Journal of Mathematical Research & Exposition Jul., 2011, Vol. 31, No. 4, pp. 742–748 DOI:10.3770/j.issn:1000-341X.2011.04.021 Http://jmre.dlut.edu.cn

Convergence of Composition Operators on Hardy-Smirnov Space

Xiang Dong YANG

Department of Mathematics, Kunming University of Science and Technology, Yunnan 650093, P. R. China

Abstract We consider the convergence of composition operators on Hardy-Smirnov space over a simply connected domain properly contained in the complex plane. The convergence of the power of a composition operator is also considered. Our approach is a method from Joel H. Shapiro and Wayne Smith's celebrated work (Journal of Functional Analysis 205 (2003) 62-89). The resulting space is usually not the one obtained from the classical Hardy space of the unit disc by conformal mapping.

Keywords composition operators; convergence; Hardy-Smirnov space.

Document code A MR(2010) Subject Classification 41A20; 65D05 Chinese Library Classification 0241.5

1. Introduction

For a simply connected domain G that is properly contained in the complex plane, let τ be a Riemann map that takes the open unit disc $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ univalently onto G. Let Γ_r denote the τ -image of the circle |z| = r. For $0 , let <math>\Lambda^p(G)$ be the collection of functions F holomorphic on G such that

$$||F||_{\Lambda^{p}(G)} = \left(\sup_{0 < r < 1} \int_{\Gamma_{r}} |F(w)|^{p} |\mathrm{d}w|\right)^{1/p} < \infty.$$
(1)

Following [4] and [14], we call these the Hardy-Smirnov spaces of G.

The classical Hardy space H^p $(0 over the unit disc <math>\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ is the collection of functions analytic on the unit disc \mathbb{U} , satisfying

$$||f||_{H^p} = \left(\sup_{0 < r < 1} \int_{\mathbb{T}} |f(r\xi)|^p \mathrm{d}m(\xi)\right)^{1/p} < \infty,$$
(2)

where \mathbb{T} is the unit circle |z| = 1, m is the normalized arc-length measure on \mathbb{T} .

If Φ is a function holomorphic on G with $\Phi(G) \subset G$, then Φ induces a linear composition operator (see [14]) C_{Φ} on the space Hol(G) of all functions holomorphic on G as follows

$$C_{\Phi}F = F \circ \Phi, \quad F \in \operatorname{Hol}(G).$$

Received November 20, 2009; Accepted January 13, 2011

E-mail address: yangsddp@126.com

Supported by the Natural Science Foundation of Yunnan Province (Grant No. 2009ZC013X) and Basic Research Foundation of Education Bureau of Yunnan Province (Grant No. 09Y0079).

If G is the unit disc, various prospects of such operators have been extensively studied [3, 10-14].

In [14], inspired by an earlier result of Matache [6], Shapiro and Smith investigated Hardy-Smirnov spaces that support compact operators. Their celebrated work takes place on the space $\Lambda^p(G)$ which is defined by (1). From [4] and [14], we know that the map $C_{\tau} : F \to F \circ \tau$ is an isomorphism of $\Lambda^p(G)$ onto H^p if and only if both τ' and its reciprocal are bounded on \mathbb{U} . Either τ' or its reciprocal is unbounded on \mathbb{U} , our Hardy-Smirnov spaces are different from the conformally invariant ones. That is the point why we want to generalize the results on convergence of composition operators on the Hilbert Hardy space H^2 over the unit disc in [7].

In this paper, we will use the approach in [14] to consider the convergence of composition operators C_{Φ} on the Hardy-Smirnov spaces defined in (1).

