γ(
∂f

∂z
)| − |Γ(

∂g

∂z
)| = |

∂f

∂z
|2 − |

∂g

∂z
|2.

Note that zN+m(|∂f∂z |
2−|∂g∂z |

2) = ∂f
∂z z

N (
∑m

k=1 kᾱkz
m−k+1)− ∂g

∂z z
m(
∑N

k=1 kα−kz
N−k+1), for every

z ∈ T. Since the right part of the equality is an analytic polynomial, it vanishes on finite points.

Therefore for each δ ∈ (0, 1), we can find an open set Ωδ such that

T ⊆ Ωδ ⊆ {λ ∈ C; 1 − δ < |λ| < 1 + δ},

and the number of zeros of |Jϕ| in Ωδ is finite.

Let Eδ = {(x, y) ∈ Ωδ; |Jϕ(x + yi)| = 0}. For each (x, y) ∈ Ωδ\Eδ, there exists a

neighborhood U(x, y) ⊆ Ωδ such that ϕ : U(x, y) → ϕ(U(x, y)) is a homeomorphism and |Jϕ|

has no zero points in U(x, y). Since {U(x,y)} is an open covering of the compact set ϕ(T)\ϕ(Eδ),

there exists a finite subfamily {U1, U2, . . . , UN} such that

N
⋃

k=1

ϕ(Uk) ⊇ ϕ(T)\ϕ(Eδ).

By induction {U1, U2, . . . , UN} can be replaced by a subfamily such that no open set Ui is

contained in the union of the others and such that the refined family has the same union as the
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original family. Write Ij = Uj\(
⋃j−1
k=1 Uk). {Ij} is a family of pairwise disjoint open sets. Hence,

m(ϕ(T)\ϕ(Eδ)) 6

N
∑

k=1

∫

ϕ(Ik)

1dσ +

∫

ϕ(
⋃

N
k=1

Uk\
⋃

N
j=1

Ij)

1dσ

=

N
∑

k=1

∫

Ik

|Jϕ|dσ +

∫

⋃

N
k=1

Uk\
⋃

N
j=1

Ij

|Jϕ|dσ

6 ‖ | Jϕ | ‖∞
(

N
∑

k=1

m(Ik) +m(Ωδ)
)

6 2‖ | Jϕ | ‖∞m(Ωδ).

Thus 0 6 m(ϕ(T)) = limδ→0m(ϕ(T)\ϕ(Eδ)) 6 limδ→0 2‖ | Jϕ | ‖∞m(Ωδ) = 0 as desired. 2

Theorem 3.4 If ϕ =
∑m

k=−N αkz
k with α−Nαm 6= 0 such that Tϕ is hyponormal and non-

normal, then Tϕ̄ has a dense set of cyclic vectors.

Proof From Theorem 1.4 in [8] and Corollary 1.5 in [8], it is easy to see that if m = n and

|α−n| = |αm|, then the hyponormality and normality are equivalent. So Theorem 1.2 implies

that Tϕ is c.n.n. On the other hand, Lemmas 3.3 and 3.1 show that m(σr(Tϕ̄)) = m(ϕ(T)) = 0.

Now Tϕ satisfies the assumption of Theorem (CR). The desired result is obvious. 2
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