Let us introduce some terminology from [14] that is proven to be quite useful and will be heavily used. For a simply connected domain G that is properly contained in the complex plane, let τ be a Riemann map that takes the open unit disc $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ univalently onto G. To every self-map Φ of G, the self-map φ of \mathbb{U} is defined as follows

$$\varphi = \tau^{-1} \circ \Phi \circ \tau. \tag{3}$$

For each index $0 , the operator <math>V_p$ is defined as follows

$$(V_p F)(z) = \tau'(z)^{1/p} F(\tau(z)), \quad F \in \operatorname{Hol}(G), \ z \in \mathbb{U}.$$
(4)

The weighted operator

$$A_{\varphi,p} = V_p C_\Phi V_p^{-1}$$

maps H^p boundedly into itself if and only if C_{Φ} is bounded on $\Lambda^p(G)$. Since V_p establishes an isometric similarity between the two operators (for details see [14, p.66-67]), for a sequence of composition operators $\{C_{\Phi_n}\}$ induced by self-maps $\{\Phi_n\}$ of G on $\Lambda^p(G)$, its norm convergence is equivalent to norm convergence of the corresponding sequence of composition operators $\{A_{\varphi_n,p}\}$ induced by $\{\varphi_n = \tau^{-1} \circ \Phi_n \circ \tau\}$ on H^p . Thus for $f \in H^p$,

$$(A_{\varphi,p})f(z) = Q_{\varphi}(z)^{1/p} f(\varphi(z)), \text{ where } Q_{\varphi}(z) = \frac{\tau'(z)}{\tau'(\varphi(z))}, \quad z \in \mathbb{U}.$$
(5)

Using the operator $A_{\varphi,p}$, we can generalize the results on convergence of composition operators on the Hilbert Hardy space H^2 over the unit disc in [7].

Motivated by the work in [9], in [7], Matache considered convergent sequence of composition operators $\{C_{\varphi_n}\}$ induced by $\{\varphi_n\}$ that converges in some sense to φ . Matache supposed $\{\varphi_n\}$ and φ are bounded analytic self-maps of \mathbb{U} endowed with the norm

$$||f||_{\infty} = \sup_{0 < r < 1} |f(z)|, \quad f \in \operatorname{Hol}(\mathbb{U}).$$
(6)

He pointed out that only the case

$$|\varphi(\xi)| < 1 \quad m\text{-a.e.} \tag{7}$$

on $\mathbb T$ is valuable for consideration.

Under the assumptions above, Matache proved that if C_{φ} is a Hilbert-Schmidt operator, then $\|C_{\varphi_n} - C_{\varphi}\|_{\mathrm{HS}} \to 0$ if and only if $\|C_{\varphi_n}\|_{\mathrm{HS}} \to \|C_{\varphi}\|_{\mathrm{HS}}$ and $\|\varphi_n - \varphi\|_{H^2} \to 0$. Let $\{\Phi_n\}$ be a sequence of self-maps of G whose counterpart $\{\varphi_n\}$ is defined in (3), where $\{\varphi_n\}$ and φ are bounded in the norm (6) and satisfy (7). Let $\{Q_{\varphi_n}(z)\}$ and $\{A_{\varphi_n,p}\}$ be defined in (5). In Section 2, we show that if

$$\int_{\mathbb{T}} \frac{|Q_{\varphi}|}{1 - |\varphi|^2} \mathrm{d}m < \infty, \tag{8}$$

then with some restrictions on $\{Q_{\varphi_n}\}, \|A_{\varphi_n,2} - A_{\varphi,2}\|_{\mathrm{HS}} \to 0$ if and only if $\|A_{\varphi_n,2}\|_{\mathrm{HS}} \to \|A_{\varphi,2}\|_{\mathrm{HS}}$ and $\|Q_{\varphi_n}^{\frac{1}{2}} - Q_{\varphi}^{\frac{1}{2}}\|_{H^2} \to 0.$

Matache also considered the sequence $\{C_{\varphi}^n\}$ for non-inner φ . Matache proved that if φ has a fixed point b in \mathbb{U} , then $\|C_{\varphi}^n - C_b\|_{H^2} \to 0$. We will investigate the same problem in $\Lambda^p(G)$. We prove if τ' and its reciprocal are in H^2 and φ defined by (3) is non-inner in \mathbb{U} , Φ has a fixed point a in G; if $\|Q_{\varphi^{[n]}}\|_{H^2}$ is uniformly bounded, for the proper subclass $F \in \Lambda^2(G) \subset \Lambda^1(G)$, $\{\|C_{\Phi}^n F\|_{\Lambda^1(G)}\}$ converges.

2. Norm convergence of a sequence of composition operators

Recall that on any Hilbert space, the Hilbert-Schmidt norm $||T||_{\text{HS}}$ of an operator T is defined as

$$\|T\|_{HS}^2 = \sum_{n=0}^{\infty} \|Te_n\|^2,$$

where $\{e_n\}$ is an orthonormal basis [7, 11]. From the discussion in [7, p. 662], we know that $||T||_{\text{HS}}$ is larger than or equals the operator norm ||T||. Since V_p establishes an isometric similarity between the two operators (for details see [14, pp. 66–67]), we just need to investigate the case where $||A_{\varphi_n,2} - A_{\varphi,2}||_{\text{HS}} \to 0$, which is equivalent to $||C_{\Phi_n} - C_{\Phi}||_{\text{HS}(G)} \to 0$.

The main result of this section is as follows.

Theorem 1 Let $\{\Phi_n\}$ be a sequence of self-maps of G and $\{\varphi_n\}$ be defined in (3), replacing $\{\Phi\}$ by $\{\Phi_n\}$. Let $\{Q_{\varphi_n}(z)\}$ and $\{A_{\varphi_n,2}\}$ be defined in (5). If $\{\varphi_n\}$ and φ are bounded in the norm (6), satisfying (7), $\{\varphi_n\} \to \varphi$ a.e. on \mathbb{T} , $Q_{\varphi}(z)$ satisfies (8), moreover, there is some function $\chi(\varphi)$ defined on \mathbb{T} such that

$$\frac{|Q_{\varphi_n}|}{1-|\varphi_n|^2} \le \chi(\varphi), \quad m\text{-a.e.}$$
(9)

and

$$\int_{\mathbb{T}} \chi(\varphi) \mathrm{d}m < \infty, \tag{10}$$

then $||A_{\varphi_n,2} - A_{\varphi,2}||_{\mathrm{HS}} \to 0$ if and only if $||A_{\varphi_n,2}||_{\mathrm{HS}} \to ||A_{\varphi,2}||_{\mathrm{HS}}$ and $||Q_{\varphi_n}^{\frac{1}{2}} - Q_{\varphi}^{\frac{1}{2}}||_{H^2} \to 0.$

Proof As $\{1, z, z^2, z^3, ...\}$ is the standard basis of H^2 , the direct calculation of Hilbert-Schmidt norm (see also [14, 2.2 Example]) shows that if $Q_{\varphi}(z)$ satisfies (8), then $A_{\varphi,2}$ is a Hilbert-Schmidt composition operator.

If $||A_{\varphi_n,2} - A_{\varphi,2}||_{\mathrm{HS}} \to 0$, then it is obvious that $||A_{\varphi_n,2}||_{\mathrm{HS}} \to ||A_{\varphi,2}||_{\mathrm{HS}}$, and we have

$$\|Q_{\varphi_n}^{\frac{1}{2}} - Q_{\varphi}^{\frac{1}{2}}\|_{H^2} = \|A_{\varphi_n,2}(1) - A_{\varphi,2}(1)\|_{\mathrm{HS}} \le \|A_{\varphi_n,2} - A_{\varphi,2}\|_{\mathrm{HS}} \to 0.$$

Conversely, if $||A_{\varphi_n,2}||_{\mathrm{HS}} \to ||A_{\varphi,2}||_{\mathrm{HS}}$ and $||Q_{\varphi_n}^{\frac{1}{2}} - Q_{\varphi}^{\frac{1}{2}}||_{H^2} \to 0$, but $||A_{\varphi_n,2} - A_{\varphi,2}||_{\mathrm{HS}} \to 0$ does not hold, we will get a contradiction. In this case, for some $\varepsilon_0 > 0$, there is a subsequence $\{A_{\varphi_{n_k},2}\}$ of $\{A_{\varphi_n,2}\}$ satisfying

$$\|A_{\varphi_{n_k},2} - A_{\varphi,2}\|_{\mathrm{HS}} \ge \varepsilon_0. \tag{11}$$

Since $\|Q_{\varphi_{n_k}}^{\frac{1}{2}} - Q_{\varphi}^{\frac{1}{2}}\|_{H^2} \to 0$, we can select a subsequence $\{Q_{\varphi_{m_k}}^{\frac{1}{2}}\}$ of $\{Q_{\varphi_{n_k}}^{\frac{1}{2}}\}$ such that $\{Q_{\varphi_{m_k}}^{\frac{1}{2}}\}$ converges a.e. to $Q_{\varphi}^{\frac{1}{2}}$. We have

$$\|A_{\varphi_{m_k},2} - A_{\varphi,2}\|_{\mathrm{HS}} = \int_{\mathbb{T}} \frac{|Q_{\varphi_{m_k}}|}{1 - |\varphi_{m_k}|^2} \mathrm{d}m + \int_{\mathbb{T}} \frac{|Q_{\varphi}|}{1 - |\varphi|^2} \mathrm{d}m - 2\Re \int_{\mathbb{T}} \frac{Q_{\varphi_{m_k}}^{\frac{1}{2}} Q_{\varphi}^{\frac{1}{2}}}{1 - \varphi\varphi_{m_k}} \mathrm{d}m.$$
(12)

By (9), we have

$$\frac{|Q_{\varphi_{m_k}}^{\frac{1}{2}}Q_{\varphi}^{\frac{1}{2}}|}{1-|\varphi\varphi_{m_k}|} \leq \frac{|Q_{\varphi_{m_k}}^{\frac{1}{2}}Q_{\varphi}^{\frac{1}{2}}|}{(1-|\varphi_{m_k}|^2)^{\frac{1}{2}}(1-|\varphi|^2)^{\frac{1}{2}}} \leq \chi(\varphi) + \frac{|Q_{\varphi}|}{1-|\varphi|^2}, \quad m\text{-a.e.}$$

By the a.e. convergence and the dominated convergence theorem, combining (8) and (10), we have

$$\int_{\mathbb{T}} \frac{Q_{\varphi_{m_k}}^{\frac{1}{2}} Q_{\varphi}^{\frac{1}{2}}}{1 - |\varphi\varphi_{m_k}|} \mathrm{d}m \to \int_{\mathbb{T}} \frac{|Q_{\varphi}|}{1 - |\varphi|^2} \mathrm{d}m, \tag{13}$$

and

$$\int_{\mathbb{T}} \frac{|Q_{\varphi_{m_k}}|}{1 - |\varphi_{m_k}|^2} \mathrm{d}m \to \int_{\mathbb{T}} \frac{|Q_{\varphi}|}{1 - |\varphi|^2} \mathrm{d}m.$$
(14)

From (12), (13) and (14), we have

$$\|A_{\varphi_{m_k},2} - A_{\varphi,2}\|_{\mathrm{HS}} \to 0$$

which contradicts (11).

3. Powers of composition operators

In this section we treat the convergence of the operator sequence $\{C_{\Phi}^{n}F\}$ for $F \in \Lambda^{p}(G)$ where $C_{\Phi}^{n}F = F(\Phi^{[n]})$ and $\Phi^{[n]} = \Phi \circ \cdots \circ \Phi$ is the *n*-fold iteration of Φ . From the reasoning in Section 2, we only need to investigate the corresponding sequence $\{A_{\varphi,p}^{n}\}$ in H^{p} , here

$$A_{\varphi,p}^{n}f(z) = Q_{\varphi^{[n]}}(z)^{1/p}f(\varphi^{[n]}(z)), \ Q_{\varphi^{[n]}}(z) = \frac{\tau'(z)}{\tau'(\varphi^{[n]}(z))}, \ z \in \mathbb{U},$$
(15)

where $\varphi^{[n]} = \varphi \circ \cdots \circ \varphi$ is the *n*-fold iteration of φ . Suppose Φ is a self-map of *G* satisfying $\Phi(G) \subset G$ and for some $a \in G, \Phi(a) = a$, then φ defined in (3) has a fixed point $b = \tau^{-1}(a)$ in \mathbb{U} (see [14]).

Recall an inner function φ is an analytic self-map of \mathbb{U} whose radial limit-function is unimodular *m*-a.e. on \mathbb{T} (see [4, 5, 8]). From [8, p. 353, Exercise 6], we know that H^2 is a proper subclass of H^1 .

The main results of this section are as follows.

Theorem 2 Let Φ be a self-map of G satisfying $\Phi(G) \subset G$ and for some $a \in G$, $\Phi(a) = a$.

If there is a Riemann map τ from G to \mathbb{U} such that both τ' and its reciprocal are in H^2 , $\{\|Q_{\varphi^{[n]}}\|_{H^2}\}$ is uniformly bounded, φ defined in (3) is bounded in the norm (6) and non-inner, then $\{\|C_{\Phi}^n F\|_{\Lambda^1(G)}\}$ converges for the proper subclass $F \in \Lambda^2(G) \subset \Lambda^1(G)$.

Theorem 3 Let Φ be a self-map of G satisfying $\Phi(G) \subset G$ and for some $a \in G, \Phi(a) = a$. If there is a Riemann map τ from G to \mathbb{U} such that τ' and its reciprocal are bounded on \mathbb{T} in the norm (6) and non-inner, then for each $F \in \Lambda^p(G)$ and $0 , the sequence <math>\{\|C_{\Phi}^n F\|_{\Lambda^p(G)}\}$ converges.

In order to prove the theorems, we need the following lemmas.

Lemma 1 ([8, p. 339]) Suppose $0 , <math>f \in H^p$ and f is not equivalently zero, B is the Blaschke product formed with the zeros of f. Then there is a zero-free function $h \in H^2$ such that

$$f = B \cdot h^{2/p}.\tag{17}$$

Lemma 2 ([14]) If a composition operator C_{Φ} is bounded on $\Lambda^p(G)$ for some 0 , thenit is bounded for all such <math>p. Actually, for arbitrary $0 and <math>0 < q < \infty$,

$$||A_{\varphi,p}||^p = ||A_{\varphi,q}||^q.$$

The following lemma is the main result of Section 3 in [7], here we cite it as a lemma for later use. For $f \in H^p$, let $C_a f = f(a)$. From [7] we know it is a bounded linear operator in H^p .

Lemma 3 ([7]) Let φ be a self-map of \mathbb{U} with a fixed point in \mathbb{U} which is bounded in the norm defined in (6) and non-inner. Then for $f \in H^2$, $C_{\varphi}^n f(z) = f(\varphi^{[n]})(z)$ and $C_b f(z) = f(b)$, $\|C_{\varphi}^n - C_b\|_{H^2} \to 0$ as $n \to \infty$.

Proof of Theorem 2 Since convergence of $\{\|C_{\Phi}^n F\|_{\Lambda^p(G)}\}$ is equivalent to the convergence of $\{\|A_{\varphi,p}^n f\|_{H^p}\}$, we just need to show $\|A_{\varphi,p}^n f - A_{b,p}f\|_{H^p} \to 0$ where $A_{b,p}f(z) = \frac{\tau'^{1/p}(z)}{\tau'^{1/p}(b)}f(b), b = \tau^{-1}(a)$. If

$$\|A_{\varphi,1}^n f - A_{b,1} f\|_{H^1} \to 0, \tag{18}$$

for the proper subclass $f \in H^2 \subset H^1$, then Theorem 2 follows. By the triangular inequality, for $f \in H^2 \subset H^1$ and $||f||_{H^1} = 1$

$$\begin{aligned} \|A_{\varphi,1}^{n} - A_{b,1}\|_{H^{1}} &= \|Q_{\varphi^{[n]}}f(\varphi^{[n]}) - \tau'/\tau'(b) \cdot f(b)\|_{H^{1}} \\ &\leq \|Q_{\varphi^{[n]}}f(\varphi^{[n]}) - Q_{\varphi^{[n]}}f(b)\|_{H^{1}} + \|Q_{\varphi^{[n]}}f(b) - \tau'/\tau'(b) \cdot f(b)\|_{H^{1}}. \end{aligned}$$

Then we just need to prove

$$|Q_{\varphi^{[n]}}f(\varphi^{[n]}) - Q_{\varphi^{[n]}}f(b)||_{H^1} \to 0$$
(19)

and

$$\|Q_{\varphi^{[n]}}f(b) - \tau'/\tau'(b) \cdot f(b)\|_{H^1} \to 0.$$
(20)

By triangular inequality and the decomposition $f = B \cdot h$ for $f \in H^2 \subset H^1$ where $h \in H^2$ is the

decomposition in Lemma 1,

$$\begin{split} \|Q_{\varphi^{[n]}}f(\varphi^{[n]}) - Q_{\varphi^{[n]}}f(b)\|_{H^{1}} &= \|Q_{\varphi^{[n]}}B(\varphi^{[n]})h(\varphi^{[n]}) - Q_{\varphi^{[n]}}B(b)h(b)\|_{H^{1}} \\ &\leq \|Q_{\varphi^{[n]}}B(\varphi^{[n]})h(\varphi^{[n]}) - Q_{\varphi^{[n]}}B(\varphi^{[n]})h(b)\|_{H^{1}} + \|Q_{\varphi^{[n]}}B(\varphi^{[n]})h(b) - Q_{\varphi^{[n]}}B(b)h(b)\|_{H^{1}}. \end{split}$$

By the boundedness of B(z), we have

$$\|Q_{\varphi^{[n]}}f(\varphi^{[n]}) - Q_{\varphi^{[n]}}f(b)\|_{H^{1}} \le \|Q_{\varphi^{[n]}}(h(\varphi^{[n]}) - h(b))\|_{H^{1}} + |h(b)| \cdot \|Q_{\varphi^{[n]}}(B(\varphi^{[n]}) - B(b))\|_{H^{1}}.$$
(21)

Since $\{\|Q_{\varphi^{[n]}}\|_{H^2}\}$ is uniformly bounded, there exists some M > 0, such that $\|Q_{\varphi^{[n]}}\|_{H^2} \leq M$. By the Hölder's inequality, we have

$$\begin{aligned} \|Q_{\varphi^{[n]}}(h(\varphi^{[n]}) - h(b))\|_{H^1} &\leq \|Q_{\varphi^{[n]}}\|_{H^2}^{1/2} \cdot \|h(\varphi^{[n]}) - h(b)\|_{H^2}^{1/2} \\ &\leq M^{1/2} \cdot \|h(\varphi^{[n]}) - h(b)\|_{H^2}^{1/2}. \end{aligned}$$

From Lemma 3 and $h \in H^2$, it follows

$$\|h(\varphi^{[n]}) - h(b)\|_{H^2} = \|C_{\varphi}^n h - C_b h\|_{H^2} \le \|h\|_{H^2} \cdot \|C_{\varphi}^n - C_b\|_{H^2} \to 0.$$

From the boundedness of

$$\|1/\tau'(\varphi^{[n]})\|_{H^2} = \|C_{\varphi}^n(1/\tau')\|_{H^2},$$

we have

$$\|Q_{\varphi^{[n]}}(h(\varphi^{[n]}) - h(b))\|_{H^1} \to 0.$$
(22)

Repeating the above reasoning gives

$$\begin{aligned} \|Q_{\varphi^{[n]}}(B(\varphi^{[n]}) - B(b))\|_{H^1} &\leq \|Q_{\varphi^{[n]}}\|_{H^2}^{1/2} \cdot \|(B(\varphi^{[n]}) - B(b))\|_{H^2}^{1/2} \\ &\leq M^{1/2} \cdot \|(B(\varphi^{[n]}) - B(b))\|_{H^2}^{1/2}. \end{aligned}$$

By the boundedness of B(z), from [1] and [11], we know that $B(\varphi^{[n]})$ converges to B(b) a.e.. Thus applying the bounded convergence theorem yields

$$\|Q_{\varphi^{[n]}}(B(\varphi^{[n]}) - B(b))\|_{H^1} \to 0.$$
(23)

From (21), (22) and (23), we can get (19). By the Hölder's inequality, we have

$$\|Q_{\varphi^{[n]}}f(b) - \tau'/\tau'(b) \cdot f(b)\|_{H^1} \le |f(b)| \cdot \|\tau'\|_{H^2}^{1/2} \cdot \|1/\tau'(\varphi^{[n]}) - 1/\tau'(b)\|_{H^2}^{1/2}.$$

By Lemma 3, we get (20).

Remark In the proof of Theorem 2, the boundedness of Blaschke product is applied. We refer to [4], [5] and [8] for more details.

Proof of Theorem 3 Since convergence of $\{\|C_{\Phi}^n F\|_{\Lambda^p(G)}\}$ is equivalent to the convergence of $\{\|A_{\varphi,p}^n f\|_{H^p}\}$, we just need to prove the convergence of the latter one. Denote $A_{b,p}f(z) = \frac{\tau'^{1/p}(z)}{\tau'^{1/p}(b)}f(b), b = \tau^{-1}(a)$, it is obvious that $A_{b,p}$ is bounded by the supposition of Theorem 3, and we just need to prove $\|A_{\varphi,p}^n - A_{b,p}\|_{H^p} \to 0$. By Lemma 2, we only need to prove the case where

p = 2. By the boundedness of τ' and its reciprocal we know that the operator $Tf = \tau' f$ and its inverse operator $T^{-1}f = \frac{1}{\tau'}f$ are both bounded in H^2 . Taking $f \in H^2$ and $||f||_{H^2} = 1$ gives

$$\|A_{\varphi,2}^{n} - A_{b,2}\|_{H^{2}} = \|A_{\varphi,2}^{n}f - A_{b,2}f\|_{H^{2}} = \|TC_{\varphi}^{n}T^{-1}f - TC_{b}T^{-1}f\|_{H^{2}}$$
$$\leq \|T\|_{H^{2}} \cdot \|T^{-1}\|_{H^{2}} \cdot \|C_{\varphi}^{n} - C_{b}\|_{H^{2}}.$$

Thus by Lemma 3, we have $||A_{\varphi,2}^n - A_{b,2}||_{H^2} \to 0$.

References

- BOURDON P S, MATACHE V, SHAPIRO J H. On convergence to the Denjoy-Wolff point [J]. Illinois J. Math., 2005, 49(2): 405–430.
- [2] CONWAY J B. Functions of One Complex Variable (II) [M]. Springer-Verlag, New York, 1995.
- [3] COWEN C C, MACCLUER B D. Composition Operators on Spaces of Analytic Functions [M]. CRC Press, Boca Raton, FL, 1995.
- [4] DUREN P L. Theory of H^p Spaces [M]. Academic Press, New York, 1970.
- [5] KOOSIS P. Introduction to H^p Spaces [M]. Cambridge University Press, Cambridge, 1998.
- [6] MATACHE V. Composition operators on Hardy spaces of a half-plane [J]. Proc. Amer. Math. Soc., 1999, 127(5): 1483–1491.
- [7] MATACHE V. Convergent sequences of composition operators [J]. J. Math. Anal. Appl., 2005, 305(2): 659–668.
- [8] RUDIN W. Real and Complex Analysis [M]. Third edition. McGraw-Hill Book Co., New York, 1987.
- [9] SCHWARTZ H G. Composition Operators on H^p [M]. Dissertation, Univ. of Toledo, 1969.
- [10] SHAPIRO J H. The essential norm of a composition operator [J]. Ann. of Math. (2), 1987, 125(2): 375-404.
- [11] SHAPIRO J H. Composition Operators and Classical Function Theory [M]. Springer-Verlag, New York, 1993.
- [12] SHAPIRO J H. What do composition operators know about inner functions [J]. Monatsh. Math., 2000, 130(1): 57–70.
- [13] SHAPIRO J H, SUNDBERG C. Isolation amongst the composition operators [J]. Pacific J. Math., 1990, 145(1): 117–152.
- [14] SHAPIRO J H, SMITH W. Hardy spaces that support no compact composition operators [J]. J. Funct. Anal., 2003, 205(1): 62–89.